-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexportLPCData2R.m
124 lines (109 loc) · 3.07 KB
/
exportLPCData2R.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
function out=exportLPCData2R(data,opts)
% fucntion vectorizes the data into columns so it can be used in R
% Columns:
% 1 -> mean data subtracted
% 3 -> T scores Hits-CRs
% 5 -> Z value data from mann whitney (Hits - CRs)
% 7 -> Bin time
% 8 -> channel id
% 9 -> subject id
% 10 -> block id
% 11 -> roi id
% 12 -> dPrime for the block
% 13 -> hit rate for the block
% 14 -> FAR rate for the block
% 15 -> hemisphere
% 16 -> sub roi id
% 17 -> ITC_Z; inter trial coherence z score
% 18 -> ITP_Z; inter trial phase z score
% 19 -> ZcStat RT-amp correlation Z score (H-CRs)
% 20 -> ZcHits; RT-amp correlation Z score Hits
% 21 -> ZcCRs ; RT-amp correlation Z score CRs
% 22 -> zHits; score agains zero for hit trials
% 23 -> zCRs ; score agains zero for CRs trials
switch opts.bin
case 'Bin'
binIdx = data.Bins(:,1) >= opts.time(1) & data.Bins(:,2) <= opts.time(2);
nBins = sum(binIdx);
case 'BigBin'
binIdx = data.Bigbins(:,1) >= opts.time(1) & data.Bigbins(:,2) <= opts.time(2);
nBins = sum(binIdx);
end
nChans = numel(data.LPCchanId);
nSubjs = numel(unique(data.subjChans));
if opts.byBlockFlag
preFix = 'BinBlock';
nBlocks = data.maxNumBlocks;
else
preFix = opts.bin;
nBlocks = 1;
end
% prealloaction
out = nan(nChans*nBins*nBlocks,23);
switch opts.type
case 'itc'
x = data.BinITC_Z(:,binIdx);
out(:,17) = x(:);
x = data.BinITP_Z(:,binIdx);
out(:,18) = x(:);
otherwise
%x = data.([preFix 'condDiff']);
%out(:,1) = x(:);
%x = data.([preFix 'TStat']);
%out(:,3) = x(:);
x = data.([preFix 'ZStat'])(:,binIdx);
out(:,5) = x(:);
x = data.([preFix 'ZcStat'])(:,binIdx);
out(:,19) = x(:);
x = data.([preFix 'ZcHits'])(:,binIdx);
out(:,20) = x(:);
x = data.([preFix 'ZcCRs'])(:,binIdx);
out(:,21) = x(:);
x = data.([preFix 'zHits'])(:,binIdx);
out(:,22) = x(:);
x = data.([preFix 'zCRs'])(:,binIdx);
out(:,23) = x(:);
end
% bin time:
x = 1:nBins;
x = repmat(x,[nChans 1 nBlocks]);
out(:,7) = x(:);
% channel id
x = 1:nChans;
x = repmat(x,[1 nBins nBlocks]);
out(:,8) = x(:);
% subject id/ this is by channel
x = data.subjChans(:)';
x = repmat(x,[1 nBins nBlocks]);
out(:,9) = x(:);
% block id
x = zeros(1,1,nBlocks);
x(1:nBlocks) = 1:nBlocks;
x = repmat(x,[nChans nBins 1]);
out(:,10) = x(:);
% roi id/ by channel
x = data.ROIid(:)';
x = repmat(x,[1 nBins nBlocks]);
out(:,11) = x(:);
% hemisphere id/ by channel
x = data.hemChanId(:)';
x = repmat(x,[1 nBins nBlocks]);
out(:,15) = x(:);
% sub roi id/ by channel
x = data.subROIid(:)';
x = repmat(x,[1 nBins nBlocks]);
out(:,16) = x(:);
% dPrime, rates
for s = 1:nSubjs
if opts.byBlockFlag
for bl = 1:nBlocks
ids = (out(:,9)==s)&(out(:,10)==bl);
out(ids,12) = data.dP_Block(s,bl);
out(ids,13) = data.HR_Block(s,bl);
out(ids,14) = data.FAR_Block(s,bl);
end
else
ids = (out(:,9)==s);
out(ids,12) = data.dPrime(s);
end
end