generated from willvieira/talkTemplate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.Rmd
269 lines (189 loc) · 6.97 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
title: Talk template
output:
xaringan::moon_reader:
# self_contained: TRUE
includes:
in_header: conf/style-header.html
lib_dir: assets
seal: false
css: ["default", "conf/css/style.css", "conf/css/fonts.css"]
nature:
highlightStyle: solarized-light
highlightLines: true
beforeInit: ["conf/js/gifffer.min.js", "conf/js/style-macros.js"]
---
```{r setup, echo = F}
knitr::opts_chunk$set(
comment = "#",
#cache = TRUE,
collapse = TRUE,
warning = FALSE,
message = FALSE,
fig.width = 7,
fig.height = 5.25,
fig.align = 'center',
fig.retina = 3
)
# base plot layout
mypar = list(mar = c(3,3,0.5,0.5), mgp = c(1.5, 0.3, 0), tck = -.008)
# xaringan Extra
xaringanExtra::use_xaringan_extra(c("tile_view", "animate_css", "tachyons"))
xaringanExtra::use_extra_styles(
hover_code_line = TRUE, #<<
mute_unhighlighted_code = TRUE #<<
)
xaringanExtra::use_editable(expires = 1)
xaringanExtra::use_panelset()
```
class: middle, title-slide
<!-- top logo (comment to remove or edit on `conf/css/style.css:23`) -->
<div class="lab-logo"></div>
<!-- <div class="uni-logo"></div> -->
# Who is Willian Vieira?
<hr width="65%" align="left" size="0.3" color="#FFC800"></hr>
## and what has he been doing?
### Willian Vieira, .small[Analyst]
<br><br><br><br><br>
[<i class="fa fa-github fa-lg" style="color:#e7e8e2"></i> WV-Habitat/me](https://github.com/WV-Habitat/me)
[<i class="fa fa-twitter fa-lg" style="color:#e7e8e2"></i> @WillVieira90](https://twitter.com/willvieira90)
---
# Outline
- My thesis project
- The ECCC project
- Side projects
- Future projects
---
class: middle, center, inverse
# My PhD thesis
<hr width="100%" align="left" size="0.3" color="#FFC800"></hr>
---
.center[.font140[**How can we better predict tree species distribution?**]]
<br>
- Species Distribution Models (SDM) are not appropriated for trees
- But we can use *theory* to create **mechanistic models**
- What are the drivers of forest dynamics shaping tree distribution?
- Mathematical and statistical models to assess the effect of climate, competition, and forest management
---
# Chapter 1: State Transition Model
.center[![:scale 55%](https://raw.githubusercontent.com/willvieira/PhD/master/chapter1/img/fig1.png)]
- Derived from the metapopulation theory
- **B**oreal, **T**emperate, **M**ixed, and **R**egeneration ~ MAT + MAP
- Extension to include forest management practices
- Analytical equations, Matrix algebra, Jacobian approximation
- [STM R package](https://willvieira.github.io/STManaged/index.html); [Shiny App](https://github.com/willvieira/shiny_STM-managed)
.cite[Model from Vissault et al. [2020](https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.13978)]
---
# Chapter 2 & 3: Integral Projection Model
<br>
.center[![](images\ipm3.png)]
- Demographic models for 31 tree species from eastern North America
- $\lambda$ ~ [Growh + mortality + recruit] ~ climate + competition
- Non-linear hierarchical Bayesian models
- Stan: statistical programming language derived from C++
- High-performance computing (HPC)
- C.2: Random forest for sensitivity analysis
- C.3: Scale integration - from individual performance to the metapopulation
---
class: middle, center, inverse
# The ECCC project
<hr width="100%" align="left" size="0.3" color="#FFC800"></hr>
## Sampling design for monitoring boreal birds in Quebec
---
# BMS project
<br>
.pull-right[![](https://willvieira.github.io/sampling_BMS/studyArea_files/figure-html/fig-ecoregion-1.png)]
- National effort to develop a protocol to sample boreal birds
- Adapt and implement national design for the Quebec region
- Spatially stratified sampling approach weighted by:
- Habitat
- Cost
- Legacy sites
- [Report](https://willvieira.github.io/sampling_BMS/)
---
# BMS project
.font130[R&D: A new approach to account for legacy sites]
.center[![:scale 60%](https://willvieira.github.io/sampling_BMS/legacy_files/figure-html/fig-sampleSize-example2-1.png)]
---
# BMS project
.font130[R&D: A new approach to account for legacy sites]
.center[![:scale 60%](https://willvieira.github.io/sampling_BMS/legacy_files/figure-html/fig-ecosExample-1.png)]
---
class: middle, center, inverse
# Side projects
<hr width="100%" align="left" size="0.3" color="#FFC800"></hr>
.font140[*From learning useless programming languages to automating unnecessary tasks*]
---
# Side projects
<br>
.font120[Reporting and templates]
- [Manuscript template](https://github.com/willvieira/ms_STM-managed) (using markdown, LaTeX, Pandoc, Lua)
- [Presentation template](https://github.com/willvieira/talkTemplate) (this presentation, some CSS and JavaScript)
- [Lab notebook](https://willvieira.github.io/book_forest-demography-IPM/)
.font120[Task automation]
- Make (reproducibility of manuscripts)
- Crontab ([Kijiji scraper R package](https://github.com/willvieira/KijijiScraper))
- GitHub Actions to automatically:
- Test and build R packages
- Reproduce analysis
- Deploy reports and websites
---
class: middle, center, inverse
# Future projects
<hr width="100%" align="left" size="0.3" color="#FFC800"></hr>
.font140[*Or what I would like to explore*]
---
# Future projects
<br>
.font120[Modeling]
- Statistical models (spatiotemporal autocorrelation, time series)
- Machine learning beyond random forest
.font120[Development tools]
- Modularization (Packages, unity test, deployment, versioning, code review)
- Containerization (Docker)
- Data Engineering
- Cloud computing
---
class: middle, center, inverse
# Cloud-based geospatial technologies
<hr width="100%" align="left" size="0.3" color="#FFC800"></hr>
---
# Cloud-based geospatial technologies
<br>
.font120[**Cloud Optimized GeoTIFF (COG)**]
It is based on two complementary frameworks:
1. Optimal GeoTIFF storage (store and organize each pixel information)
- Tiling
- Overviews
2. HTTP GET range requests
- extract only a portion of the GeoTIFF file
- Not mandatory but already built into cloud services (Google, Azure)
- Ranges are determined by external metadata
---
# Cloud-based geospatial technologies
<br>
.font120[**Spatial-Temporal Asset Catalog (STAC)**]
- A common language to describe geospatial information
- metadata standard (JSON)
- Structured metadata repository describing
- **What** it is
- **Where** data is located
- **How** it can be used
- Hierarchically structured into items, collections, and catalogs
Example with the Landsat images:
- RED band of an image is an asset
- All color bands of an image is an item
- All images together are a collection
---
# Cloud-based geospatial technologies
<br>
.font120[**Why should we move towards STAC?**]
- Once linked to STAC, we have access to any [new] open data effortless
- Catalog is centralized, providing easy searchability of new data sets
- Inclusion of new data is easy
- Community-based metadata extensions for specific problems
--
.font120[**Constrants**]
- It comes with high implementation costs (especially if we become data providers)
- Less useful if we are interested in only a few spatial datasets
---