-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDESCRIPTION
37 lines (37 loc) · 1.8 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Package: dti
Version: 1.5.4.3
Date: 2024-09-26
Title: Analysis of Diffusion Weighted Imaging (DWI) Data
Authors@R: c(person("Karsten", "Tabelow", role = c("aut", "cre"),
email = "[email protected]"),
person("Joerg", "Polzehl", role = c("aut"),
email = "[email protected]"),
person("Felix", "Anker", role = c("ctb")))
Author: Karsten Tabelow [aut, cre],
Joerg Polzehl [aut],
Felix Anker [ctb]
Maintainer: Karsten Tabelow <[email protected]>
Depends: R (>= 3.5.0), awsMethods (>= 1.1-1)
SystemRequirements: gsl
Imports: methods, parallel, adimpro (>= 0.9), aws (>= 2.4.1),
rgl, oro.nifti (>= 0.3.9), oro.dicom, gsl, quadprog
LazyData: TRUE
Description: Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging
modality, that measures diffusion of water in tissues like the human
brain. The package contains R-functions to process diffusion-weighted
data. The functionality includes diffusion tensor imaging (DTI),
diffusion kurtosis imaging (DKI), modeling for high angular resolution
diffusion weighted imaging (HARDI) using Q-ball-reconstruction and
tensor mixture models, several methods for structural adaptive
smoothing including POAS and msPOAS, and a streamline fiber tracking
for tensor and tensor mixture models.
The package provides functionality to manipulate and visualize results
in 2D and 3D.
License: GPL (>= 2)
Copyright: This package is
Copyright (C) 2005-2020 Weierstrass Institute for
Applied Analysis and Stochastics.
URL: https://www.wias-berlin.de/research/ats/imaging/
Suggests:
covr
RoxygenNote: 6.1.0