-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoxclamantis_sibilants_epitran_wikipron.R
297 lines (231 loc) · 10.1 KB
/
voxclamantis_sibilants_epitran_wikipron.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Analyze VoxClamantis v1.0 Sibilants
# Created by Eleanor Chodroff
# 1 June 2020
# This script takes as input the Epitran and Wikipron sibilant *info.csv and *sibilants.csv text files, the per_utt_mcd text files (scores), and reading_info.csv
# The script returns the numbers reported in the paper (# of languages, # of language families, counts of sibilants, correlation of mid-frequency peak for /s/ and /z/) and the figure
library(tidyverse)
library(ggExtra)
library(ggthemes)
library(ggforce)
library(jsonlite)
library(data.table)
library(xtable)
#################
### CHANGE ME ###
#################
DATASET <- "epiwiki"
epiDir <- "./epitran_sibilants/"
wikiDir <- "./wikipron_sibilants/"
scoresDir <- "./per_utt_mcd/"
surprisalDir <- "./epiwiki_processed/"
outputDir <- "~/Desktop/"
inventory <- read_csv("./reading_info.csv")
#################
### FUNCTIONS ###
#################
# convert hertz to ERB
hz2erb <- function(x) {
output <- (.0043 * x) + 1
output <- 21.4 * log10(output)
return(output)
}
# read in file
readSibFiles <- function(fileDir, file_list) {
d <- read_csv(paste0(fileDir, file_list[i]))
d$erbfreq <- hz2erb(d$peak3k7k)
d$stim <- NULL
sibinfo <- gsub("sibilants.csv", "sibInfo.csv", file_list[i])
d2 <- read_csv(paste0(fileDir, sibinfo))
d <- left_join(d, d2, by = c("file", "trial", "sib"))
d <- left_join(d, inventory, by = "lang")
d <- d %>% select(c(file, sib, lang), everything())
return(d)
}
# remove non-sibilants: only necessary for unitran
removeNonSibs <- function(x) {
x <- filter(x, !sib %in% c("SIL", "SHADDA", "SOFTSIGN", "SEMICOLON", "SIX"))
return(x)
}
# only keep "s" and "z" sibilants
keepSZ <- function(x) {
x <- filter(x, sib %in% c("s","z"))
return(x)
}
# get number of sibilant categories per reading
getNumSibCats <- function(x) {
numSibCats <- length(unique(x$sib))
return(numSibCats)
}
# get number of vowels by row count
getNumSibs <- function(x, newcolname) {
count <- sapply(x, nrow)
count <- enframe(count)
colnames(count) <- c("lang", newcolname)
return(count)
}
# exclude utterances with MCD score below some value (6 used below)
removeUttMcd <- function(x, cutoff) {
x <- filter(x, mcd < cutoff)
}
# remove outliers
removeOutliers <- function(x) {
x <- filter(x, count > 50)
x <- subset(x, erbfreq < meanfreqmplusSD)
x <- subset(x, erbfreq > meanfreqmminSD)
x <- subset(x, dur < meandurplusSD)
x <- subset(x, dur > meandurminSD)
}
####################
### READ IN DATA ###
####################
scores_list <- list.files(path = scoresDir, pattern = "*.scores")
epi_list <- list.files(path = epiDir, pattern = "*sibilants.csv")
wiki_list <- list.files(path = wikiDir, pattern = "*sibilants.csv")
# READ IN PER-UTT-MCD SCORES
scores <- list()
for (i in 1:length(scores_list)) {
scoresi <- read_table2(paste0(scoresDir, scores_list[i]), col_names = FALSE)
colnames(scoresi) <- c("file", "mcd")
rec_lang <- substring(scores_list[i], 1, 6)
scores[[rec_lang]] <- scoresi
}
scores[["FINV38"]] <- scores[["FIN38V"]]
scores[["FINV38"]]$file <- gsub("FIN38VN", "FINV38N", scores[["FINV38"]]$file)
### READ IN EPITRAN AND WIKIPRON DATA
langDFs <- list()
# READ IN EPITRAN FILES
for (i in 1:length(epi_list)) {
langID <- substr(epi_list[i], 1, 6)
langDFs[[langID]] <- readSibFiles(epiDir, epi_list)
langDFs[[langID]] <- left_join(langDFs[[langID]], scores[[langID]], by = c("file" = "file"))
}
# READ IN WIKIPRON FILES
for (i in 1:length(wiki_list)) {
langID <- substr(wiki_list[i], 1, 6)
langDFs[[langID]] <- readSibFiles(wikiDir, wiki_list)
langDFs[[langID]] <- left_join(langDFs[[langID]], scores[[langID]], by = c("file" = "file"))
}
langDFs_orig <- langDFs
###################################
######## OUTLIER EXCLUSION ########
###################################
# only keep "s" and "z" sibilants
langDFs <- lapply(langDFs, keepSZ)
# remove languages w/o /s/ *and* /z/
numSibCats <- sapply(langDFs, getNumSibCats)
lessThanTwo <- names(numSibCats[which(numSibCats < 2)])
for (i in 1:length(lessThanTwo)) {
langDFs[[lessThanTwo[i]]] <- NULL
}
# count number of sibilants
numSibs <- getNumSibs(langDFs, "orig")
# prep readings with MCD > 8 for removal
removeme <- inventory$lang[which(inventory$MCD1 > 8)]
removeme <- removeme[removeme %in% names(langDFs)]
# remove files above file-mcd cutoff
for (i in 1:length(removeme)) {
langDFs[[removeme[i]]] <- NULL
}
# count remaining sibilants
count <- getNumSibs(langDFs, "file_mcd")
numSibs <- left_join(numSibs, count, by = "lang")
# remove utterances below mcd cutoff
langDFs <- lapply(langDFs, removeUttMcd, cutoff = 6)
# count remaining sibilants
count <- getNumSibs(langDFs, "utt_mcd")
numSibs <- left_join(numSibs, count, by = "lang")
# get mean, sd, count, and mean+/-2sd per sibilant for mid-frequency peak and duration
sibInfo <- list()
for (i in 1:length(langDFs)) {
langID <- names(langDFs[i])
sibInfo[[langID]] <- langDFs[[langID]] %>% group_by(lang, sib) %>%
summarise(meanfreqm = mean(erbfreq), sdfreqm = sd(erbfreq), meandur = mean(dur), sddur = sd(dur), count = length(sib))
sibInfo[[i]]$meanfreqmplusSD <- sibInfo[[i]]$meanfreqm + 2 * sibInfo[[i]]$sdfreqm
sibInfo[[i]]$meanfreqmminSD <- sibInfo[[i]]$meanfreqm - 2 * sibInfo[[i]]$sdfreqm
sibInfo[[i]]$meandurplusSD <- sibInfo[[i]]$meandur + 2 * sibInfo[[i]]$sddur
sibInfo[[i]]$meandurminSD <- sibInfo[[i]]$meandur - 2 * sibInfo[[i]]$sddur
langDFs[[langID]] <- left_join(langDFs[[langID]], sibInfo[[langID]], by = c("lang", "sib"))
}
# remove outliers
langDFs <- lapply(langDFs, removeOutliers)
### REMOVE READINGS WITH NO DATA
numSibCats <- sapply(langDFs, getNumSibCats)
lessThanTwo <- names(numSibCats[which(numSibCats < 2)])
for (i in 1:length(lessThanTwo)) {
langDFs[[lessThanTwo[i]]] <- NULL
}
# count remaining sibilants
count <- getNumSibs(langDFs, "outlier_after")
numSibs <- left_join(numSibs, count, by="lang")
numSibs$retained_mcd <- numSibs$utt_mcd / numSibs$orig
numSibs$retained_total <- numSibs$outlier_after / numSibs$orig
numSibs$retained_mcd <- ifelse(numSibs$retained_mcd < 0.01, "NA", numSibs$retained_mcd)
numSibs$retained_mcd <- as.numeric(as.character(numSibs$retained_mcd))
numSibsTable <- summary(numSibs)
summary(numSibs)
############################
### SAVE RETENTION STATS ###
############################
print(xtable(numSibsTable), file = paste0(outputDir, DATASET, "-retention-sibilants.tex"))
write_csv(numSibs, paste0(outputDir, DATASET, "-retention-sibilants-all.csv"))
#############################
### GET DESCRIPTIVE STATS ###
#############################
meansPerSibPerLang <- list()
for (i in 1:length(langDFs)) {
langID <- names(langDFs[i])
meansPerSibPerLang[[langID]] <- langDFs[[langID]] %>% group_by(sib) %>% summarise(
meanpeak = mean(erbfreq), sdpeak = sd(erbfreq), count = length(sib), lang = langID, family = family[1])
}
myMeans <- do.call(rbind.data.frame, meansPerSibPerLang)
mymeanpeak <- myMeans %>% select(-c(sdpeak, count)) %>% pivot_wider(names_from = sib, values_from = meanpeak)
mysdpeak <- myMeans %>% select(-c(meanpeak, count)) %>% pivot_wider(names_from = sib, values_from = sdpeak)
mycount <- myMeans %>% select(-c(meanpeak, sdpeak)) %>% pivot_wider(names_from = sib, values_from = count)
peak.sz <- merge(mymeanpeak, mysdpeak, by = c("lang", "family"))
peak.sz <- merge(peak.sz, mycount, by = c("lang", "family"))
colnames(peak.sz) <- c("lang", "family", "s", "z", "sd_s", "sd_z", "count_s", "count_z")
cor.test(~s + z, peak.sz)
##############################
### SAVE IMPORTANT NUMBERS ###
##############################
sibNumbers <- matrix(ncol=1, nrow=12)
sibNumbers[1,1] <- length(langSZ)
sibNumbers[2,1] <- sum(subset(nSibs, sib == "s")$count)
sibNumbers[3,1] <- sum(subset(nSibs, sib == "z")$count)
sibNumbers[4,1] <- mean(nSibsLang$count)
sibNumbers[5,1] <- median(nSibsLang$count)
sibNumbers[6,1] <- min(nSibsLang$count)
sibNumbers[7,1] <- max(nSibsLang$count)
sibNumbers[8,1] <- quantile(nSibsLang$count, 0.25)
sibNumbers[9,1] <- quantile(nSibsLang$count, 0.75)
sibNumbers[10, 1] <- nrow(subset(peak.sz, !is.na(z)))
sibNumbers[11, 1] <- cor.test(~s + z, mymeanpeak)$estimate
sibNumbers[12, 1] <- cor.test(~s + z, mymeanpeak)$p.value
sibNumbers <- data.frame(sibNumbers)
colnames(sibNumbers) <- c("value")
rownames(sibNumbers) <- c("# languages", "# phon{s}", "# phon {z}", "mean tokens", "median tokens", "min tokens", "max tokens", "1q tokens", "3q tokens", "# languages with both phon{s} and phon{z}", "sz cor", "sz pval")
langs <- unique(filter(peak.sz, !is.na(z))$lang)
inv <- filter(inventory, lang %in% langs)
lang_families <- inv %>% group_by(family) %>% summarise(count = n()) %>% arrange(desc(count))
write.table(sibNumbers, paste0(outputDir, "sibNumbers_", DATASET, ".txt"), sep = "\t", quote = F)
write.csv(inv, paste0(outputDir, "sibilant_langs.csv"), row.names = F)
write.csv(lang_families, paste0(outputDir, "sibilant_lang_families.csv"), row.names = F)
###################
### MAKE FIGURE ###
###################
corLabel <- "r = 0.87, p < 0.001"
scale_min <- 25
scale_max <- 31
diff <- scale_max - scale_min
p <- ggplot(peak.sz, aes(x = s, y = z)) + geom_point(size = 0, color = "slategray", alpha = 0) +
geom_ellipse(aes(x0 = s, y0 = z, a = sd_s * 0.1, b = sd_z * 0.1, angle = 0), color = "slategray", fill = "slategray", alpha = 0.04) +
geom_smooth(method = lm, size = 0.75, se = TRUE, color = "black") +
geom_abline(slope = 1, intercept = 0, linetype = "dashed", alpha = 0.4) +
theme_few(20) + xlab("ERB") + ylab("ERB") +
scale_x_continuous(limit = c(scale_min, scale_max)) + scale_y_continuous(limit = c(scale_min, scale_max)) +
annotate("text", family = "serif", x = scale_min + 0.8 * diff, y = scale_min, size = 7, label = corLabel, fontface = "italic") +
annotate("text", family = "serif", x = scale_min + (diff / 2), y = scale_max, size = 9, label = "mid-freq peak /s/") +
annotate("text", family = "serif", x = scale_max, y = scale_min + (diff / 2), size = 9, label = "mid-freq peak /z/", angle = -90) +
theme(legend.position = c(0.15,0.87), text = element_text(family = "serif", size = 22))
ggMarginal(p, type = "histogram", xparams = list(color = "slategray", fill = "ghostwhite"), yparams = list(color = "ghostwhite", fill = "slategray"))
quartz.save(type = "pdf", file = paste0(outputDir, "voxclamantis_sz_ellipse_", DATASET, "_erb.pdf"))