forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcolorutils.cpp
579 lines (447 loc) · 15.3 KB
/
colorutils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
#define __PROG_TYPES_COMPAT__
#include <stdint.h>
#include "hsv2rgb.h"
#include "colorutils.h"
void fill_solid( struct CRGB * leds, int numToFill,
const struct CRGB& color)
{
for( int i = 0; i < numToFill; i++) {
leds[i] = color;
}
}
void fill_solid( struct CHSV * targetArray, int numToFill,
const struct CHSV& hsvColor)
{
for( int i = 0; i < numToFill; i++) {
targetArray[i] = hsvColor;
}
}
// void fill_solid( struct CRGB* targetArray, int numToFill,
// const struct CHSV& hsvColor)
// {
// fill_solid<CRGB>( targetArray, numToFill, (CRGB) hsvColor);
// }
void fill_rainbow( struct CRGB * pFirstLED, int numToFill,
uint8_t initialhue,
uint8_t deltahue )
{
CHSV hsv;
hsv.hue = initialhue;
hsv.val = 255;
hsv.sat = 255;
for( int i = 0; i < numToFill; i++) {
hsv2rgb_rainbow( hsv, pFirstLED[i]);
hsv.hue += deltahue;
}
}
void fill_rainbow( struct CHSV * targetArray, int numToFill,
uint8_t initialhue,
uint8_t deltahue )
{
CHSV hsv;
hsv.hue = initialhue;
hsv.val = 255;
hsv.sat = 255;
for( int i = 0; i < numToFill; i++) {
targetArray[i] = hsv;
hsv.hue += deltahue;
}
}
void fill_gradient_RGB( CRGB* leds,
uint16_t startpos, CRGB startcolor,
uint16_t endpos, CRGB endcolor )
{
// if the points are in the wrong order, straighten them
if( endpos < startpos ) {
uint16_t t = endpos;
CRGB tc = endcolor;
startpos = t;
startcolor = tc;
endcolor = startcolor;
endpos = startpos;
}
saccum87 rdistance87;
saccum87 gdistance87;
saccum87 bdistance87;
rdistance87 = (endcolor.r - startcolor.r) << 7;
gdistance87 = (endcolor.g - startcolor.g) << 7;
bdistance87 = (endcolor.b - startcolor.b) << 7;
uint16_t pixeldistance = endpos - startpos;
int16_t divisor = pixeldistance ? pixeldistance : 1;
saccum87 rdelta87 = rdistance87 / divisor;
saccum87 gdelta87 = gdistance87 / divisor;
saccum87 bdelta87 = bdistance87 / divisor;
rdelta87 *= 2;
gdelta87 *= 2;
bdelta87 *= 2;
accum88 r88 = startcolor.r << 8;
accum88 g88 = startcolor.g << 8;
accum88 b88 = startcolor.b << 8;
for( uint16_t i = startpos; i <= endpos; i++) {
leds[i] = CRGB( r88 >> 8, g88 >> 8, b88 >> 8);
r88 += rdelta87;
g88 += gdelta87;
b88 += bdelta87;
}
}
#if 0
void fill_gradient( const CHSV& c1, const CHSV& c2)
{
fill_gradient( FastLED[0].leds(), FastLED[0].size(), c1, c2);
}
void fill_gradient( const CHSV& c1, const CHSV& c2, const CHSV& c3)
{
fill_gradient( FastLED[0].leds(), FastLED[0].size(), c1, c2, c3);
}
void fill_gradient( const CHSV& c1, const CHSV& c2, const CHSV& c3, const CHSV& c4)
{
fill_gradient( FastLED[0].leds(), FastLED[0].size(), c1, c2, c3, c4);
}
void fill_gradient_RGB( const CRGB& c1, const CRGB& c2)
{
fill_gradient_RGB( FastLED[0].leds(), FastLED[0].size(), c1, c2);
}
void fill_gradient_RGB( const CRGB& c1, const CRGB& c2, const CRGB& c3)
{
fill_gradient_RGB( FastLED[0].leds(), FastLED[0].size(), c1, c2, c3);
}
void fill_gradient_RGB( const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
{
fill_gradient_RGB( FastLED[0].leds(), FastLED[0].size(), c1, c2, c3, c4);
}
#endif
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2)
{
uint16_t last = numLeds - 1;
fill_gradient_RGB( leds, 0, c1, last, c2);
}
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2, const CRGB& c3)
{
uint16_t half = (numLeds / 2);
uint16_t last = numLeds - 1;
fill_gradient_RGB( leds, 0, c1, half, c2);
fill_gradient_RGB( leds, half, c2, last, c3);
}
void fill_gradient_RGB( CRGB* leds, uint16_t numLeds, const CRGB& c1, const CRGB& c2, const CRGB& c3, const CRGB& c4)
{
uint16_t onethird = (numLeds / 3);
uint16_t twothirds = ((numLeds * 2) / 3);
uint16_t last = numLeds - 1;
fill_gradient_RGB( leds, 0, c1, onethird, c2);
fill_gradient_RGB( leds, onethird, c2, twothirds, c3);
fill_gradient_RGB( leds, twothirds, c3, last, c4);
}
void nscale8_video( CRGB* leds, uint16_t num_leds, uint8_t scale)
{
for( uint16_t i = 0; i < num_leds; i++) {
leds[i].nscale8_video( scale);
}
}
void fade_video(CRGB* leds, uint16_t num_leds, uint8_t fadeBy)
{
nscale8_video( leds, num_leds, 255 - fadeBy);
}
void fadeLightBy(CRGB* leds, uint16_t num_leds, uint8_t fadeBy)
{
nscale8_video( leds, num_leds, 255 - fadeBy);
}
void fadeToBlackBy( CRGB* leds, uint16_t num_leds, uint8_t fadeBy)
{
nscale8( leds, num_leds, 255 - fadeBy);
}
void fade_raw( CRGB* leds, uint16_t num_leds, uint8_t fadeBy)
{
nscale8( leds, num_leds, 255 - fadeBy);
}
void nscale8_raw( CRGB* leds, uint16_t num_leds, uint8_t scale)
{
nscale8( leds, num_leds, scale);
}
void nscale8( CRGB* leds, uint16_t num_leds, uint8_t scale)
{
for( uint16_t i = 0; i < num_leds; i++) {
leds[i].nscale8( scale);
}
}
CRGB& nblend( CRGB& existing, const CRGB& overlay, fract8 amountOfOverlay )
{
if( amountOfOverlay == 0) {
return existing;
}
if( amountOfOverlay == 255) {
existing = overlay;
return existing;
}
fract8 amountOfKeep = 256 - amountOfOverlay;
existing.red = scale8_LEAVING_R1_DIRTY( existing.red, amountOfKeep)
+ scale8_LEAVING_R1_DIRTY( overlay.red, amountOfOverlay);
existing.green = scale8_LEAVING_R1_DIRTY( existing.green, amountOfKeep)
+ scale8_LEAVING_R1_DIRTY( overlay.green, amountOfOverlay);
existing.blue = scale8_LEAVING_R1_DIRTY( existing.blue, amountOfKeep)
+ scale8_LEAVING_R1_DIRTY( overlay.blue, amountOfOverlay);
cleanup_R1();
return existing;
}
void nblend( CRGB* existing, CRGB* overlay, uint16_t count, fract8 amountOfOverlay)
{
for( uint16_t i = count; i; i--) {
nblend( *existing, *overlay, amountOfOverlay);
existing++;
overlay++;
}
}
CRGB blend( const CRGB& p1, const CRGB& p2, fract8 amountOfP2 )
{
CRGB nu(p1);
nblend( nu, p2, amountOfP2);
return nu;
}
CRGB* blend( const CRGB* src1, const CRGB* src2, CRGB* dest, uint16_t count, fract8 amountOfsrc2 )
{
for( uint16_t i = count; i; i--) {
dest[i] = blend(src1[i], src2[i], amountOfsrc2);
}
return dest;
}
CHSV& nblend( CHSV& existing, const CHSV& overlay, fract8 amountOfOverlay, TGradientDirectionCode directionCode)
{
if( amountOfOverlay == 0) {
return existing;
}
if( amountOfOverlay == 255) {
existing = overlay;
return existing;
}
fract8 amountOfKeep = 256 - amountOfOverlay;
uint8_t huedelta8 = overlay.hue - existing.hue;
if( directionCode == SHORTEST_HUES ) {
directionCode = FORWARD_HUES;
if( huedelta8 > 127) {
directionCode = BACKWARD_HUES;
}
}
if( directionCode == LONGEST_HUES ) {
directionCode = FORWARD_HUES;
if( huedelta8 < 128) {
directionCode = BACKWARD_HUES;
}
}
if( directionCode == FORWARD_HUES) {
existing.hue = existing.hue + scale8( huedelta8, amountOfOverlay);
}
else /* directionCode == BACKWARD_HUES */
{
huedelta8 = -huedelta8;
existing.hue = existing.hue - scale8( huedelta8, amountOfOverlay);
}
existing.sat = scale8_LEAVING_R1_DIRTY( existing.sat, amountOfKeep)
+ scale8_LEAVING_R1_DIRTY( overlay.sat, amountOfOverlay);
existing.val = scale8_LEAVING_R1_DIRTY( existing.val, amountOfKeep)
+ scale8_LEAVING_R1_DIRTY( overlay.val, amountOfOverlay);
cleanup_R1();
return existing;
}
void nblend( CHSV* existing, CHSV* overlay, uint16_t count, fract8 amountOfOverlay, TGradientDirectionCode directionCode )
{
for( uint16_t i = count; i; i--) {
nblend( *existing, *overlay, amountOfOverlay, directionCode);
existing++;
overlay++;
}
}
CHSV blend( const CHSV& p1, const CHSV& p2, fract8 amountOfP2, TGradientDirectionCode directionCode )
{
CHSV nu(p1);
nblend( nu, p2, amountOfP2, directionCode);
return nu;
}
CHSV* blend( const CHSV* src1, const CHSV* src2, CHSV* dest, uint16_t count, fract8 amountOfsrc2, TGradientDirectionCode directionCode )
{
for( uint16_t i = count; i; i--) {
dest[i] = blend(src1[i], src2[i], amountOfsrc2, directionCode);
}
return dest;
}
// CRGB HeatColor( uint8_t temperature)
//
// Approximates a 'black body radiation' spectrum for
// a given 'heat' level. This is useful for animations of 'fire'.
// Heat is specified as an arbitrary scale from 0 (cool) to 255 (hot).
// This is NOT a chromatically correct 'black body radiation'
// spectrum, but it's surprisingly close, and it's fast and small.
//
// On AVR/Arduino, this typically takes around 70 bytes of program memory,
// versus 768 bytes for a full 256-entry RGB lookup table.
CRGB HeatColor( uint8_t temperature)
{
CRGB heatcolor;
// Scale 'heat' down from 0-255 to 0-191,
// which can then be easily divided into three
// equal 'thirds' of 64 units each.
uint8_t t192 = scale8_video( temperature, 192);
// calculate a value that ramps up from
// zero to 255 in each 'third' of the scale.
uint8_t heatramp = t192 & 0x3F; // 0..63
heatramp <<= 2; // scale up to 0..252
// now figure out which third of the spectrum we're in:
if( t192 & 0x80) {
// we're in the hottest third
heatcolor.r = 255; // full red
heatcolor.g = 255; // full green
heatcolor.b = heatramp; // ramp up blue
} else if( t192 & 0x40 ) {
// we're in the middle third
heatcolor.r = 255; // full red
heatcolor.g = heatramp; // ramp up green
heatcolor.b = 0; // no blue
} else {
// we're in the coolest third
heatcolor.r = heatramp; // ramp up red
heatcolor.g = 0; // no green
heatcolor.b = 0; // no blue
}
return heatcolor;
}
CRGB ColorFromPalette( const CRGBPalette16& pal, uint8_t index, uint8_t brightness, TBlendType blendType)
{
uint8_t hi4 = index >> 4;
uint8_t lo4 = index & 0x0F;
// CRGB rgb1 = pal[ hi4];
const CRGB* entry = &(pal[0]) + hi4;
uint8_t red1 = entry->red;
uint8_t green1 = entry->green;
uint8_t blue1 = entry->blue;
uint8_t blend = lo4 && (blendType != NOBLEND);
if( blend ) {
if( hi4 == 15 ) {
entry = &(pal[0]);
} else {
entry++;
}
uint8_t f2 = lo4 << 4;
uint8_t f1 = 256 - f2;
// rgb1.nscale8(f1);
red1 = scale8_LEAVING_R1_DIRTY( red1, f1);
green1 = scale8_LEAVING_R1_DIRTY( green1, f1);
blue1 = scale8_LEAVING_R1_DIRTY( blue1, f1);
// cleanup_R1();
// CRGB rgb2 = pal[ hi4];
// rgb2.nscale8(f2);
uint8_t red2 = entry->red;
uint8_t green2 = entry->green;
uint8_t blue2 = entry->blue;
red2 = scale8_LEAVING_R1_DIRTY( red2, f2);
green2 = scale8_LEAVING_R1_DIRTY( green2, f2);
blue2 = scale8_LEAVING_R1_DIRTY( blue2, f2);
cleanup_R1();
// These sums can't overflow, so no qadd8 needed.
red1 += red2;
green1 += green2;
blue1 += blue2;
}
if( brightness != 255) {
nscale8x3_video( red1, green1, blue1, brightness);
}
return CRGB( red1, green1, blue1);
}
CRGB ColorFromPalette( const CRGBPalette256& pal, uint8_t index, uint8_t brightness, TBlendType)
{
const CRGB* entry = &(pal[0]) + index;
uint8_t red = entry->red;
uint8_t green = entry->green;
uint8_t blue = entry->blue;
if( brightness != 255) {
nscale8x3_video( red, green, blue, brightness);
}
return CRGB( red, green, blue);
}
CHSV ColorFromPalette( const struct CHSVPalette16& pal, uint8_t index, uint8_t brightness, TBlendType blendType)
{
uint8_t hi4 = index >> 4;
uint8_t lo4 = index & 0x0F;
// CRGB rgb1 = pal[ hi4];
const CHSV* entry = &(pal[0]) + hi4;
uint8_t hue1 = entry->hue;
uint8_t sat1 = entry->sat;
uint8_t val1 = entry->val;
uint8_t blend = lo4 && (blendType != NOBLEND);
if( blend ) {
if( hi4 == 15 ) {
entry = &(pal[0]);
} else {
entry++;
}
uint8_t f2 = lo4 << 4;
uint8_t f1 = 256 - f2;
uint8_t hue2 = entry->hue;
uint8_t sat2 = entry->sat;
uint8_t val2 = entry->val;
// Now some special casing for blending to or from
// either black or white. Black and white don't have
// proper 'hue' of their own, so when ramping from
// something else to/from black/white, we set the 'hue'
// of the black/white color to be the same as the hue
// of the other color, so that you get the expected
// brightness or saturation ramp, with hue staying
// constant:
// If we are starting from white (sat=0)
// or black (val=0), adopt the target hue.
if( sat1 == 0 || val1 == 0) {
hue1 = hue2;
}
// If we are ending at white (sat=0)
// or black (val=0), adopt the starting hue.
if( sat2 == 0 || val2 == 0) {
hue2 = hue1;
}
sat1 = scale8_LEAVING_R1_DIRTY( sat1, f1);
val1 = scale8_LEAVING_R1_DIRTY( val1, f1);
sat2 = scale8_LEAVING_R1_DIRTY( sat2, f2);
val2 = scale8_LEAVING_R1_DIRTY( val2, f2);
// cleanup_R1();
// These sums can't overflow, so no qadd8 needed.
sat1 += sat2;
val1 += val2;
uint8_t deltaHue = (uint8_t)(hue2 - hue1);
if( deltaHue & 0x80 ) {
// go backwards
hue1 -= scale8( 256 - deltaHue, f2);
} else {
// go forwards
hue1 += scale8( deltaHue, f2);
}
cleanup_R1();
}
if( brightness != 255) {
val1 = scale8_video( val1, brightness);
}
return CHSV( hue1, sat1, val1);
}
CHSV ColorFromPalette( const struct CHSVPalette256& pal, uint8_t index, uint8_t brightness, TBlendType)
{
CHSV hsv;// = *( &(pal[0]) + index );
if( brightness != 255) {
hsv.value = scale8_video( hsv.value, brightness);
}
return hsv;
}
void UpscalePalette(const struct CRGBPalette16& srcpal16, struct CRGBPalette256& destpal256)
{
for( int i = 0; i < 256; i++) {
destpal256[(uint8_t)(i)] = ColorFromPalette( srcpal16, i);
}
}
void UpscalePalette(const struct CHSVPalette16& srcpal16, struct CHSVPalette256& destpal256)
{
for( int i = 0; i < 256; i++) {
destpal256[(uint8_t)(i)] = ColorFromPalette( srcpal16, i);
}
}
#if 0
// replaced by PartyColors_p
void SetupPartyColors(CRGBPalette16& pal)
{
fill_gradient( pal, 0, CHSV( HUE_PURPLE,255,255), 7, CHSV(HUE_YELLOW - 18,255,255), FORWARD_HUES);
fill_gradient( pal, 8, CHSV( HUE_ORANGE,255,255), 15, CHSV(HUE_BLUE + 18,255,255), BACKWARD_HUES);
}
#endif