-
Notifications
You must be signed in to change notification settings - Fork 0
/
3dextradata2.py
executable file
·38 lines (38 loc) · 1.21 KB
/
3dextradata2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/usr/bin/env python3
from mpunet.models import UNet3D
from heartnet.models.base import BaseModelTraining
from heartnet.augmentation.elastic import Elastic3D
for i in range(3):
# base3D = BaseModelTraining(
# UNet3D(2, dim=96, out_activation="softmax"), name=f"augmentation-data-{i}", full=True
# )
# base3D.batch_size = 1
# base3D.augmentations = [
# Elastic3D(alpha=[0, 450], sigma=[20, 30], apply_prob=0.333)
# ]
# base3D.aug_repeats = 0
# base3D.setup()
# base3D.train()
# base3D.evaluate()
base3D = BaseModelTraining(
UNet3D(2, dim=96, out_activation="softmax"), name=f"hyper-1-data-{i}", full=True
)
base3D.batch_size = 1
base3D.augmentations = [
Elastic3D(alpha=[0, 100], sigma=[20, 30], apply_prob=0.333)
]
base3D.aug_repeats = 0
base3D.setup()
base3D.train()
base3D.evaluate()
base3D = BaseModelTraining(
UNet3D(2, dim=96, depth=4, out_activation="softmax"), name=f"hyper-2-data-{i}", full=True
)
base3D.batch_size = 1
base3D.augmentations = [
Elastic3D(alpha=[0, 100], sigma=[20, 30], apply_prob=0.333)
]
base3D.aug_repeats = 0
base3D.setup()
base3D.train()
base3D.evaluate()