-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamm_BEP_LSR4.m
117 lines (101 loc) · 4.31 KB
/
amm_BEP_LSR4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
function [ Ea,A6_LSR,A6_Strain,A7_Strain,CpOR,HORT,GORT,Q ] = amm_BEP_LSR4( T,Stoic,Ea,strain,A6_Cov)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
global R_e Q_name Strain_Coef_H Strain_Coef_S A A_LSR
%% Liner Scaling Relationships
% Qi = Qi,ref + ALPHAi * (Q_target - Q_ref)
% Use Pt as reference for original thermodynamics data
%Q_ref = 102.35; % N binding energy on reference metal (Pt) [kcal/mol]
% Use Ru as reference for new thermodynamics data
Q_ref = 134.21; % N binding energy on reference metal (Ru) [kcal/mol]
%Q_target = 102.35; Q_name = 'Pt'; % N binding energy on Pt
%Q_target = 110.00; Q_name = 'Ni'; % N binding energy on Ni
%Q_target = 112.07; Q_name = 'Rh'; % N binding energy on Rh
%Q_target = 115.30; Q_name = 'Co'; % N binding energy on Co
%Q_target = 132.72; Q_name = 'Os'; % N binding energy on Os
Q_target = 134.21; Q_name = 'Ru'; % N binding energy on Ru
%Q_target = 136.75; Q_name = 'Fe'; % N binding energy on Fe
%Q_target = 138.36; Q_name = 'Re'; % N binding energy on Re
%Q_target = 154.18; Q_name = 'Mo'; % N binding energy on Mo
%Q_target = 102.35; Q_name = 'Unk';
% ALPHAi LSR slopes
alpha(1) = 0.62036; % N2 [Terrace]
alpha(2) = 1; % N [Terrace]
alpha(3) = 0.17; % H [Terrace]
alpha(4) = 0.14; % NH3 [Terrace]
alpha(5) = 0.41; % NH2 [Terrace]
alpha(6) = 0.71; % NH [Terrace]
alpha(7) = 0.62036; % N2 [Step]
alpha(8) = 1.057; % N [Step]
alpha(9) = 0.18; % H [Step]
alpha(10) = 0.14; % NH3 [Step]
alpha(11) = 0.391; % NH2 [Step]
alpha(12) = 0.708; % NH [Step]
alpha(13) = 1.057; % N [Lower Terrace]
% Qi,ref (zero coverage reference binding energy of the species) [kcal/mol]
Qi_ref(1) = -2.0779; % N2 [Terrace]
Qi_ref(2) = Q_ref; % N [Terrace]
Qi_ref(3) = 57.4245; % H [Terrace]
Qi_ref(4) = 12.2999; % NH3 [Terrace]
Qi_ref(5) = 45.8833; % NH2 [Terrace]
Qi_ref(6) = 82.5372; % NH [Terrace]
Qi_ref(7) = 9.451; % N2 [Step]
Qi_ref(8) = 106.224; % N [Upper Step]
Qi_ref(9) = 58.0824; % H [Step]
Qi_ref(10) = 22.6759; % NH3 [Step]
Qi_ref(11) = 63.9298; % NH2 [Step]
Qi_ref(12) = 91.8554; % NH [Step]
Qi_ref(13) = 106.224; % N [Lower Step]
Q = Qi_ref + alpha * (Q_target - Q_ref);
A6_LSR = (alpha * (Q_target - Q_ref))'/R_e;
%% Catalyst surface strain
A6_Strain = Strain_Coef_H*[strain; 1];
A7_Strain = Strain_Coef_S*[strain^2; strain; 1];
%
%% Bronsted-Evans-Polanyi Relationships for activation barriers from Hrxn
% (Ea)=m(deltaHrxn)+b
% m coefficients
m(1) = 0.514; %N2 dissociation (Terrace)
m(2) = 0.581; %NH dehydrogenation (Terrace)
m(3) = 0.725; %NH2 dehydrogenation (Terrace)
m(4) = 0.608; %NH3 dehydrogenation (Terrace)
m(5) = 0.855; %N2 dissociation (Step)
m(6) = 0.809; %NH dehydrogenation (Step)
m(7) = 0.553; %NH2 dehydrogenation (Step)
m(8) = 0.470; %NH3 dehydrogenation (Step)
m(9) = 0.183; %N2 dissociation (Step-Terrace)
m(10)= 0.346; %N2 dissociation (U Step-L Step)
% b constant
b(1) = 48.6; %N2 dissociation (Terrace)
b(2) = 28.0; %NH dehydrogenation (Terrace)
b(3) = 25.5; %NH2 dehydrogenation (Terrace)
b(4) = 27.5; %NH3 dehydrogenation (Terrace)
b(5) = 40.6; %N2 dissociation (Step)
b(6) = 26.5; %NH dehydrogenation (Step)
b(7) = 27.7; %NH2 dehydrogenation (Step)
b(8) = 22.3; %NH3 dehydrogenation (Step)
b(9) = 18.0; %N2 dissociation (Step-Terrace)
b(10)= 20.1; %N2 dissociation (Step-Terrace)
[CpOR,HORT,GORT] = amm_thermo4(T,A6_LSR,A6_Cov,A6_Strain,A7_Strain);
HRXN = HORT * Stoic'*T*R_e;
Ea(2) = m(1) * HRXN(2) + b(1);
Ea(4) = m(4) * HRXN(4) + b(4);
Ea(5) = m(3) * HRXN(5) + b(3);
Ea(6) = m(2) * HRXN(6) + b(2);
Ea(9) = m(5) * HRXN(9) + b(5);
Ea(11) = m(8) * HRXN(11) + b(8);
Ea(12) = m(7) * HRXN(12) + b(7);
Ea(13) = m(6) * HRXN(13) + b(6);
Ea(15) = (strain*100)*(0.46921131) + 20.20056000; % N* Diffusion
Ea(16) = (strain*100)*(0.10199344) + 9.27356278; % H* Diffusion
Ea(17) = (strain*100)*(0.06629750) + 13.18263333; % NH3* Diffusion
Ea(18) = (strain*100)*(0.14124250) + 5.34992000; % NH2* Diffusion
Ea(19) = (strain*100)*(0.23348250) + 15.03512000; % NH* Diffusion
Ea(20) = m(9) * HRXN(20) + b(9);
Ea(21) = m(10) * HRXN(21) + b(10);
Ea(22) = (strain*100)*(0.46921131) + 20.20056000; % N(S3) Diffusion
%% Pre-exponential factor strain scaling
A_New = A_LSR*[strain^2; strain; 1];
A(1:8) = A_New(1:8);
A(14:15) = A_New(9:10);
end