-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_classification_sim2rel.py
131 lines (106 loc) · 5.21 KB
/
test_classification_sim2rel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
Author: Benny
Date: Nov 2019
"""
# from data_utils.ModelNetDataLoader import ModelNetDataLoader
from data_utils.ScanObjectNN import ScanObjectNN
import argparse
import numpy as np
import os
import torch
import logging
from tqdm import tqdm
import sys
import importlib
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
import pdb
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser('Testing')
parser.add_argument('--use_cpu', action='store_true', default=False, help='use cpu mode')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device')
parser.add_argument('--batch_size', type=int, default=24, help='batch size in training')
parser.add_argument('--dataset', default='3DCompat', help='3DCompat or ModelNet40')
parser.add_argument('--num_category', default=8, type=int, choices=[10, 40], help='training on ModelNet10/40')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number')
parser.add_argument('--log_dir', type=str, required=True, help='Experiment root')
parser.add_argument('--use_normals', action='store_true', default=False, help='use normals')
parser.add_argument('--use_uniform_sample', action='store_true', default=False, help='use uniform sampiling')
parser.add_argument('--num_votes', type=int, default=1, help='Aggregate classification scores with voting')
return parser.parse_args()
def test(model, loader, num_class=43, vote_num=1):
mean_correct = []
classifier = model.eval()
class_acc = np.zeros((num_class, 3))
for j, (points, target) in tqdm(enumerate(loader), total=len(loader)):
if not args.use_cpu:
points, target = points.cuda(), target.cuda()
points = points.transpose(2, 1)
vote_pool = torch.zeros(target.size()[0], num_class).cuda()
for _ in range(vote_num):
pred, _ = classifier(points)
vote_pool += pred
pred = vote_pool / vote_num
# pred[:, sel] = pred[:, sel] + 100 # only selected the probablities in common classes
pred_choice = pred.data.max(1)[1]
# pdb.set_trace()
# pred_choice = np.array([cla_mapping_40to9[c] for c in pred_choice.data.cpu().numpy()])
# pred_choice = torch.Tensor(pred_choice).cuda()
for cat in np.unique(target.cpu()):
classacc = pred_choice[target == cat].eq(target[target == cat].long().data).cpu().sum()
class_acc[cat, 0] += classacc.item() / float(points[target == cat].size()[0])
class_acc[cat, 1] += 1
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item() / float(points.size()[0]))
class_acc[:, 2] = class_acc[:, 0] / class_acc[:, 1]
class_acc = np.mean(class_acc[:, 2])
instance_acc = np.mean(mean_correct)
return instance_acc, class_acc
def main(args):
def log_string(str):
logger.info(str)
print(str)
'''HYPER PARAMETER'''
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
'''CREATE DIR'''
experiment_dir = os.path.join('log/classification_sim2real_'+args.dataset, args.log_dir)
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/eval.txt' % experiment_dir)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
'''DATA LOADING'''
log_string('Load dataset ...')
# data_path = 'data/modelnet40_normal_resampled/'
# common classes: cabinet, chair, shelf, table, bed, sink, sofa, toilet
# scanobjectnn: bag bin box cabinet chair desk display door shelf table bed pillow sink sofa toilet
class_choices = np.array([3, 4, 8, 5, 9, 10, 12, 13, 14]) # picked class in scanobjectnn
mapped_labels = np.array([0, 1, 2, 3, 3, 4, 5, 6, 7])
test_dataset = ScanObjectNN(partition='test', num_points=args.num_point, class_choices=class_choices, mapped_labels=mapped_labels)
testDataLoader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=10)
'''MODEL LOADING'''
num_class = 8
model_name = os.listdir(experiment_dir + '/logs')[0].split('.')[0]
model = importlib.import_module(model_name)
# pdb.set_trace()
classifier = model.get_model(num_class, normal_channel=args.use_normals)
if not args.use_cpu:
classifier = classifier.cuda()
checkpoint_path = str(experiment_dir) + '/checkpoints/best_model.pth' # best_model.pth model_epoch_45
checkpoint = torch.load(checkpoint_path)
print('load checkpoint file from:', checkpoint_path, checkpoint['epoch'])
classifier.load_state_dict(checkpoint['model_state_dict'])
with torch.no_grad():
instance_acc, class_acc = test(classifier.eval(), testDataLoader, vote_num=args.num_votes, num_class=num_class)
log_string('Test Instance Accuracy: %f, Class Accuracy: %f' % (instance_acc, class_acc))
if __name__ == '__main__':
args = parse_args()
main(args)