-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_first_level_localizer.py
executable file
·161 lines (127 loc) · 5.61 KB
/
script_first_level_localizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
Script that perform the first-level analysis on a subject 4D fMRI acquisition.
Author : Lise Favre, Bertrand Thirion, 2008-2010
"""
import os
from configobj import ConfigObj
from numpy import arange
from nipy.neurospin.mask import compute_mask_files
from nipy.neurospin.glm_files_layout import glm_tools, contrast_tools
# -----------------------------------------------------------
# --------- Paths -------------------------------------------
# -----------------------------------------------------------
from database_archi import *
#----- Path to the subjects database
DBPath = ROOT_PATH
#----- Subjects list (to run the analysis over multiple subjects)
Subjects = [SUBJECT]
#----- Acquisition(s) and session(s) to run the script on
Acquisitions = ["default_acquisition"]
Sessions = ["loc2"]
#----- Model's id (e.g. models with different amount of smoothing)
model_id = "smoothed_FWHM%g" %FWHM3D
#----- Name of the input nifti files to process
fmri_wc = "swaloc_corr4D_FWHM%g.nii" %FWHM3D
# ---------------------------------------------------------
# -------- General Information and parameters -------------
# ---------------------------------------------------------
tr = 2.4
nb_frames = 128
frametimes = tr * arange(nb_frames)
Conditions = [ 'damier_H', 'damier_V', 'clicDaudio', 'clicGaudio',
'clicDvideo', 'clicGvideo', 'calculaudio', 'calculvideo', 'phrasevideo',
'phraseaudio' ]
#---------- Masking parameters
infTh = 0.4
supTh = 0.9
#---------- Design Matrix
# Possible choices for hrf_model : "Canonical", \
# "Canonical With Derivative" or "FIR"
hrf_model = "Canonical With Derivative"
# Possible choices for drift_model : "Blank", "Cosine", "Polynomial"
drift_model = "Cosine"
hfcut = 128
#-------------- GLM options
# Possible choices : "Kalman_AR1", "Kalman", "Ordinary Least Squares"
fit_algo = "Kalman_AR1"
# ---------------------------------------------------------
# ------ Routines definition ------------------------------
# ---------------------------------------------------------
def generate_localizer_contrasts(contrast):
"""
This utility appends standard localizer contrasts
to the input contrast structure
Parameters
----------
contrast: configObj
that contains the automatically generated contarsts
Caveat
------
contrast is changed in place
"""
d = contrast.dic
d["audio"] = d["clicDaudio"] + d["clicGaudio"] +\
d["calculaudio"] + d["phraseaudio"]
d["video"] = d["clicDvideo"] + d["clicGvideo"] + \
d["calculvideo"] + d["phrasevideo"]
d["left"] = d["clicGaudio"] + d["clicGvideo"]
d["right"] = d["clicDaudio"] + d["clicDvideo"]
d["computation"] = d["calculaudio"] +d["calculvideo"]
d["sentences"] = d["phraseaudio"] + d["phrasevideo"]
d["H-V"] = d["damier_H"] - d["damier_V"]
d["V-H"] =d["damier_V"] - d["damier_H"]
d["left-right"] = d["left"] - d["right"]
d["right-left"] = d["right"] - d["left"]
d["audio-video"] = d["audio"] - d["video"]
d["video-audio"] = d["video"] - d["audio"]
d["computation-sentences"] = d["computation"] - d["sentences"]
d["reading-visual"] = d["sentences"]*2 - d["damier_H"] - d["damier_V"]
# -----------------------------------------------------------
# --------- Launching Pipeline on all subjects, -------------
# --------- all acquisitions, all sessions -------------
# -----------------------------------------------------------
# Treat sequentially all subjects & acquisitions
for s in Subjects:
print "Subject : %s" % s
for a in Acquisitions:
# step 1. set all the paths
basePath = os.sep.join((DBPath, s, "fMRI", a))
paths = glm_tools.generate_all_brainvisa_paths(basePath, Sessions,
fmri_wc, model_id)
misc = ConfigObj(paths['misc'])
misc["sessions"] = Sessions
misc["tasks"] = Conditions
misc["mask_url"] = paths['mask']
misc.write()
# step 2. Create one design matrix for each session
design_matrices = {}
for sess in Sessions:
design_matrices[sess] = glm_tools.design_matrix(
paths['misc'], paths['dmtx'][sess], sess, paths['paradigm'],
frametimes, hrf_model=hrf_model, drift_model=drift_model,
hfcut=hfcut, model=model_id)
# step 3. Compute the Mask
# fixme : it should be possible to provide a pre-computed mask
print "Computing the Mask"
mask_array = compute_mask_files(paths['fmri'].values()[0][0],
paths['mask'], True, infTh, supTh)
# step 4. Creating functional contrasts
print "Creating Contrasts"
clist = contrast_tools.ContrastList(misc=ConfigObj(paths['misc']),
model=model_id)
generate_localizer_contrasts(clist)
contrast = clist.save_dic(paths['contrast_file'])
CompletePaths = glm_tools.generate_brainvisa_ouput_paths(
paths["contrasts"], contrast)
# step 5. Fit the glm for each session
glms = {}
for sess in Sessions:
print "Fitting GLM for session : %s" % sess
glms[sess] = glm_tools.glm_fit(
paths['fmri'][sess], design_matrices[sess],
paths['glm_dump'][sess], paths['glm_config'][sess],
fit_algo, paths['mask'])
#step 6. Compute Contrasts
print "Computing contrasts"
glm_tools.compute_contrasts(contrast, misc, CompletePaths,
glms, model=model_id)