-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_blob_surface.py
executable file
·177 lines (158 loc) · 4.86 KB
/
script_blob_surface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
Script to create blobs on a texture
"""
import numpy as np
import os
import sys
import nipy.neurospin.graph.field as ff
import nipy.neurospin.graph.graph as fg
from nipy.neurospin.spatial_models import hroi
from nipy.neurospin.glm_files_layout import tio
from gifti import loadImage
from database_archi import *
def mesh_to_graph(vertices, poly):
"""
This function builds an fff graph from a mesh
(Taken from nipy mesh_processing.py but removed the aims dependancy)
"""
V = len(vertices)
E = poly.shape[0]
edges = np.zeros((3*E,2))
weights = np.zeros(3*E)
for i in range(E):
sa = poly[i,0]
sb = poly[i,1]
sc = poly[i,2]
edges[3*i] = np.array([sa,sb])
edges[3*i+1] = np.array([sa,sc])
edges[3*i+2] = np.array([sb,sc])
G = fg.WeightedGraph(V, edges, weights)
# symmeterize the graph
G.symmeterize()
# remove redundant edges
G.cut_redundancies()
# make it a metric graph
G.set_euclidian(vertices)
return G
#-------------------------------------------------
#--- Left hemisphere processing ------------------
#-------------------------------------------------
print "Processing left hemisphere.",
sys.stdout.flush()
# read the mesh
lmesh = loadImage(lmesh_path_gii)
if SUBJECT == "group":
c, t = lmesh.getArrays()
else:
c, n, t = lmesh.getArrays()
lvertices = c.getData()
ltriangles = t.getData()
print ".",
sys.stdout.flush()
# read the contrast texture
ltex = tio.Texture(glm_ltex_path).read(glm_ltex_path)
Fun = np.array(ltex.data)
Fun[np.isnan(Fun)] = 0
G = mesh_to_graph(lvertices, ltriangles)
F = ff.Field(G.V, G.get_edges(), G.get_weights(), Fun)
print ".",
sys.stdout.flush()
"""
if theta<Fun.max():
idx,height, father,label = F.threshold_bifurcations(0, theta)
else:F
idx = []
father = []
label = -np.ones(np.shape(Fun))
"""
# construct ROI
affine = np.eye(4)
shape = None
disc = np.reshape(np.arange(F.V), (F.V, 1)).astype(int)
nroi = hroi.NROI_from_field(F, affine, shape, disc, refdim=0,
th=THETA, smin=SMIN)
label = -np.ones(np.shape(Fun))
if nroi is not None:
# select either mean-labeled 2D blobs...
if BLOB2D_TYPE == "mblobs":
nroi.set_discrete_feature_from_index('average', Fun)
leaves = nroi.reduce_to_leaves()
idx = leaves.discrete_features['index']
leaves_avg = leaves.discrete_to_roi_features('average')
for k in range(leaves.k):
label[idx[k]] = leaves_avg[k,0]
# ...or index-labeled ones
else:
leaves = nroi.reduce_to_leaves()
idx = leaves.discrete_features['index']
for k in range(leaves.k):
label[idx[k]] = k
print ".",
sys.stdout.flush()
# write output 2D blobs textur
if not os.path.exists('%s/%s' %(MAIN_PATH, BLOBS2D_SUBDIR)):
os.makedirs('%s/%s' %(MAIN_PATH, BLOBS2D_SUBDIR))
output_tex = tio.Texture(blobs2D_ltex_path, data=label)
output_tex.write()
print "done."
sys.stdout.flush()
#-------------------------------------------------
#--- Right hemisphere processing -----------------
#-------------------------------------------------
print "Processing right hemisphere.",
sys.stdout.flush()
# read the mesh
rmesh = loadImage(rmesh_path_gii)
if SUBJECT == "group":
c, t = rmesh.getArrays()
else:
c, n, t = rmesh.getArrays()
rvertices = c.getData()
rtriangles = t.getData()
print ".",
sys.stdout.flush()
# read the contrast texture
rtex = tio.Texture(glm_rtex_path).read(glm_rtex_path)
Fun = np.array(rtex.data)
Fun[np.isnan(Fun)] = 0
G = mesh_to_graph(rvertices, rtriangles)
F = ff.Field(G.V, G.get_edges(), G.get_weights(), Fun)
print ".",
sys.stdout.flush()
"""
if theta<Fun.max():
idx,height, father,label = F.threshold_bifurcations(0, theta)
else:F
idx = []
father = []
label = -np.ones(np.shape(Fun))
"""
# construct ROI
affine = np.eye(4)
shape = None
disc = np.reshape(np.arange(F.V), (F.V, 1)).astype(int)
nroi = hroi.NROI_from_field(F, affine, shape, disc, refdim=0,
th=THETA, smin=SMIN)
label = -np.ones(np.shape(Fun))
if nroi is not None:
# select either mean-labeled 2D blobs...
if BLOB2D_TYPE == "mblobs":
nroi.set_discrete_feature_from_index('average', Fun)
leaves = nroi.reduce_to_leaves()
idx = leaves.discrete_features['index']
leaves_avg = leaves.discrete_to_roi_features('average')
for k in range(leaves.k):
label[idx[k]] = leaves_avg[k,0]
# ...or index-labeled ones
else:
leaves = nroi.reduce_to_leaves()
idx = leaves.discrete_features['index']
for k in range(leaves.k):
label[idx[k]] = k
print ".",
sys.stdout.flush()
# write output 2D blobs texture
if not os.path.exists('%s/%s' %(MAIN_PATH, BLOBS2D_SUBDIR)):
os.makedirs('%s/%s' %(MAIN_PATH, BLOBS2D_SUBDIR))
output_tex = tio.Texture(blobs2D_rtex_path, data=label)
output_tex.write()