You are given an integer array nums
. A subsequence of nums
is called a square streak if:
- The length of the subsequence is at least
2
, and - after sorting the subsequence, each element (except the first element) is the square of the previous number.
Return the length of the longest square streak in nums
, or return -1
if there is no square streak.
A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: nums = [4,3,6,16,8,2] Output: 3 Explanation: Choose the subsequence [4,16,2]. After sorting it, it becomes [2,4,16]. - 4 = 2 * 2. - 16 = 4 * 4. Therefore, [4,16,2] is a square streak. It can be shown that every subsequence of length 4 is not a square streak.
Example 2:
Input: nums = [2,3,5,6,7] Output: -1 Explanation: There is no square streak in nums so return -1.
Constraints:
2 <= nums.length <= 105
2 <= nums[i] <= 105
class Solution:
def longestSquareStreak(self, nums: List[int]) -> int:
s = set(nums)
ans = -1
for v in nums:
t = 0
while v in s:
v *= v
t += 1
if t > 1:
ans = max(ans, t)
return ans
class Solution:
def longestSquareStreak(self, nums: List[int]) -> int:
@cache
def dfs(x):
if x not in s:
return 0
return 1 + dfs(x * x)
s = set(nums)
ans = max(dfs(x) for x in nums)
return -1 if ans < 2 else ans
class Solution {
public int longestSquareStreak(int[] nums) {
Set<Integer> s = new HashSet<>();
for (int v : nums) {
s.add(v);
}
int ans = -1;
for (int v : nums) {
int t = 0;
while (s.contains(v)) {
v *= v;
++t;
}
if (t > 1) {
ans = Math.max(ans, t);
}
}
return ans;
}
}
class Solution {
private Map<Integer, Integer> f = new HashMap<>();
private Set<Integer> s = new HashSet<>();
public int longestSquareStreak(int[] nums) {
for (int v : nums) {
s.add(v);
}
int ans = 0;
for (int v : nums) {
ans = Math.max(ans, dfs(v));
}
return ans < 2 ? -1 : ans;
}
private int dfs(int x) {
if (!s.contains(x)) {
return 0;
}
if (f.containsKey(x)) {
return f.get(x);
}
int ans = 1 + dfs(x * x);
f.put(x, ans);
return ans;
}
}
class Solution {
public:
int longestSquareStreak(vector<int>& nums) {
unordered_set<long long> s(nums.begin(), nums.end());
int ans = -1;
for (int& v : nums) {
int t = 0;
long long x = v;
while (s.count(x)) {
x *= x;
++t;
}
if (t > 1) ans = max(ans, t);
}
return ans;
}
};
class Solution {
public:
int longestSquareStreak(vector<int>& nums) {
unordered_set<long long> s(nums.begin(), nums.end());
int ans = 0;
unordered_map<int, int> f;
function<int(int)> dfs = [&](int x) -> int {
if (!s.count(x)) return 0;
if (f.count(x)) return f[x];
long long t = 1ll * x * x;
if (t > INT_MAX) return 1;
f[x] = 1 + dfs(x * x);
return f[x];
};
for (int& v : nums) ans = max(ans, dfs(v));
return ans < 2 ? -1 : ans;
}
};
func longestSquareStreak(nums []int) int {
s := map[int]bool{}
for _, v := range nums {
s[v] = true
}
ans := -1
for _, v := range nums {
t := 0
for s[v] {
v *= v
t++
}
if t > 1 && t > ans {
ans = t
}
}
return ans
}
func longestSquareStreak(nums []int) (ans int) {
s := map[int]bool{}
for _, v := range nums {
s[v] = true
}
f := map[int]int{}
var dfs func(int) int
dfs = func(x int) int {
if !s[x] {
return 0
}
if v, ok := f[x]; ok {
return v
}
f[x] = 1 + dfs(x*x)
return f[x]
}
for _, v := range nums {
if t := dfs(v); ans < t {
ans = t
}
}
if ans < 2 {
return -1
}
return ans
}