Skip to content

Latest commit

 

History

History
191 lines (155 loc) · 4.72 KB

File metadata and controls

191 lines (155 loc) · 4.72 KB

English Version

题目描述

给你一棵二叉树的根节点 root,找出这棵树的 每一棵 子树的 平均值 中的 最大 值。

子树是树中的任意节点和它的所有后代构成的集合。

树的平均值是树中节点值的总和除以节点数。

 

示例:

输入:[5,6,1]
输出:6.00000
解释: 
以 value = 5 的节点作为子树的根节点,得到的平均值为 (5 + 6 + 1) / 3 = 4。
以 value = 6 的节点作为子树的根节点,得到的平均值为 6 / 1 = 6。
以 value = 1 的节点作为子树的根节点,得到的平均值为 1 / 1 = 1。
所以答案取最大值 6。

 

提示:

  1. 树中的节点数介于 1 到 5000之间。
  2. 每个节点的值介于 0 到 100000 之间。
  3. 如果结果与标准答案的误差不超过 10^-5,那么该结果将被视为正确答案。

解法

后序遍历获取每个子树的结点个数以及结点和,求每个结点平均值的最大值。

Python3

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def maximumAverageSubtree(self, root: TreeNode) -> float:
        def dfs(root):
            if root is None:
                return 0, 0
            ls, ln = dfs(root.left)
            rs, rn = dfs(root.right)
            s = ls + root.val + rs
            n = ln + 1 + rn
            nonlocal ans
            ans = max(ans, s / n)
            return s, n

        ans = 0
        dfs(root)
        return ans

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private double ans;

    public double maximumAverageSubtree(TreeNode root) {
        ans = 0;
        dfs(root);
        return ans;
    }

    private int[] dfs(TreeNode root) {
        if (root == null) {
            return new int[] {0, 0};
        }
        int[] l = dfs(root.left);
        int[] r = dfs(root.right);
        int s = l[0] + root.val + r[0];
        int n = l[1] + 1 + r[1];
        ans = Math.max(ans, s * 1.0 / n);
        return new int[] {s, n};
    }
}

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    double ans;

    double maximumAverageSubtree(TreeNode* root) {
        ans = 0;
        dfs(root);
        return ans;
    }

    pair<int, int> dfs(TreeNode* root) {
        if (!root) return {0, 0};
        auto l = dfs(root->left);
        auto r = dfs(root->right);
        int s = l.first + root->val + r.first;
        int n = l.second + 1 + r.second;
        ans = max(ans, s * 1.0 / n);
        return {s, n};
    }
};

Go

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func maximumAverageSubtree(root *TreeNode) float64 {
	var ans float64
	var dfs func(root *TreeNode) []int
	dfs = func(root *TreeNode) []int {
		if root == nil {
			return []int{0, 0}
		}
		l, r := dfs(root.Left), dfs(root.Right)
		s := l[0] + root.Val + r[0]
		n := l[1] + 1 + r[1]
		ans = math.Max(ans, float64(s)/float64(n))
		return []int{s, n}
	}
	dfs(root)
	return ans
}

...