给出二叉树的根节点 root
,树上每个节点都有一个不同的值。
如果节点值在 to_delete
中出现,我们就把该节点从树上删去,最后得到一个森林(一些不相交的树构成的集合)。
返回森林中的每棵树。你可以按任意顺序组织答案。
示例 1:
输入:root = [1,2,3,4,5,6,7], to_delete = [3,5] 输出:[[1,2,null,4],[6],[7]]
示例 2:
输入:root = [1,2,4,null,3], to_delete = [3] 输出:[[1,2,4]]
提示:
- 树中的节点数最大为
1000
。 - 每个节点都有一个介于
1
到1000
之间的值,且各不相同。 to_delete.length <= 1000
to_delete
包含一些从1
到1000
、各不相同的值。
方法一:后序遍历
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def delNodes(self, root: TreeNode, to_delete: List[int]) -> List[TreeNode]:
def dfs(fa, root):
if root is None:
return
dfs(root, root.left)
dfs(root, root.right)
if root.val in s:
if fa and fa.left == root:
fa.left = None
if fa and fa.right == root:
fa.right = None
if root.left:
ans.append(root.left)
if root.right:
ans.append(root.right)
s = set(to_delete)
ans = []
if root.val not in s:
ans.append(root)
dfs(None, root)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<TreeNode> delNodes(TreeNode root, int[] to_delete) {
boolean[] del = new boolean[1001];
for (int d : to_delete) {
del[d] = true;
}
List<TreeNode> res = new ArrayList<>();
dfs(root, true, del, res);
return res;
}
private TreeNode dfs(TreeNode root, boolean isRoot, boolean[] del, List<TreeNode> res) {
if (root == null) {
return null;
}
boolean flag = del[root.val];
if (!flag && isRoot) {
res.add(root);
}
root.left = dfs(root.left, flag, del, res);
root.right = dfs(root.right, flag, del, res);
return flag ? null : root;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<TreeNode> ans = new ArrayList<>();
private Set<Integer> s = new HashSet<>();
public List<TreeNode> delNodes(TreeNode root, int[] to_delete) {
for (int v : to_delete) {
s.add(v);
}
if (!s.contains(root.val)) {
ans.add(root);
}
dfs(null, root);
return ans;
}
private void dfs(TreeNode fa, TreeNode root) {
if (root == null) {
return;
}
dfs(root, root.left);
dfs(root, root.right);
if (s.contains(root.val)) {
if (fa != null && fa.left == root) {
fa.left = null;
}
if (fa != null && fa.right == root) {
fa.right = null;
}
if (root.left != null) {
ans.add(root.left);
}
if (root.right != null) {
ans.add(root.right);
}
}
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<TreeNode*> delNodes(TreeNode* root, vector<int>& to_delete) {
vector<TreeNode*> ans;
unordered_set<int> s(to_delete.begin(), to_delete.end());
if (!s.count(root->val)) ans.push_back(root);
dfs(nullptr, root, s, ans);
return ans;
}
void dfs(TreeNode* fa, TreeNode* root, unordered_set<int>& s, vector<TreeNode*>& ans) {
if (!root) return;
dfs(root, root->left, s, ans);
dfs(root, root->right, s, ans);
if (s.count(root->val)) {
if (fa && fa->left == root) fa->left = nullptr;
if (fa && fa->right == root) fa->right = nullptr;
if (root->left) ans.push_back(root->left);
if (root->right) ans.push_back(root->right);
}
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func delNodes(root *TreeNode, to_delete []int) []*TreeNode {
s := map[int]bool{}
for _, v := range to_delete {
s[v] = true
}
ans := []*TreeNode{}
if !s[root.Val] {
ans = append(ans, root)
}
var fa *TreeNode
var dfs func(fa, root *TreeNode)
dfs = func(fa, root *TreeNode) {
if root == nil {
return
}
dfs(root, root.Left)
dfs(root, root.Right)
if s[root.Val] {
if fa != nil && fa.Left == root {
fa.Left = nil
}
if fa != nil && fa.Right == root {
fa.Right = nil
}
if root.Left != nil {
ans = append(ans, root.Left)
}
if root.Right != nil {
ans = append(ans, root.Right)
}
}
}
dfs(fa, root)
return ans
}