一个N x N的网格(grid)
代表了一块樱桃地,每个格子由以下三种数字的一种来表示:
- 0 表示这个格子是空的,所以你可以穿过它。
- 1 表示这个格子里装着一个樱桃,你可以摘到樱桃然后穿过它。
- -1 表示这个格子里有荆棘,挡着你的路。
你的任务是在遵守下列规则的情况下,尽可能的摘到最多樱桃:
- 从位置 (0, 0) 出发,最后到达 (N-1, N-1) ,只能向下或向右走,并且只能穿越有效的格子(即只可以穿过值为0或者1的格子);
- 当到达 (N-1, N-1) 后,你要继续走,直到返回到 (0, 0) ,只能向上或向左走,并且只能穿越有效的格子;
- 当你经过一个格子且这个格子包含一个樱桃时,你将摘到樱桃并且这个格子会变成空的(值变为0);
- 如果在 (0, 0) 和 (N-1, N-1) 之间不存在一条可经过的路径,则没有任何一个樱桃能被摘到。
示例 1:
输入: grid = [[0, 1, -1], [1, 0, -1], [1, 1, 1]] 输出: 5 解释: 玩家从(0,0)点出发,经过了向下走,向下走,向右走,向右走,到达了点(2, 2)。 在这趟单程中,总共摘到了4颗樱桃,矩阵变成了[[0,1,-1],[0,0,-1],[0,0,0]]。 接着,这名玩家向左走,向上走,向上走,向左走,返回了起始点,又摘到了1颗樱桃。 在旅程中,总共摘到了5颗樱桃,这是可以摘到的最大值了。
说明:
grid
是一个N
*N
的二维数组,N的取值范围是1 <= N <= 50
。- 每一个
grid[i][j]
都是集合{-1, 0, 1}
其中的一个数。 - 可以保证起点
grid[0][0]
和终点grid[N-1][N-1]
的值都不会是 -1。
方法一:动态规划
线性 DP。题目中,玩家从 (0, 0)
到 (N-1, N-1)
后又重新返回到起始点 (0, 0)
,我们可以视为玩家两次从 (0, 0)
出发到 (N-1, N-1)
。
定义 dp[k][i1][i2]
表示两次路径同时走了 k 步,并且第一次走到 (i1, k-i1)
,第二次走到 (i2, k-i2)
的所有路径中,可获得的樱桃数量的最大值。
类似题型:方格取数、传纸条。
class Solution:
def cherryPickup(self, grid: List[List[int]]) -> int:
n = len(grid)
dp = [[[-inf] * n for _ in range(n)] for _ in range((n << 1) - 1)]
dp[0][0][0] = grid[0][0]
for k in range(1, (n << 1) - 1):
for i1 in range(n):
for i2 in range(n):
j1, j2 = k - i1, k - i2
if (
not 0 <= j1 < n
or not 0 <= j2 < n
or grid[i1][j1] == -1
or grid[i2][j2] == -1
):
continue
t = grid[i1][j1]
if i1 != i2:
t += grid[i2][j2]
for x1 in range(i1 - 1, i1 + 1):
for x2 in range(i2 - 1, i2 + 1):
if x1 >= 0 and x2 >= 0:
dp[k][i1][i2] = max(
dp[k][i1][i2], dp[k - 1][x1][x2] + t
)
return max(0, dp[-1][-1][-1])
class Solution {
public int cherryPickup(int[][] grid) {
int n = grid.length;
int[][][] dp = new int[n * 2][n][n];
dp[0][0][0] = grid[0][0];
for (int k = 1; k < n * 2 - 1; ++k) {
for (int i1 = 0; i1 < n; ++i1) {
for (int i2 = 0; i2 < n; ++i2) {
int j1 = k - i1, j2 = k - i2;
dp[k][i1][i2] = Integer.MIN_VALUE;
if (j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1
|| grid[i2][j2] == -1) {
continue;
}
int t = grid[i1][j1];
if (i1 != i2) {
t += grid[i2][j2];
}
for (int x1 = i1 - 1; x1 <= i1; ++x1) {
for (int x2 = i2 - 1; x2 <= i2; ++x2) {
if (x1 >= 0 && x2 >= 0) {
dp[k][i1][i2] = Math.max(dp[k][i1][i2], dp[k - 1][x1][x2] + t);
}
}
}
}
}
}
return Math.max(0, dp[n * 2 - 2][n - 1][n - 1]);
}
}
class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
int n = grid.size();
vector<vector<vector<int>>> dp(n << 1, vector<vector<int>>(n, vector<int>(n, -1e9)));
dp[0][0][0] = grid[0][0];
for (int k = 1; k < n * 2 - 1; ++k) {
for (int i1 = 0; i1 < n; ++i1) {
for (int i2 = 0; i2 < n; ++i2) {
int j1 = k - i1, j2 = k - i2;
if (j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1 || grid[i2][j2] == -1) continue;
int t = grid[i1][j1];
if (i1 != i2) t += grid[i2][j2];
for (int x1 = i1 - 1; x1 <= i1; ++x1)
for (int x2 = i2 - 1; x2 <= i2; ++x2)
if (x1 >= 0 && x2 >= 0)
dp[k][i1][i2] = max(dp[k][i1][i2], dp[k - 1][x1][x2] + t);
}
}
}
return max(0, dp[n * 2 - 2][n - 1][n - 1]);
}
};
func cherryPickup(grid [][]int) int {
n := len(grid)
dp := make([][][]int, (n<<1)-1)
for i := range dp {
dp[i] = make([][]int, n)
for j := range dp[i] {
dp[i][j] = make([]int, n)
}
}
dp[0][0][0] = grid[0][0]
for k := 1; k < (n<<1)-1; k++ {
for i1 := 0; i1 < n; i1++ {
for i2 := 0; i2 < n; i2++ {
dp[k][i1][i2] = int(-1e9)
j1, j2 := k-i1, k-i2
if j1 < 0 || j1 >= n || j2 < 0 || j2 >= n || grid[i1][j1] == -1 || grid[i2][j2] == -1 {
continue
}
t := grid[i1][j1]
if i1 != i2 {
t += grid[i2][j2]
}
for x1 := i1 - 1; x1 <= i1; x1++ {
for x2 := i2 - 1; x2 <= i2; x2++ {
if x1 >= 0 && x2 >= 0 {
dp[k][i1][i2] = max(dp[k][i1][i2], dp[k-1][x1][x2]+t)
}
}
}
}
}
}
return max(0, dp[n*2-2][n-1][n-1])
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
/**
* @param {number[][]} grid
* @return {number}
*/
var cherryPickup = function (grid) {
const n = grid.length;
let dp = new Array(n * 2 - 1);
for (let k = 0; k < dp.length; ++k) {
dp[k] = new Array(n);
for (let i = 0; i < n; ++i) {
dp[k][i] = new Array(n).fill(-1e9);
}
}
dp[0][0][0] = grid[0][0];
for (let k = 1; k < n * 2 - 1; ++k) {
for (let i1 = 0; i1 < n; ++i1) {
for (let i2 = 0; i2 < n; ++i2) {
const j1 = k - i1,
j2 = k - i2;
if (
j1 < 0 ||
j1 >= n ||
j2 < 0 ||
j2 >= n ||
grid[i1][j1] == -1 ||
grid[i2][j2] == -1
) {
continue;
}
let t = grid[i1][j1];
if (i1 != i2) {
t += grid[i2][j2];
}
for (let x1 = i1 - 1; x1 <= i1; ++x1) {
for (let x2 = i2 - 1; x2 <= i2; ++x2) {
if (x1 >= 0 && x2 >= 0) {
dp[k][i1][i2] = Math.max(
dp[k][i1][i2],
dp[k - 1][x1][x2] + t,
);
}
}
}
}
}
}
return Math.max(0, dp[n * 2 - 2][n - 1][n - 1]);
};