给定一棵二叉搜索树和其中的一个节点 node
,找到该节点在树中的中序后继。如果节点没有中序后继,请返回 null
。
一个节点 node
的中序后继是键值比 node.val
大所有的节点中键值最小的那个。
你可以直接访问结点,但无法直接访问树。每个节点都会有其父节点的引用。节点 Node
定义如下:
class Node { public int val; public Node left; public Node right; public Node parent; }
示例 1:
输入:tree = [2,1,3], node = 1 输出:2 解析:1 的中序后继结点是 2 。注意节点和返回值都是 Node 类型的。
示例 2:
输入:tree = [5,3,6,2,4,null,null,1], node = 6
输出:null
解析:该结点没有中序后继,因此返回 null 。
示例 3:
输入:tree = [15,6,18,3,7,17,20,2,4,null,13,null,null,null,null,null,null,null,null,9], node = 15 输出:17
示例 4:
输入:tree = [15,6,18,3,7,17,20,2,4,null,13,null,null,null,null,null,null,null,null,9], node = 13 输出:15
示例 5:
输入:tree = [0], node = 0 输出:null
提示:
- 树中节点的数目在范围
[1, 104]
内。 -105 <= Node.val <= 105
- 树中各结点的值均保证唯一。
进阶:你能否在不访问任何结点的值的情况下解决问题?
判断 node 是否有右子树,
- 若有,找到右子树的最左节点返回
- 若没有,则向上寻找父节点,直到节点等于父节点的左孩子,返回父节点
"""
# Definition for a Node.
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
self.parent = None
"""
class Solution:
def inorderSuccessor(self, node: 'Node') -> 'Optional[Node]':
if node.right:
node = node.right
while node.left:
node = node.left
return node
while node.parent and node == node.parent.right:
node = node.parent
return node.parent
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node parent;
};
*/
class Solution {
public Node inorderSuccessor(Node node) {
if (node.right != null) {
node = node.right;
while (node.left != null) {
node = node.left;
}
return node;
}
while (node.parent != null && node == node.parent.right) {
node = node.parent;
}
return node.parent;
}
}
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* parent;
};
*/
class Solution {
public:
Node* inorderSuccessor(Node* node) {
if (node->right) {
node = node->right;
while (node->left) node = node->left;
return node;
}
while (node->parent && node == node->parent->right) node = node->parent;
return node->parent;
}
};
/**
* Definition for Node.
* type Node struct {
* Val int
* Left *Node
* Right *Node
* Parent *Node
* }
*/
func inorderSuccessor(node *Node) *Node {
if node.Right != nil {
node = node.Right
for node.Left != nil {
node = node.Left
}
return node
}
for node.Parent != nil && node == node.Parent.Right {
node = node.Parent
}
return node.Parent
}
/**
* // Definition for a Node.
* function Node(val) {
* this.val = val;
* this.left = null;
* this.right = null;
* this.parent = null;
* };
*/
/**
* @param {Node} node
* @return {Node}
*/
var inorderSuccessor = function (node) {
if (node.right) {
node = node.right;
while (node.left) node = node.left;
return node;
}
while (node.parent && node == node.parent.right) node = node.parent;
return node.parent;
};