斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
示例 1:
输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:n = 3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:n = 4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
0 <= n <= 30
class Solution:
def fib(self, n: int) -> int:
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
class Solution {
public int fib(int n) {
int a = 0, b = 1;
while (n-- > 0) {
int c = a + b;
a = b;
b = c;
}
return a;
}
}
class Solution {
public:
int fib(int n) {
int a = 0, b = 1;
while (n--) {
int c = a + b;
a = b;
b = c;
}
return a;
}
};
func fib(n int) int {
a, b := 0, 1
for i := 0; i < n; i++ {
a, b = b, a+b
}
return a
}
/**
* @param {number} n
* @return {number}
*/
var fib = function (n) {
let a = 0;
let b = 1;
while (n--) {
const c = a + b;
a = b;
b = c;
}
return a;
};
function fib(n: number): number {
let a = 0;
let b = 1;
for (let i = 0; i < n; i++) {
[a, b] = [b, a + b];
}
return a;
}
function fib(n: number): number {
if (n < 2) {
return n;
}
return fib(n - 1) + fib(n - 2);
}
impl Solution {
pub fn fib(n: i32) -> i32 {
let mut a = 0;
let mut b = 1;
for _ in 0..n {
let t = b;
b = a + b;
a = t
}
a
}
}
impl Solution {
pub fn fib(n: i32) -> i32 {
if n < 2 {
return n;
}
Self::fib(n - 1) + Self::fib(n - 2)
}
}