给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
提示:
0 <= word1.length, word2.length <= 500
word1
和word2
由小写英文字母组成
动态规划。
设 dp[i][j]
表示将 word1 前 i 个字符组成的字符串 word1[0...i-1]
转换成 word2 前 j 个字符组成的字符串 word2[0...j-1]
的最小操作次数。m, n 分别表示 word1, word2 的长度。
初始化 dp[i][0] = i
(i∈[0, m]
),dp[0][j] = j
(j∈[0, m]
)。
i, j 分别从 1 开始遍历,判断 word1[i - 1]
与 word2[j - 1]
是否相等:
- 若
word1[i - 1] == word2[j - 1]
,则dp[i][j] = dp[i - 1][j - 1]
。 - 若
word1[i - 1] != word2[j - 1]
,则dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1
。其中dp[i - 1][j] + 1
对应插入操作,dp[i][j - 1] + 1
对应删除操作,dp[i - 1][j - 1] + 1
对应替换操作。取三者的最小值即可。
递推公式如下:
最后返回 dp[m][n]
即可。
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
return dp[-1][-1]
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 0; i <= m; ++i) {
dp[i][0] = i;
}
for (int j = 0; j <= n; ++j) {
dp[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[m][n];
}
}
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
for (int i = 0; i <= m; ++i) {
dp[i][0] = i;
}
for (int j = 0; j <= n; ++j) {
dp[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
}
return dp[m][n];
}
};
func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
dp := make([][]int, m+1)
for i := 0; i <= m; i++ {
dp[i] = make([]int, n+1)
dp[i][0] = i
}
for j := 0; j <= n; j++ {
dp[0][j] = j
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if word1[i-1] == word2[j-1] {
dp[i][j] = dp[i-1][j-1]
} else {
dp[i][j] = min(min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]) + 1
}
}
}
return dp[m][n]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}