Skip to content

Latest commit

 

History

History
124 lines (123 loc) · 36.9 KB

File metadata and controls

124 lines (123 loc) · 36.9 KB

RECSYS2019 Paper List

论文 作者 组织 摘要 翻译 代码 引用数
Are we really making much progress? A worrying analysis of recent neural recommendation approaches Maurizio Ferrari Dacrema, Paolo Cremonesi, Dietmar Jannach code 222
Recommending what video to watch next: a multitask ranking system Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, Ed H. Chi code 116
FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction Tongwen Huang, Zhiqi Zhang, Junlin Zhang code 83
Performance comparison of neural and non-neural approaches to session-based recommendation Malte Ludewig, Noemi Mauro, Sara Latifi, Dietmar Jannach code 53
Personalized re-ranking for recommendation Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, Dan Pei code 50
Sampling-bias-corrected neural modeling for large corpus item recommendations Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe Zhao, Li Wei, Ed H. Chi code 48
Deep social collaborative filtering Wenqi Fan, Yao Ma, Dawei Yin, Jianping Wang, Jiliang Tang, Qing Li code 43
Adversarial attacks on an oblivious recommender Konstantina Christakopoulou, Arindam Banerjee code 39
A pareto-efficient algorithm for multiple objective optimization in e-commerce recommendation Xiao Lin, Hongjie Chen, Changhua Pei, Fei Sun, Xuanji Xiao, Hanxiao Sun, Yongfeng Zhang, Wenwu Ou, Peng Jiang code 37
Personalized fairness-aware re-ranking for microlending Weiwen Liu, Jun Guo, Nasim Sonboli, Robin Burke, Shengyu Zhang code 36
CB2CF: a neural multiview content-to-collaborative filtering model for completely cold item recommendations Oren Barkan, Noam Koenigstein, Eylon Yogev, Ori Katz code 34
Adversarial tensor factorization for context-aware recommendation Huiyuan Chen, Jing Li code 30
Designing for the better by taking users into account: a qualitative evaluation of user control mechanisms in (news) recommender systems Jaron Harambam, Dimitrios Bountouridis, Mykola Makhortykh, Joris Van Hoboken code 25
Deep language-based critiquing for recommender systems Ga Wu, Kai Luo, Scott Sanner, Harold Soh code 21
PAL: a position-bias aware learning framework for CTR prediction in live recommender systems Huifeng Guo, Jinkai Yu, Qing Liu, Ruiming Tang, Yuzhou Zhang code 20
Addressing delayed feedback for continuous training with neural networks in CTR prediction Sofia Ira Ktena, Alykhan Tejani, Lucas Theis, Pranay Kumar Myana, Deepak Dilipkumar, Ferenc Huszár, Steven Yoo, Wenzhe Shi code 20
A simple multi-armed nearest-neighbor bandit for interactive recommendation Javier SanzCruzado, Pablo Castells, Esther López code 20
RecSys challenge 2019: session-based hotel recommendations Peter Knees, Yashar Deldjoo, Farshad Bakhshandegan Moghaddam, Jens Adamczak, Gerard Paul Leyson, Philipp Monreal code 20
Attribute-aware non-linear co-embeddings of graph features Ahmed Rashed, Josif Grabocka, Lars SchmidtThieme code 19
Enhancing VAEs for collaborative filtering: flexible priors & gating mechanisms Daeryong Kim, Bongwon Suh code 19
A deep learning system for predicting size and fit in fashion e-commerce AbdulSaboor Sheikh, Romain Guigourès, Evgenii Koriagin, Yuen King Ho, Reza Shirvany, Roland Vollgraf, Urs Bergmann code 18
Fairness and discrimination in recommendation and retrieval Michael D. Ekstrand, Robin Burke, Fernando Diaz code 17
Revisiting offline evaluation for implicit-feedback recommender systems Olivier Jeunen code 17
Pace my race: recommendations for marathon running Jakim Berndsen, Barry Smyth, Aonghus Lawlor code 16
PDMFRec: a decentralised matrix factorisation with tunable user-centric privacy Erika Duriakova, Elias Z. Tragos, Barry Smyth, Neil Hurley, Francisco J. Peña, Panagiotis Symeonidis, James Geraci, Aonghus Lawlor code 15
Latent factor models and aggregation operators for collaborative filtering in reciprocal recommender systems James Neve, Ivan Palomares code 14
HybridSVD: when collaborative information is not enough Evgeny Frolov, Ivan V. Oseledets code 14
Online learning to rank for sequential music recommendation Bruno L. Pereira, Alberto Ueda, Gustavo Penha, Rodrygo L. T. Santos, Nivio Ziviani code 13
Leveraging post-click feedback for content recommendations Hongyi Wen, Longqi Yang, Deborah Estrin code 13
Music cold-start and long-tail recommendation: bias in deep representations Andres Ferraro code 13
Combining text summarization and aspect-based sentiment analysis of users' reviews to justify recommendations Cataldo Musto, Gaetano Rossiello, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro code 13
Data mining for item recommendation in MOBA games Vladimir Araujo, Felipe Rios, Denis Parra code 13
Deep generative ranking for personalized recommendation Huafeng Liu, Jingxuan Wen, Liping Jing, Jian Yu code 12
User-centered evaluation of strategies for recommending sequences of points of interest to groups Daniel Herzog, Wolfgang Wörndl code 12
A comparison of calibrated and intent-aware recommendations Mesut Kaya, Derek G. Bridge code 12
Latent multi-criteria ratings for recommendations Pan Li, Alexander Tuzhilin code 12
Collective embedding for neural context-aware recommender systems Felipe Soares Da Costa, Peter Dolog code 11
Aligning daily activities with personality: towards a recommender system for improving wellbeing Mohammed Khwaja, Miquel Ferrer, Jesus Omana Iglesias, A. Aldo Faisal, Aleksandar Matic code 11
PyRecGym: a reinforcement learning gym for recommender systems Bichen Shi, Makbule Gulcin Ozsoy, Neil Hurley, Barry Smyth, Elias Z. Tragos, James Geraci, Aonghus Lawlor code 11
Time slice imputation for personalized goal-based recommendation in higher education Weijie Jiang, Zachary A. Pardos code 10
How can they know that?: a study of factors affecting the creepiness of recommendations Helma Torkamaan, CatalinMihai Barbu, Jürgen Ziegler code 10
FineNet: a joint convolutional and recurrent neural network model to forecast and recommend anomalous financial items YuChe Tsai, ChihYao Chen, ShaoLun Ma, PeiChi Wang, YouJia Chen, YuChieh Chang, ChengTe Li code 9
A generative model for review-based recommendations Oren Sar Shalom, Guy Uziel, Amir Kantor code 9
On the discriminative power of hyper-parameters in cross-validation and how to choose them Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Claudio Pomo, Azzurra Ragone code 9
Asymmetric Bayesian personalized ranking for one-class collaborative filtering Shan Ouyang, Lin Li, Weike Pan, Zhong Ming code 8
Uplift-based evaluation and optimization of recommenders Masahiro Sato, Janmajay Singh, Sho Takemori, Takashi Sonoda, Qian Zhang, Tomoko Ohkuma code 8
Quick and accurate attack detection in recommender systems through user attributes Mehmet Aktukmak, Yasin Yilmaz, Ismail Uysal code 8
Multi-armed recommender system bandit ensembles Rocío Cañamares, Marcos Redondo, Pablo Castells code 8
The influence of personal values on music taste: towards value-based music recommendations Sandy Manolios, Alan Hanjalic, Cynthia C. S. Liem code 7
Explaining and exploring job recommendations: a user-driven approach for interacting with knowledge-based job recommender systems Francisco Gutiérrez, Sven Charleer, Robin De Croon, Nyi Nyi Htun, Gerd Goetschalckx, Katrien Verbert code 7
User-centric evaluation of session-based recommendations for an automated radio station Malte Ludewig, Dietmar Jannach code 7
RecTour 2019: workshop on recommenders in tourism Julia Neidhardt, Wolfgang Wörndl, Tsvi Kuflik, Markus Zanker, CatalinMihai Barbu code 7
Recommendation in multistakeholder environments Robin Burke, Himan Abdollahpouri, Edward C. Malthouse, K. P. Thai, Yongfeng Zhang code 7
Multi-stakeholder recommendations: case studies, methods and challenges Yong Zheng code 7
Exploiting contextual information for recommender systems oriented to tourism Pablo Sánchez code 7
Recommender system for developing new preferences and goals Yu Liang code 7
Guiding creative design in online advertising Shaunak Mishra, Manisha Verma, Jelena Gligorijevic code 7
Personalized diffusions for top-n recommendation Athanasios N. Nikolakopoulos, Dimitris Berberidis, George Karypis, Georgios B. Giannakis code 6
Should we embed?: a study on the online performance of utilizing embeddings for real-time job recommendations Emanuel Lacic, Markus ReiterHaas, Tomislav Duricic, Valentin Slawicek, Elisabeth Lex code 6
LORE: a large-scale offer recommendation engine with eligibility and capacity constraints Rahul Makhijani, Shreya Chakrabarti, Dale Struble, Yi Liu code 6
Efficient privacy-preserving recommendations based on social graphs Aidmar Wainakh, Tim Grube, Jörg Daubert, Max Mühlhäuser code 6
Style conditioned recommendations Murium Iqbal, Kamelia Aryafar, Timothy Anderton code 6
Microsoft recommenders: tools to accelerate developing recommender systems Scott Graham, JunKi Min, Tao Wu code 6
Recommendations in a marketplace Rishabh Mehrotra, Benjamin A. Carterette code 6
Variational low rank multinomials for collaborative filtering with side-information Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, Tony Jebara code 5
Music recommendations in hyperbolic space: an application of empirical bayes and hierarchical poincaré embeddings Timothy Schmeier, Joseph Chisari, Sam Garrett, Brett Vintch code 5
Users in the loop: a psychologically-informed approach to similar item retrieval Amy A. Winecoff, Florin Brasoveanu, Bryce Casavant, Pearce Washabaugh, Matthew Graham code 5
Predictability limits in session-based next item recommendation Priit Järv code 5
Attribute-based evaluation for recommender systems: incorporating user and item attributes in evaluation metrics Pablo Sánchez, Alejandro Bellogín code 5
Find my next job: labor market recommendations using administrative big data Snorre S. FridNielsen code 5
Future of in-vehicle recommendation systems @ Bosch Juergen Luettin, Susanne Rothermel, Mark Andrew code 5
AnnoMath TeX - a formula identifier annotation recommender system for STEM documents Philipp Scharpf, Ian Mackerracher, Moritz Schubotz, Jöran Beel, Corinna Breitinger, Bela Gipp code 5
Domain adaptation in display advertising: an application for partner cold-start Karan Aggarwal, Pranjul Yadav, S. Sathiya Keerthi code 5
Relaxed softmax for PU learning Ugo Tanielian, Flavian Vasile code 5
PrivateJobMatch: a privacy-oriented deferred multi-match recommender system for stable employment Amar Saini, Florin Rusu, Andrew Johnston code 4
Product collection recommendation in online retail Pigi Kouki, Ilias Fountalis, Nikolaos Vasiloglou, Nian Yan, Unaiza Ahsan, Khalifeh Al Jadda, Huiming Qu code 4
Bandit algorithms in recommender systems Dorota Glowacka code 4
A recommender system for heterogeneous and time sensitive environment Meng Wu, Ying Zhu, Qilian Yu, Bhargav Rajendra, Yunqi Zhao, Navid Aghdaie, Kazi A. Zaman code 4
On gossip-based information dissemination in pervasive recommender systems Tobias Eichinger, Felix Beierle, Robin Papke, Lucas Rebscher, Hong Chinh Tran, Magdalena Trzeciak code 4
Homepage personalization at spotify Oguz Semerci, Alois Gruson, Catherinee Edwards, Ben Lacker, Clay Gibson, Vladan Radosavljevic code 4
Darwin & Goliath: a white-label recommender-system as-a-service with automated algorithm-selection Jöran Beel, Alan Griffin, Conor O'Shea code 4
SMORe: modularize graph embedding for recommendation ChihMing Chen, TingHsiang Wang, ChuanJu Wang, MingFeng Tsai code 3
DualDiv: diversifying items and explanation styles in explainable hybrid recommendation Kosetsu Tsukuda, Masataka Goto code 3
Compositional network embedding for link prediction Tianshu Lyu, Fei Sun, Peng Jiang, Wenwu Ou, Yan Zhang code 3
The trinity of luxury fashion recommendations: data, experts and experimentation Ana Rita Magalhães code 3
Interactive evaluation of recommender systems with SNIPER: an episode mining approach Sandy Moens, Olivier Jeunen, Bart Goethals code 3
StoryTime: eliciting preferences from children for book recommendations Ashlee Milton, Michael Green, Adam Keener, Joshua Ames, Michael D. Ekstrand, Maria Soledad Pera code 3
Fourth international workshop on health recommender systems (HealthRecSys 2019) David Elsweiler, Bernd Ludwig, Alan Said, Hanna Schäfer, Helma Torkamaan, Christoph Trattner code 3
Traversing semantically annotated queries for task-oriented query recommendation Arthur Câmara, Rodrygo L. T. Santos code 2
From preference into decision making: modeling user interactions in recommender systems Qian Zhao, Martijn C. Willemsen, Gediminas Adomavicius, F. Maxwell Harper, Joseph A. Konstan code 2
Efficient similarity computation for collaborative filtering in dynamic environments Olivier Jeunen, Koen Verstrepen, Bart Goethals code 2
When actions speak louder than clicks: a combined model of purchase probability and long-term customer satisfaction Gal Lavee, Noam Koenigstein, Oren Barkan code 2
Predicting online performance of job recommender systems with offline evaluation Adrien Mogenet, TuanAnh Nguyen Pham, Masahiro Kazama, Jialin Kong code 2
Greedy optimized multileaving for personalization Kojiro Iizuka, Takeshi Yoneda, Yoshifumi Seki code 2
Designer-driven add-to-cart recommendations Sandhya Sachidanandan, Richard Luong, Emil S. Joergensen code 2
Whose data traces, whose voices? Inequality in online participation and why it matters for recommendation systems research Eszter Hargittai code 1
Ghosting: contextualized inline query completion in large scale retail search Lakshmi Ramachandran, Uma Murthy code 1
Towards interactive recommending in model-based collaborative filtering systems Benedikt Loepp, Jürgen Ziegler code 1
ORSUM 2019 2nd workshop on online recommender systems and user modeling João Vinagre, Alípio Mário Jorge, Albert Bifet, Marie AlGhossein code 1
Online ranking combination Erzsébet Frigó, Levente Kocsis code 1
REVEAL 2019: closing the loop with the real world: reinforcement and robust estimators for recommendation Thorsten Joachims, Maria Dimakopoulou, Adith Swaminathan, Yves Raimond, Olivier Koch, Flavian Vasile code 1
"Just play something awesome": the personalization powering voice interactions at Pandora Vito Claudio Ostuni code 1
IRF: interactive recommendation through dialogue Oznur Alkan, Massimiliano Mattetti, Elizabeth M. Daly, Adi Botea, Inge Vejsbjerg code 1
RecSys '19 joint workshop on interfaces and human decision making for recommender systems Peter Brusilovsky, Marco de Gemmis, Alexander Felfernig, Pasquale Lops, John O'Donovan, Giovanni Semeraro, Martijn C. Willemsen code 1
Concept to code: deep learning for multitask recommendation Omprakash Sonie code 1
ACM RecSys'19 late-breaking results (posters) Marko Tkalcic, Maria Soledad Pera code 1
Incorporating intent propensities in personalized next best action recommendation Yuxi Zhang, Kexin Xie code 0
Pick & merge: an efficient item filtering scheme for Windows store recommendations Adi Makmal, Jonathan Ephrath, Hilik Berezin, Liron I. Allerhand, Nir Nice, Noam Koenigstein code 0
Recommender systems for contextually-aware, versioned items Yayu Zhou code 0
Recommendation in home improvement industry, challenges and opportunities Khalifeh Al Jadda code 0
Recommendation systems compliant with legal and editorial policies: the BBC+ app journey Maria Panteli code 0
Driving content recommendations by building a knowledge base using weak supervision and transfer learning Sanghamitra Deb code 0
Third workshop on recommendation in complex scenarios (ComplexRec 2019) Marijn Koolen, Toine Bogers, Bamshad Mobasher, Alexander Tuzhilin code 0
First workshop on the impact of recommender systems at ACM RecSys 2019 Oren Sar Shalom, Dietmar Jannach, Ido Guy code 0
The 7th international workshop on news recommendation and analytics (INRA 2019) Özlem Özgöbek, Benjamin Kille, Jon Atle Gulla, Andreas Lommatzsch code 0
User's activity driven short-term context inference Miroslav Rac code 0
Predicting user routines with masked dilated convolutions Renzhong Wang, Dragomir Yankov, Michael R. Evans, Senthil Palanisamy, Siddhartha Arora, Wei Wu code 0
Using AI to build communities around interests on LinkedIn Abdulla AlQawasmeh, Ankan Saha code 0
Rude awakenings from behaviourist dreams. Methodological integrity and the GDPR Mireille Hildebrandt code 0
Groupon finally explains why we showed those offers Sasank Channapragada, Harshit Syal, Ibrahim Maali code 0