-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstep3h_validation_rsa_behaviour.m
117 lines (90 loc) · 4.01 KB
/
step3h_validation_rsa_behaviour.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
function step3h_validation_rsa_behaviour(bids_dir, toolbox_dir, varargin)
%% RSA between the behavioural similarity matrix and the MEG pairwise decoding accuracies
%
%
% @ Lina Teichmann, 2022
%
% Usage:
% step3h_validation_rsa_behaviour(bids_dir, ...)
%
% Inputs:
% bids_dir path to the bids root folder
% toolbox_dir path to toolbox folder containtining CoSMoMVPA
% Returns:
% _ Figure in BIDS/derivatives folder
%% folders
res_dir = [bids_dir '/derivatives/output/'];
figdir = [bids_dir '/derivatives/figures/'];
addpath(genpath([toolbox_dir '/CoSMoMVPA']))
%% parameters
n_participants = 4;
% plotting parameters
col_pp = [0.21528455710115266, 0.5919540462603717, 0.3825837270552851;
0.24756252096251694, 0.43757475330612905, 0.5968141290988245;
0.7153368599631209, 0.546895038817448, 0.1270092896093349;
0.6772691643574462, 0.3168004639904812, 0.3167958318320575];
x_size = 0.19;
y_size = 0.15;
x_pos = linspace(0.1,0.9-x_size,4);
%% load stuff
% load behavioural similarities
load([bids_dir '/sourcedata/spose_similarity.mat'],'spose_sim')
% load decoding results
load([res_dir,'/validation-pairwise_decoding_RDM1854'],'mat')
decoding_1854 = mat;
load([res_dir,'/validation-pairwise_decoding_RDM200'],'mat')
decoding_200 = mat;
% load one example output file to get the time vector
load([res_dir '/pairwise_decoding/P1_pairwise_decoding_1854_block1.mat'], 'res')
tv = res.a.fdim.values{1}*1000;
%% RSA: behaviour - MEG
corr_beh = zeros(size(decoding_1854,3),4);
for p = 1:4
for t = 1:size(decoding_1854,3)
dat = decoding_1854(:,:,t,p);
corr_beh(t,p)=corr(dat(:),spose_sim(:), 'rows','complete','Type','Pearson');
end
end
save([res_dir '/validation_rsa-behaviour'],'corr_beh')
%% plot
f = figure(1);clf
f.Position=[0,0,600,700];
for p = 1:n_participants
% define threshold based on pre-stimulus onset
max_preonset = max(corr_beh(tv<=0,p)*-1);
% plot data for each participant, fill when r > threshold
ax1 = axes('Position',[x_pos(p),0.5,x_size,y_size],'Units','normalized');
plot(tv,corr_beh(:,p)*-1,'LineWidth',2,'Color',col_pp(p,:));hold on
hf = fill([tv,tv(end)],[max(corr_beh(:,p)*-1,max_preonset);max_preonset],col_pp(p,:),'EdgeColor','none','FaceAlpha',0.2);
% make it look pretty
ylim([-0.03,.11])
xlim([tv(1),tv(end)])
% find onset of the longest shaded cluster
i=reshape(find(diff([0;corr_beh(:,p)*-1>max_preonset;0])~=0),2,[]);
[~,jmax]=max(diff(i));
onset_idx=i(1,jmax);
onset = tv(onset_idx);
% add a marker for onsets
text(onset,gca().YLim(1), char(8593),'Color',col_pp(p,:), 'FontSize', 20, 'VerticalAlignment', 'bottom', 'HorizontalAlignment','Center','FontName','Helvetica')
text(onset+15,gca().YLim(1), [num2str(onset) ' ms'],'Color',col_pp(p,:), 'FontSize', 14, 'VerticalAlignment', 'bottom', 'HorizontalAlignment','left')
set(ax1,'FontSize',14,'box','off','FontName','Helvetica');
% add subject title
ax1_title = axes('Position',[x_pos(p)+0.001,0.5+y_size-0.01,0.03,0.03]);
text(0,0,['M' num2str(p)],'FontSize',12,'FontName','Helvetica');
ax1_title.Visible = 'off';
% add labels
if p ==1
ax1.YLabel.String = 'r';
else
ax1.YTick = [];
end
ax1.XLabel.String = 'time (ms)';
end
% save figure
fn = [figdir,'/validation_rsa-behaviour'];
tn = tempname;
print(gcf,'-dpng','-r500',tn)
im=imread([tn '.png']);
[i,j]=find(mean(im,3)<255);margin=0;
imwrite(im(min(i-margin):max(i+margin),min(j-margin):max(j+margin),:),[fn '.png'],'png');
print([fn '.pdf'],'-dpdf')