-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathstep2a_data_quality-head_position.py
executable file
·266 lines (212 loc) · 11.7 KB
/
step2a_data_quality-head_position.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#!/usr/bin/env python3
"""
@ Lina Teichmann
INPUTS:
call from command line with following inputs:
-bids_dir
OUTPUTS:
Plots for head motion data.
If it doesn't exist, the script makes a figures folder in the BIDS derivatives folder
NOTES:
This script is using the pyctf toolbox to extract electrode positions from the three sensors (nasion, left, right) that were mounted to the participants head.
(the pyctf toolbox can be downloaded from the nih-megcore github: https://github.com/nih-megcore/pyctf)
Once the electrode positions are extracted over time, we calculated the distance between the measured head positions. We then report the average distance within the session and across the session.
Note that extra care should be taken when the head coil measurements are being used for source localization: it seems that for participant #4 there are a few sessions where the position recording mal-functioned or where the coil wasn't attached to the same position.
"""
from pyctf import dsopen
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
import numpy as np
import pandas as pd
import itertools, os, sys
import seaborn as sns
#*****************************#
### PARAMETERS ###
#*****************************#
n_participants = 4
n_runs = 10
n_sessions = 12
colors = ['mediumseagreen','steelblue','goldenrod','indianred','grey']
electrodes = ['nas','lpa','rpa']
electrode_labels = ['Nasion','LPA','RPA']
ppt_labels = ['M1','M2','M3','M4']
plt.rcParams['font.size'] = '16'
plt.rcParams['font.family'] = 'Helvetica'
#*****************************#
### HELPER FUNCTIONS ###
#*****************************#
def lighten_color(color, amount=0.5):
import matplotlib.colors as mc
import colorsys
try:
c = mc.cnames[color]
except:
c = color
c = colorsys.rgb_to_hls(*mc.to_rgb(c))
return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2])
def load_sensor_positions(rootdir, recording_dir = ['x','y','z'], n_participants = 4, n_session = 12, n_runs = 10):
# un-usable recordings of head coil position based on notes by experimenter (each row is a participant, each tuple is (session, run))
invalid_measures = [[],
[(8,3)],
[],
[(4,4),(5,2),(7,7),(7,8),(7,9),(12,5),(12,10)]]
# initialize data frame
df = pd.DataFrame(columns=['participant','session','run']+[i + '_' + ii for i in electrodes for ii in recording_dir])
df.participant = np.repeat(np.arange(1,n_participants+1),n_sessions*n_runs)
df.session = np.tile(np.repeat(np.arange(1,n_sessions+1),n_runs),n_participants)
df.run = np.tile(np.arange(1,n_runs+1),n_sessions*n_participants)
for p in range(1,n_participants+1):
for s in range(1,n_sessions+1):
for r in range(1,n_runs+1):
meg_fn = f'{rootdir}/sub-BIGMEG{str(p)}/ses-{str(s).zfill(2)}/meg/sub-BIGMEG{str(p)}_ses-{str(s).zfill(2)}_task-main_run-{str(r).zfill(2)}_meg.ds'
for i,v in enumerate(electrodes):
filter_col = [col for col in df if col.startswith(v)]
df.loc[(df.participant==p)&(df.session==s)&(df.run==r),filter_col] = dsopen(meg_fn).dewar[i]
# deleting all entries from invalid measurements
for ii in invalid_measures[p-1]:
for i,v in enumerate(electrodes):
filter_col = [col for col in df if col.startswith(v)]
df.loc[(df['participant']==p) & (df['session']==ii[0]) & (df['run']==ii[1]),filter_col] = np.nan
return df
def plot_rdm(res,ax,cbar, fig):
im = ax.imshow(res,interpolation='none', cmap='flare',aspect='equal',vmin=0,vmax=5)
major_ticks = np.arange(-.5, len(res)-1, 10)
minor_ticks = np.arange(-.5, len(res)-1)
ax.tick_params(axis = 'both', which = 'major', labelsize = 10)
ax.tick_params(axis = 'both', which = 'minor', labelsize = 0)
ax.set_xticks(major_ticks)
ax.set_xticks(minor_ticks, minor = True)
ax.set_yticks(major_ticks)
ax.set_yticks(minor_ticks, minor = True)
ax.set_xticklabels(['S'+ str(i) for i in range(1,n_sessions+1)],rotation=45)
ax.set_yticklabels(['S'+ str(i) for i in range(1,n_sessions+1)])
ax.grid(which = 'major', alpha = 0.9, color='w')
ax.grid(which = 'minor', alpha = 0.2, color='w')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
if cbar:
cbar_ax = fig.add_axes([0.92, 0.4, 0.01, 0.2])
cbar = fig.colorbar(im, cax=cbar_ax)
cbar.set_label('Distance (mm)', fontsize=16)
def make_supplementary_plot(df):
fig, ax = plt.subplots(n_participants,len(electrodes),figsize=(10,20))
for p in range(1,n_participants+1):
tmp = df.loc[df.participant==p,:].copy()
tmp['id'] = ['S' + str(tmp.session.to_list()[i]) + '_' + 'R' + str(tmp.run.to_list()[i]) for i in range(len(tmp))]
# get all possible pairwise comparisons
combs = list(itertools.combinations(tmp['id'].to_list(), 2))
res = np.zeros((len(tmp),len(tmp)))
res[res == 0.0] = np.nan
res = pd.DataFrame(res,columns = tmp['id'].to_numpy(),index = tmp['id'].to_numpy())
# loop over electrodes and calculate distances and plot
for i,v in enumerate(electrodes):
filter_col = [col for col in df if col.startswith(v)]
res1 = res.copy()
for vv in combs:
res1.loc[vv[1],vv[0]]=np.sqrt(((tmp.loc[tmp.id==vv[0],filter_col].to_numpy()-tmp.loc[tmp.id==vv[1],filter_col].to_numpy())**2).sum())
if (p==4) & (i==2):
plot_rdm(res1,ax[p-1][i],True,fig) # plot with colorbar
else:
plot_rdm(res1,ax[p-1][i],False,fig) # plot without colorbar
# label the rows and columns
for a, col in zip(ax[0], electrode_labels):
a.annotate(col, xy=(0.5, 1), xytext=(0, 5),
xycoords='axes fraction', textcoords='offset points',
size='large', ha='center', va='baseline')
for a, row in zip(ax[:,0], ppt_labels):
a.annotate(row, xy=(0, 0.5), xytext=(-a.yaxis.labelpad - 5, 0),
xycoords=a.yaxis.label, textcoords='offset points',
size='large', ha='right', va='center')
fig.subplots_adjust(left=0.15, top=0.95,right=0.9,hspace=0)
# save
fig.savefig(figdir + '/supplementary_motion.pdf')
return res, res1
def make_boxplot(df,res, res1):
# initialize
cross_all = np.zeros((n_sessions*n_runs*n_sessions*n_runs,n_participants))
within_all = np.zeros((n_sessions*n_runs*n_sessions*n_runs,n_participants))
# make masks to filter the distance matrix to extract within and cross-session differences
within_mask = ~res.copy().isna()
cross_mask = ~res.copy().isna()
for s in range(1,n_sessions+1):
filter_row = [col for col in res1 if col.startswith('S'+str(s)+'_')]
within_mask.loc[filter_row,filter_row] = True
filter_col = [col for col in res1 if not col.startswith('S'+str(s)+'_')]
cross_mask.loc[filter_row,filter_col] = True
cross_mask.loc[filter_col,filter_row] = True
# loop over participants and calculate the distances for cross- and within-session comparisons
for p in range(1,n_participants+1):
tmp = df.loc[df.participant==p,:].copy()
# average three sensors to find midpoint
for i,v in enumerate(['x','y','z']):
filter_col = [col for col in tmp if col.endswith(v)]
tmp[v] = tmp[filter_col].mean(axis=1)
# label the sessions/runs
tmp['id'] = ['S' + str(tmp.session.to_list()[i]) + '_' + 'R' + str(tmp.run.to_list()[i]) for i in range(len(tmp))]
# find all combinations between all measurement pairs and make a matrix that has all pairwise distances
combs = list(itertools.combinations(tmp['id'].to_list(), 2))
res = np.zeros((len(tmp),len(tmp)))
res[res == 0.0] = np.nan
res = pd.DataFrame(res,columns = tmp['id'].to_numpy(),index = tmp['id'].to_numpy())
res1 = res.copy()
for vv in combs:
res1.loc[vv[1],vv[0]] = np.sqrt(((tmp.loc[tmp.id==vv[0],['x','y','z']].to_numpy()-tmp.loc[tmp.id==vv[1],['x','y','z']].to_numpy())**2).sum())
# use the mask to extract the cross-session and within-session distances
cross_all[:,p-1] = (res1[cross_mask].to_numpy()*10).ravel()
within_all[:,p-1] = (res1[within_mask].to_numpy()*10).ravel()
# make the boxplot with cross- and within-session distances
fig, ax = plt.subplots(1,1)
for p in range(n_participants):
x = within_all[:,p]
boxplot = ax.boxplot(x[~np.isnan(x)],sym='',whis=(0,90),notch=True,patch_artist=True,widths=0.25,positions = [p-0.15],
boxprops=dict(facecolor=(colors[p]), color='k'),
medianprops=dict(color='k',lw=1))
x = cross_all[:,p]
boxplot = ax.boxplot(x[~np.isnan(x)],sym='',whis=(0,90),notch=True,patch_artist=True,widths=0.25,positions = [p+0.15],
boxprops=dict(facecolor=lighten_color(colors[p],amount=0.3), color='k'),
medianprops=dict(color='k',lw=1))
# make plot look pretty
ax.set_xticks(np.arange(n_participants))
ax.set_xticklabels(['M' + str(p+1) for p in np.arange(n_participants)])
caps = boxplot['caps']
med = boxplot['medians'][0]
xpos = med.get_xdata()
xoff = 0.10 * (xpos[1] - xpos[0])
xlabel = xpos[1] + xoff
capbottom = caps[0].get_ydata()[0]
captop = caps[1].get_ydata()[0]
ax.text(xlabel, capbottom,
'5th percentile', va='center')
ax.text(xlabel, captop,
'95th percentile', va='center')
ax.set_ylabel('Head coil movement (mm)')
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
within_patch = Patch(facecolor=[0.5,0.5,0.5])
cross_patch = Patch(facecolor=lighten_color([0.5,0.5,0.5],amount=0.3))
ax.legend([within_patch,cross_patch],['within-session ','cross-session'],frameon=False,loc='upper left')
ax.set_ylim([-0.1,10])
# save
fig.subplots_adjust(right=0.8)
fig.savefig(figdir+'/data_quality-motion-box.pdf')
#*****************************#
### COMMAND LINE INPUTS ###
#*****************************#
if __name__=='__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"-bids_dir",
required=True,
help='path to bids root',
)
args = parser.parse_args()
rootdir = args.bids_dir
sourcedata_dir = f'{rootdir}/sourcedata/'
figdir = f'{rootdir}/derivatives/figures/'
if not os.path.exists(figdir):
os.makedirs(figdir)
####### Run ########
df = load_sensor_positions(rootdir, recording_dir = ['x','y','z'], n_participants = 4, n_session = 12, n_runs = 10)
res, res1 = make_supplementary_plot(df)
make_boxplot(df,res, res1)