-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path226.cpp
188 lines (178 loc) · 5.21 KB
/
226.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
#include <bits/stdc++.h>
#include <gtest/gtest.h>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right)
: val(x), left(left), right(right)
{
}
};
class Solution {
public:
TreeNode *invertTree(TreeNode *root)
{
if (root != nullptr) {
if (root->left != nullptr || root->right != nullptr) {
TreeNode *temp = root->left;
root->left = root->right;
root->right = temp;
invertTree(root->left);
invertTree(root->right);
}
}
return root;
}
};
// Helper function to check if two trees are the same
bool isSameTree(TreeNode *p, TreeNode *q)
{
if (p == nullptr && q == nullptr) {
return true;
}
if (p == nullptr || q == nullptr || p->val != q->val) {
return false;
}
return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
}
// Helper function to delete a tree and free memory
void deleteTree(TreeNode *root)
{
if (root == nullptr)
return;
deleteTree(root->left);
deleteTree(root->right);
delete root;
}
// Test cases
TEST(SolutionTest, EmptyTree)
{
Solution sol;
TreeNode *root = nullptr;
TreeNode *inverted = sol.invertTree(root);
EXPECT_EQ(inverted, nullptr);
}
TEST(SolutionTest, SingleNodeTree)
{
Solution sol;
TreeNode *root = new TreeNode(1);
TreeNode *inverted = sol.invertTree(root);
TreeNode *expected = new TreeNode(1);
EXPECT_TRUE(isSameTree(inverted, expected));
deleteTree(root);
deleteTree(expected);
}
TEST(SolutionTest, TwoLevelTree)
{
Solution sol;
// Original Tree:
// 1
// / \
// 2 3
TreeNode *root = new TreeNode(1, new TreeNode(2), new TreeNode(3));
// Expected Inverted Tree:
// 1
// / \
// 3 2
TreeNode *expected = new TreeNode(1, new TreeNode(3), new TreeNode(2));
TreeNode *inverted = sol.invertTree(root);
EXPECT_TRUE(isSameTree(inverted, expected));
deleteTree(expected);
deleteTree(root); // inverted tree is the same as root
}
TEST(SolutionTest, LeftSkewedTree)
{
Solution sol;
// Original Tree: 1 -> 2 -> 3 (left-skewed)
TreeNode *root =
new TreeNode(1, new TreeNode(2, new TreeNode(3), nullptr), nullptr);
// Expected Inverted Tree: 1 -> 2 -> 3 (right-skewed)
TreeNode *expected =
new TreeNode(1, nullptr, new TreeNode(2, nullptr, new TreeNode(3)));
TreeNode *inverted = sol.invertTree(root);
EXPECT_TRUE(isSameTree(inverted, expected));
deleteTree(expected);
deleteTree(root);
}
TEST(SolutionTest, RightSkewedTree)
{
Solution sol;
// Original Tree: 1 -> 2 -> 3 (right-skewed)
TreeNode *root =
new TreeNode(1, nullptr, new TreeNode(2, nullptr, new TreeNode(3)));
// Expected Inverted Tree: 1 -> 2 -> 3 (left-skewed)
TreeNode *expected =
new TreeNode(1, new TreeNode(2, new TreeNode(3), nullptr), nullptr);
TreeNode *inverted = sol.invertTree(root);
EXPECT_TRUE(isSameTree(inverted, expected));
deleteTree(expected);
deleteTree(root);
}
TEST(SolutionTest, ComplexTree)
{
Solution sol;
// Original Tree:
// 4
// / \
// 2 7
// / \ / \
// 1 3 6 9
TreeNode *root =
new TreeNode(4, new TreeNode(2, new TreeNode(1), new TreeNode(3)),
new TreeNode(7, new TreeNode(6), new TreeNode(9)));
// Expected Inverted Tree:
// 4
// / \
// 7 2
// / \ / \
// 9 6 3 1
TreeNode *expected =
new TreeNode(4, new TreeNode(7, new TreeNode(9), new TreeNode(6)),
new TreeNode(2, new TreeNode(3), new TreeNode(1)));
TreeNode *inverted = sol.invertTree(root);
EXPECT_TRUE(isSameTree(inverted, expected));
deleteTree(expected);
deleteTree(root);
}
TEST(SolutionTest, SymmetricTree)
{
Solution sol;
// Original Tree:
// 1
// / \
// 2 2
// / \ / \
// 3 4 4 3
TreeNode *root =
new TreeNode(1, new TreeNode(2, new TreeNode(3), new TreeNode(4)),
new TreeNode(2, new TreeNode(4), new TreeNode(3)));
// Expected Inverted Tree (should be the same as original due to symmetry)
TreeNode *expected =
new TreeNode(1, new TreeNode(2, new TreeNode(3), new TreeNode(4)),
new TreeNode(2, new TreeNode(4), new TreeNode(3)));
TreeNode *inverted = sol.invertTree(root);
EXPECT_TRUE(isSameTree(inverted, expected));
deleteTree(expected);
deleteTree(root);
}
int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}