-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdecision_tree.py
executable file
·81 lines (62 loc) · 2.25 KB
/
decision_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('HealthData.csv')
X = dataset.iloc[:,:-1].values
y = dataset.iloc[:, 13].values
#handling missing data
from sklearn.preprocessing import Imputer
imputer=Imputer(missing_values='NaN',strategy='mean',axis=0)
imputer=imputer.fit(X[:,11:13])
X[:,11:13]=imputer.transform(X[:,11:13])
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.15, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
#EXPLORING THE DATASET
import seaborn as sn
sn.countplot(x='num',data=dataset)
dataset.num.value_counts()
# Fitting Decision Tree Classification to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, y_train)
from sklearn.externals import joblib
filename ='decision_tree_model.pkl'
joblib.dump(classifier,filename)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
#ACCURACY SCORE
from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)
##CONFUSION MATRIX
from sklearn.metrics import classification_report, confusion_matrix
cm=confusion_matrix(y_test, y_pred)
#Interpretation:
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
#ROC
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
logit_roc_auc = roc_auc_score(y_test, classifier.predict(X_test))
fpr, tpr, thresholds = roc_curve(y_test, classifier.predict_proba(X_test)[:,1])
plt.figure()
plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.savefig('Log_ROC')
plt.show()
##PREDICTION FOR NEW DATASET
Newdataset = pd.read_csv('newdata.csv')
ynew=classifier.predict(Newdataset)