Skip to content

Latest commit

 

History

History
144 lines (121 loc) · 8.79 KB

README.md

File metadata and controls

144 lines (121 loc) · 8.79 KB

This repository is for the paper Neural News Recommendation with Collaborative News Encoding and Structural User Encoding (EMNLP-2021 Findings).

Dataset Preparation

The experiments are conducted on the 200k-MIND dataset. Our code will try to download and sample the 200k-MIND dataset to the directory ../MIND-200k (see Line 140 of config.py and prepare_MIND_dataset.py).

Since the MIND dataset is quite large, if our code cannot download it successfully due to unstable network connection, please execute the shell file download_extract_MIND.sh instead. If the automatic download still fails, we recommend to download the MIND dataset and knowledge graph manually according to the links in download_extract_MIND.sh.

Assume that now the pwd is ./NNR, the downloaded and extracted MIND dataset should be organized as

(terminal) $ bash download_extract_MIND.sh # Assume this command is executed successfully
(terminal) $ cd ../MIND-200k && tree -L 2
(terminal) $ .
             ├── dev
             │   ├── behaviors.tsv
             │   ├── entity_embedding.vec
             │   ├── news.tsv
             │   ├── __placeholder__
             │   └── relation_embedding.vec
             ├── dev.zip
             ├── train
             │   ├── behaviors.tsv
             │   ├── entity_embedding.vec
             │   ├── news.tsv
             │   ├── __placeholder__
             │   └── relation_embedding.vec
             ├── train.zip
             ├── wikidata-graph
             │   ├── description.txt
             │   ├── label.txt
             │   └── wikidata-graph.tsv
             └── wikidata-graph.zip

Environment Requirements

Dependencies are needed to be installed by

bash install_dependencies.sh

Our experiments require python>=3.7, torch==1.12.1, and torch_scatter==2.0.9. The torch_scatter package is necessary. If the dependency installation fails, please follow https://github.com/rusty1s/pytorch_scatter to install the package manually.

Experiment Running


Our Model
python main.py --news_encoder=CNE --user_encoder=SUE

Neural news recommendation baselines in Section 4.2
python main.py --news_encoder=DAE       --user_encoder=GRU
python main.py --news_encoder=Inception --user_encoder=CATT  --word_embedding_dim=100 --category_embedding_dim=100 --subCategory_embedding_dim=100
python main.py --news_encoder=KCNN      --user_encoder=CATT  --word_embedding_dim=100 --entity_embedding_dim=100   --context_embedding_dim=100
python main.py --news_encoder=CNN       --user_encoder=LSTUR
python main.py --news_encoder=NAML      --user_encoder=ATT
python main.py --news_encoder=PNE       --user_encoder=PUE
python main.py --news_encoder=MHSA      --user_encoder=MHSA
python main.py --news_encoder=HDC       --user_encoder=FIM   --click_predictor=FIM

General news recommendation baselines in Section 4.2
cd general_recommendation_methods
python generate_tf_idf_feature_file.py
python generate_libfm_data.py
chmod -R 777 libfm
python libfm_main.py
python DSSM_main.py 
python wide_deep_main.py

Variants of our model in Section 4.2
python main.py --news_encoder=CNE_wo_CS --user_encoder=SUE
python main.py --news_encoder=CNE_wo_CA --user_encoder=SUE
python main.py --news_encoder=CNE       --user_encoder=SUE_wo_GCN
python main.py --news_encoder=CNE       --user_encoder=SUE_wo_HCA

Ablation experiments for news encoding in Section 5.2
python main.py --news_encoder=CNN          --user_encoder=ATT
python main.py --news_encoder=KCNN         --user_encoder=ATT --word_embedding_dim=100 --entity_embedding_dim=100 --context_embedding_dim=100
python main.py --news_encoder=PNE          --user_encoder=ATT
python main.py --news_encoder=NAML         --user_encoder=ATT
python main.py --news_encoder=CNE          --user_encoder=ATT
python main.py --news_encoder=NAML_Title   --user_encoder=ATT
python main.py --news_encoder=NAML_Content --user_encoder=ATT
python main.py --news_encoder=CNE_Title    --user_encoder=ATT
python main.py --news_encoder=CNE_Content  --user_encoder=ATT

Ablation experiments for user encoding in Section 5.3
python main.py --news_encoder=CNN --user_encoder=LSTUR
python main.py --news_encoder=CNN --user_encoder=ATT
python main.py --news_encoder=CNN --user_encoder=PUE
python main.py --news_encoder=CNN --user_encoder=CATT
python main.py --news_encoder=CNN --user_encoder=MHSA
python main.py --news_encoder=CNN --user_encoder=SUE

Experiments for different number of GCN layers in Section 5.4
python main.py --news_encoder=CNE --user_encoder=SUE --gcn_layer_num=1
python main.py --news_encoder=CNE --user_encoder=SUE --gcn_layer_num=2
python main.py --news_encoder=CNE --user_encoder=SUE --gcn_layer_num=3
python main.py --news_encoder=CNE --user_encoder=SUE --gcn_layer_num=4
python main.py --news_encoder=CNE --user_encoder=SUE --gcn_layer_num=5
python main.py --news_encoder=CNE --user_encoder=SUE --gcn_layer_num=6
python main.py --news_encoder=CNE --user_encoder=SUE --gcn_layer_num=7

Experiments on MIND-small and MIND-large

Experiments on MIND-small and MIND-large are available. You can specify the experiment dataset by the config parameter --dataset=[200k,small,large] (default 200k).

If you would like to conduct experiments on MIND-small, please set the config parameter --dataset=small.

For MIND-small, we suggest the number of GCN layers of 3 and dropout rate of 0.25 (see Line 84 of config.py). Example command is as below:

python main.py --news_encoder=CNE --user_encoder=SUE --dataset=small --gcn_layer_num=3 --dropout_rate=0.25

If you would like to conduct experiments on MIND-large, please set the config parameter --dataset=large.

For MIND-large, we suggest the number of GCN layers of 4 and dropout rate of 0.1 (see Line 91 of config.py). Example command is as below:

python main.py --news_encoder=CNE --user_encoder=SUE --dataset=large --gcn_layer_num=4 --dropout_rate=0.1

For MIND-large, please submit the model prediction file to MIND leaderboard for performance evaluation. For example, having finished training model #1, the model prediction file is at prediction/large/CNE-SUE/#1/prediction.zip. If the prediction zip file is not found, please find the raw prediction file at test/res/large/CNE-SUE/best_model_large_CNE-SUE_#1_CNE-SUE/CNE-SUE.txt.

Benchmark performance of our model CNE-SUE (performance averaged on 10 times experiments):

Dataset AUC MRR nDCG@5 nDCG@10
MIND-small 68.12 32.68 36.34 42.58
MIND-large 69.32 34.39 37.62 43.32

Distributed Training & Faster Inference

Distributed training is supported. If you would like to train NNR models on N GPUs, please set the config parameter --world_size=N. The batch size config parameter batch_size should be divisible by world_size, as our code equally divides the training batch size into N GPUs. For example,

python main.py --news_encoder=CNE --user_encoder=SUE --batch_size=128 --world_size=4

The command above trains our model on 4 GPUs, each GPU contains the mini-batch data of 32.

For coding simplicity, we do not implement news representation caching in the inference stage. Pre-computing and caching news representation can magnificently accelerate inference. For code of news representation caching, please refer to https://github.com/Veason-silverbullet/DIGAT/blob/master/util.py.

Citation

@inproceedings{mao-etal-2021-CNE_SUE,
    title = "Neural News Recommendation with Collaborative News Encoding and Structural User Encoding",
    author = "Mao, Zhiming  and Zeng, Xingshan  and Wong, Kam-Fai",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.5",
    doi = "10.18653/v1/2021.findings-emnlp.5",
    pages = "46--55"
}

This work was first submitted to ACL 2021. The pre-rebuttal scores were 3.5, 3.5, 2, and the post-rebuttal scores became 3.5, 3.5, 1.5. We thank some unbelievable reviewer comments in that review.