-
Notifications
You must be signed in to change notification settings - Fork 0
/
chat.py
51 lines (39 loc) · 1.32 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import random
import json
import torch
from model import NeuralNet
from nltk_utils import tokenize, stem, bag_of_words
# Load the trained model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open("intents.json", "r") as f:
intents = json.load(f)
data = torch.load("data.pth")
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data["all_words"]
tags = data["tags"]
model_state = data["model_state"]
model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
bot_name = "Axiom"
print("Let's chat! (type 'quit' to exit)")
while True:
sentence = input("You: ")
if sentence.lower() == "quit":
break
sentence = tokenize(sentence)
X = bag_of_words(sentence, all_words)
X = torch.from_numpy(X).to(device).unsqueeze(0)
output = model(X)
_, predicted = torch.max(output, dim=1)
tag = tags[predicted.item()]
probs = torch.softmax(output, dim=1)
prob = probs[0][predicted.item()]
if prob.item() > 0.75:
for intent in intents["intents"]:
if intent["tag"] == tag:
print(f"{bot_name}: {random.choice(intent['responses'])}")
else:
print(f"{bot_name}: Sorry, I didn't understand that. Can you rephrase?")