-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAVLSet.java
415 lines (369 loc) · 13.1 KB
/
AVLSet.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import java.util.ArrayDeque;
import java.util.Deque;
/**
* Set of unique values. Stores only non-repeated elements. Implemented as an AVL tree.
* @param <E> type of element
* @author Val Resh
*/
public class AVLSet<E extends Comparable<E>> {
private Node<E> root;
private int numberOfElements;
/**
* Node data structure that holds each node of the tree.
* @param <E> element type.
*/
private static class Node<E> {
private E element;
private int height;
private Node<E> right;
private Node<E> left;
private Node(E element){
this.element = element; right = null; left = null;
height = 1;
}
}
/*
Empty constructor.
*/
public AVLSet(){
root = null;
numberOfElements = 0;
}
/*
Constructor that takes a root node.
*/
public AVLSet(E root){
this.root = new Node<>(root);
numberOfElements = 1;
}
/**
* Add an element to the set. Stores non-repeated elements only.
* If an element is already in the set, then it will not be added again.
* @param element - the element E to add to set.
*/
public void add(E element){
if(isEmpty()) {
root = new Node<>(element);
numberOfElements++;
}
else root = recursiveAddAndBalance(root, element);
}
/**
* Searches an element in the set. If it is present, it returns the element.
* Otherwise, returns null.
* @param element element to search for
* @return element if found, null otherwise.
*/
public E find(E element) {
Node<E> node = root;
while(node != null){
if(element.compareTo(node.element) < 0)
node = node.left;
else if(element.compareTo(node.element) > 0)
node = node.right;
else return node.element;
}
return null;
}
/**
* Removes an element from the set, if said element exists.
* @param element element to delete.
*/
public void remove(E element){
root = deleteRecursively(root, element);
}
/**
* Get the max element in the set.
* @return max element.
* @throws RuntimeException cannot be called on an empty set.
*/
public E max(){
if(isEmpty()){
throw new RuntimeException("Cannot get max on an empty set.");
}
return recursiveMax(root);
}
/**
* Get the max element of the union of this set with a second set.
* @param set2 second set
* @return max element
* @throws RuntimeException throws exception if either or both sets are empty.
*/
public E max(AVLSet<E> set2){
E setOneMax = this.max();
E setTwoMax = set2.max();
return (setOneMax.compareTo(setTwoMax) > 0)
? setOneMax : setTwoMax;
}
/**
* Get the min element of the union of this set with a second set.
* @param set2 second set
* @return min element
* @throws RuntimeException throws exception if either or both sets are empty.
*/
public E min(AVLSet<E> set2){
E setOneMin = this.min();
E setTwoMin = set2.min();
return (setOneMin.compareTo(setTwoMin) > 0)
? setTwoMin : setOneMin;
}
/**
* Get the min element in the set.
* @return min element.
* @throws RuntimeException cannot be called on an empty set.
*/
public E min(){
if(isEmpty()){
throw new RuntimeException("Cannot get min on an empty set.");
}
return recursiveMin(root);
}
/**
* Performs a union on this set with a second set.
* @param set set to union with this set.
* @return returns a new set union of A and B.
*/
public AVLSet<E> union(AVLSet<E> set){
AVLSet<E> union = new AVLSet<>();
inorderIterativeUnion(union, this);
inorderIterativeUnion(union, set);
return union;
}
/**
* Performs an intersection operation on this set with another set.
* Returns a new set that contains the intersection elements of both.
* @param set set to intersect with
* @return a new set with intersection elements of both.
*/
public AVLSet<E> intersection(AVLSet<E> set){
AVLSet<E> intersection = new AVLSet<>();
Deque<Node<E>> stack = new ArrayDeque<>();
Node<E> current = set.root;
while(current != null || stack.size() > 0){
while(current != null){
stack.push(current);
current = current.left;
}
current = stack.pop();
E element = current.element;
if(this.find(element) != null) intersection.add(element);
current = current.right;
}
return intersection;
}
/**
* Returns a new set which contains the relative complement of parameter set in this set.
* Sometimes known as subtraction of sets. If this set is A and parameter set is B.
* Then the new set will be A - B.
* @param set set to subtract
* @return new set that contains the relative complement
*/
public AVLSet<E> relativeComplement(AVLSet<E> set){
AVLSet<E> complement = new AVLSet<>();
inorderIterativeUnion(complement, this);
Deque<Node<E>> stack = new ArrayDeque<>();
Node<E> current = set.root;
while(current != null || stack.size() > 0){
while(current != null){
stack.push(current);
current = current.left;
}
current = stack.pop();
E element = current.element;
if(complement.find(element) != null) complement.remove(element);
current = current.right;
}
return complement;
}
/**
* Returns a new set which contains the symmetric difference of the set it is called on, and the parameter set.
* @param set the second set
* @return new set with symmetric difference of A and B
*/
public AVLSet<E> symmetricDifference(AVLSet<E> set) {
AVLSet<E> symmetric = new AVLSet<>();
inorderIterativeUnion(symmetric, this);
inorderIterativeUnion(symmetric, set);
Deque<Node<E>> stack = new ArrayDeque<>();
Node<E> current = set.root;
while(current != null || stack.size() > 0){
while(current != null){
stack.push(current);
current = current.left;
}
current = stack.pop();
E element = current.element;
if(this.find(element) != null && set.find(element) != null) symmetric.remove(element);
current = current.right;
}
return symmetric;
}
/**
* Returns true if the set is empty, false otherwise.
* @return boolean
*/
public boolean isEmpty(){
return numberOfElements == 0;
}
/**
* Returns the size of the set. Size is defined by the number of elements in set.
* @return number of elements in set.
*/
public int size() { return numberOfElements; }
/**
* Recursive helper function to delete a node from the tree.
* @param node node for each recursive call.
* @param element constant element to delete
* @return nodes back up the tree, balancing them out.
*/
private Node<E> deleteRecursively(Node<E> node, E element){
if(isEmpty()) return null;
if(element.compareTo(node.element) < 0)
node.left = deleteRecursively(node.left, element);
else if(element.compareTo(node.element) > 0)
node.right = deleteRecursively(node.right, element);
else {
numberOfElements--;
if(node.left == null) return node.right;
else if(node.right == null) return node.left;
else {
node.element = recursiveMax(node.left);
node.left = deleteRecursively(node.left, node.element);
}
}
node.height = getUpdatedHeight(node.left, node.right);
return balanceNode(node);
}
/**
* Helper function to get the max element in tree or subtree.
* @param node parent node.
* @return max element in the tree/subtree.
*/
private E recursiveMax(Node<E> node){
if(node.right != null)
return recursiveMax(node.right);
return node.element;
}
/**
* Helper function to get the min element in tree of subtree.
* @param node parent node.
* @return min element in the tree/subtree.
*/
private E recursiveMin(Node<E> node){
if(node.left != null)
return recursiveMin(node.left);
return node.element;
}
/**
* Performs the necessary rotations to balance the node.
* @param node node to check
* @return balanced node
*/
private Node<E> balanceNode(Node<E> node){
int balanceFactor = getBalanceFactor(node);
if(balanceFactor > 1){
Node<E> right = node.right;
if(getBalanceFactor(right) < 0)
node.right = rightRotation(right);
return leftRotation(node);
}
if(balanceFactor < -1){
Node<E> left = node.left;
if(getBalanceFactor(left) > 0)
node.left = leftRotation(left);
return rightRotation(node);
}
return node;
}
/**
* Helper function to inorder iterate through a tree, then add each node's element to the set.
* @param mutate set to store elements
* @param union set to retrieve elements
*/
private void inorderIterativeUnion(AVLSet<E> mutate, AVLSet<E> union){
Deque<Node<E>> stack = new ArrayDeque<>();
Node<E> current = union.root;
while(current != null || stack.size() > 0){
while(current != null){
stack.push(current);
current = current.left;
}
current = stack.pop();
mutate.add(current.element);
current = current.right;
}
}
/**
* Helper function to add an element to the tree via recursion.
* It traverses down the tree recursively to insert the element, then upwards to the root to balance the tree.
* @param node node traversed
* @param element element to add
* @return each node traversing up the tree recursively, the returned node is balanced.
*/
private Node<E> recursiveAddAndBalance(Node<E> node, E element){
if(node == null){
numberOfElements++;
return new Node<>(element);
}
if(element.compareTo(node.element) > 0){
node.right = recursiveAddAndBalance(node.right, element);
}
else if (element.compareTo(node.element) < 0){
node.left = recursiveAddAndBalance(node.left, element);
}
else{
return node;
}
node.height = getUpdatedHeight(node.left, node.right);
return balanceNode(node);
}
/**
* Performs a right rotation on the unbalanced node.
* @param N node
* @return node after rotation.
*/
private Node<E> rightRotation(Node<E> N){
Node<E> leftNode = N.left;
Node<E> leftNodeRight = leftNode.right;
leftNode.right = N;
N.left = leftNodeRight;
N.height = getUpdatedHeight(N.left, N.right);
leftNode.height = getUpdatedHeight(leftNode.left, leftNode.right);
return leftNode;
}
/**
* Performs a left rotation on the unbalanced node.
* @param N node
* @return node after rotation.
*/
private Node<E> leftRotation(Node<E> N){
Node<E> rightNode = N.right;
Node<E> rightNodeLeft = rightNode.left;
rightNode.left = N;
N.right = rightNodeLeft;
N.height = getUpdatedHeight(N.left, N.right);
rightNode.height = getUpdatedHeight(rightNode.left, rightNode.right);
return rightNode;
}
/**
* Returns the updated height of a node.
*/
private int getUpdatedHeight(Node<E> left, Node<E> right){
int leftHeight = (left == null) ? 0 : left.height;
int rightHeight = (right == null) ? 0 : right.height;
return (leftHeight > rightHeight) ? leftHeight+1 : rightHeight+1;
}
/**
* Returns the balance factor of a node.
* Balanced nodes are within the range of {-1,0.1}
* Balance Factor is calculated as height(rightSubtree(N))-height(leftSubtree(N)).
* @param N node
* @return balance factor as an int.
*/
private int getBalanceFactor(Node<E> N){
if(N == null) return 0;
int left = (N.left == null) ? 0 : N.left.height;
int right = (N.right == null) ? 0 : N.right.height;
return right - left;
}
}