-
Notifications
You must be signed in to change notification settings - Fork 0
/
iris.names
62 lines (53 loc) · 2.55 KB
/
iris.names
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
1. Title: Iris Plants Database
2. Sources:
(a) Creator: R.A. Fisher
(b) Donor: Michael Marshall (MARSHALL%[email protected])
(c) Date: July, 1988
3. Past Usage:
- Publications: too many to mention!!! Here are a few.
1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
to Mathematical Statistics" (John Wiley, NY, 1950).
2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.
-- Results:
-- very low misclassification rates (0% for the setosa class)
4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
Transactions on Information Theory, May 1972, 431-433.
-- Results:
-- very low misclassification rates again
5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
conceptual clustering system finds 3 classes in the data.
4. Relevant Information:
--- This is perhaps the best known database to be found in the pattern
recognition literature. Fisher's paper is a classic in the field
and is referenced frequently to this day. (See Duda & Hart, for
example.) The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. One class is
linearly separable from the other 2; the latter are NOT linearly
separable from each other.
--- Predicted attribute: class of iris plant.
--- This is an exceedingly simple domain.
5. Number of Instances: 150 (50 in each of three classes)
6. Number of Attributes: 4 numeric, predictive attributes and the class
7. Attribute Information:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica
8. Missing Attribute Values: None
Summary Statistics:
Min Max Mean SD Class Correlation
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
9. Class Distribution: 33.3% for each of 3 classes.