-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathvideo_demo.py
146 lines (120 loc) · 3.34 KB
/
video_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from model import YOLOv4
import cv2
from torch.backends import cudnn
import torch
import utils
import time
coco_dict = {0: 'person',
1: 'bicycle',
2: 'car',
3: 'motorbike',
4: 'aeroplane',
5: 'bus',
6: 'train',
7: 'truck',
8: 'boat',
9: 'traffic light',
10: 'fire hydrant',
11: 'stop sign',
12: 'parking meter',
13: 'bench',
14: 'bird',
15: 'cat',
16: 'dog',
17: 'horse',
18: 'sheep',
19: 'cow',
20: 'elephant',
21: 'bear',
22: 'zebra',
23: 'giraffe',
24: 'backpack',
25: 'umbrella',
26: 'handbag',
27: 'tie',
28: 'suitcase',
29: 'frisbee',
30: 'skis',
31: 'snowboard',
32: 'sports ball',
33: 'kite',
34: 'baseball bat',
35: 'baseball glove',
36: 'skateboard',
37: 'surfboard',
38: 'tennis racket',
39: 'bottle',
40: 'wine glass',
41: 'cup',
42: 'fork',
43: 'knife',
44: 'spoon',
45: 'bowl',
46: 'banana',
47: 'apple',
48: 'sandwich',
49: 'orange',
50: 'broccoli',
51: 'carrot',
52: 'hot dog',
53: 'pizza',
54: 'donut',
55: 'cake',
56: 'chair',
57: 'sofa',
58: 'pottedplant',
59: 'bed',
60: 'diningtable',
61: 'toilet',
62: 'tvmonitor',
63: 'laptop',
64: 'mouse',
65: 'remote',
66: 'keyboard',
67: 'cell phone',
68: 'microwave',
69: 'oven',
70: 'toaster',
71: 'sink',
72: 'refrigerator',
73: 'book',
74: 'clock',
75: 'vase',
76: 'scissors',
77: 'teddy bear',
78: 'hair drier',
79: 'toothbrush'}
cudnn.fastest = True
cudnn.benchmark = True
threshold = 0.2
iou_threshold = 0.2
m = YOLOv4(pretrained=True, sam=False, eca=False)
m.requires_grad_(False)
m.eval()
m = m.cuda()
#To warm up JIT
m(torch.zeros((1, 3, 608, 608)).cuda())
cap = cv2.VideoCapture(0)
frames_n = 0
start_time = time.time()
while True:
ret, frame = cap.read()
if not ret:
break
sized = cv2.resize(frame, (m.img_dim, m.img_dim))
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
x = torch.from_numpy(sized)
x = x.permute(2, 0, 1)
x = x.float()
x /= 255
anchors, _ = m(x[None].cuda())
confidence_threshold = 0.5
iou_threshold = 0.5
bboxes, labels = utils.get_bboxes_from_anchors(anchors, 0.4, 0.5, coco_dict)
arr = utils.get_img_with_bboxes(x.cpu(), bboxes[0].cpu(), resize=False, labels=labels[0])
arr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
frames_n += 1
arr = cv2.putText(arr, "FPS: " + str(frames_n / (time.time() - start_time)), (100, 100), cv2.FONT_HERSHEY_DUPLEX, 0.75, (255, 255, 255))
cv2.imshow("test", arr)
if cv2.waitKey(1) & 0xFF == ord('q'):
break