|
| 1 | +import argparse |
| 2 | +import os |
| 3 | +import sys |
| 4 | +import numpy |
| 5 | +import cv2 |
| 6 | + |
| 7 | +import torch |
| 8 | + |
| 9 | +import models |
| 10 | +import utils |
| 11 | +import exporters |
| 12 | + |
| 13 | +def parse_arguments(args): |
| 14 | + usage_text = ( |
| 15 | + "Semi-supervised Spherical Depth Estimation Testing." |
| 16 | + ) |
| 17 | + parser = argparse.ArgumentParser(description=usage_text) |
| 18 | + parser.add_argument("--input_path", type=str, help="Path to the input spherical panorama image.") |
| 19 | + parser.add_argument('--weights', type=str, help='Path to the trained weights file.') |
| 20 | + parser.add_argument('-g','--gpu', type=str, default='0', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.') |
| 21 | + return parser.parse_known_args(args) |
| 22 | + |
| 23 | +if __name__ == "__main__": |
| 24 | + args, unknown = parse_arguments(sys.argv) |
| 25 | + gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0] |
| 26 | + # device & visualizers |
| 27 | + device = torch.device("cuda:{}" .format(gpus[0])\ |
| 28 | + if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0\ |
| 29 | + else "cpu") |
| 30 | + # model |
| 31 | + model = models.get_model("resnet_coord", {}) |
| 32 | + utils.init.initialize_weights(model, args.weights, pred_bias=None) |
| 33 | + model = model.to(device) |
| 34 | + # test data |
| 35 | + width, height = 512, 256 |
| 36 | + if not os.path.exists(args.input_path): |
| 37 | + print("Input image path does not exist (%s)." % args.input_path) |
| 38 | + exit(-1) |
| 39 | + img = cv2.imread(args.input_path) |
| 40 | + h, w, _ = img.shape |
| 41 | + if h != height and w != width: |
| 42 | + img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) |
| 43 | + img = img.transpose(2, 0, 1) / 255.0 |
| 44 | + img = torch.from_numpy(img).float().expand(1, -1, -1, -1) |
| 45 | + model.eval() |
| 46 | + with torch.no_grad(): |
| 47 | + left_rgb = img.to(device) |
| 48 | + ''' Prediction ''' |
| 49 | + left_depth_pred = torch.abs(model(left_rgb)) |
| 50 | + exporters.image.save_data(os.path.join( |
| 51 | + os.path.dirname(args.input_path), |
| 52 | + os.path.splitext(os.path.basename( |
| 53 | + args.input_path))[0] + "_depth.exr"), |
| 54 | + left_depth_pred, scale=1.0) |
0 commit comments