-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmeasure_test.py
95 lines (89 loc) · 4.5 KB
/
measure_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from network import Unet
from dataset import PairDataset
import torch
import os
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import argparse
from tqdm import tqdm
torch.set_printoptions(profile='full')
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
print("Default path : " + os.getcwd())
parser.add_argument("--model_dir", required=True,
help="Directory of folder which contains pre-trained models, you can download at \n"
"https://drive.google.com/drive/folders/1s4M-_SnCPMj_2rsMkSy3pLnLQcgRakAe?usp=sharing")
parser.add_argument('--dataset', help='Directory of your test_image ""folder""', required=True)
parser.add_argument('--cuda', help="cuda for cuda, cpu for cpu, default = cuda", default='cuda')
parser.add_argument('--batch_size', help="batchsize, default = 4", default=4, type=int)
parser.add_argument('--logdir', help="logdir, log on tensorboard", default=None)
parser.add_argument('--which_iter', help="Specific Iter to measure", default=-1, type=int)
parser.add_argument('--cont', help="Measure scores from this iter", default=0, type=int)
parser.add_argument('--step', help="Measure scores per this iter step", default=10000, type=int)
args = parser.parse_args()
models = sorted(os.listdir(args.model_dir), key=lambda x: int(x.split('epo_')[1].split('step')[0]))
pairdataset = PairDataset(root_dir=args.dataset, train=False, data_augmentation=False)
dataloader = DataLoader(pairdataset, 8, shuffle=True)
beta_square = 0.3
device = torch.device("cuda")
if args.logdir is not None:
writer = SummaryWriter(args.logdir)
model = Unet().to(device)
for model_name in models:
model_iter = int(model_name.split('epo_')[1].split('step')[0])
if model_iter % args.step != 0:
continue
if model_iter < args.cont:
continue
if args.which_iter > 0 and args.which_iter != model_iter:
continue
state_dict = torch.load(os.path.join(args.model_dir, model_name))
model.load_state_dict(state_dict)
model.eval()
mae = 0
preds = []
masks = []
precs = []
recalls = []
print('==============================')
print("On iteration : " + str(model_iter))
for i, batch in enumerate(dataloader):
img = batch['image'].to(device)
mask = batch['mask'].to(device)
with torch.no_grad():
pred, loss = model(img, mask)
pred = pred[5].data
mae += torch.mean(torch.abs(pred - mask))
pred = pred.requires_grad_(False)
preds.append(pred.cpu())
masks.append(mask.cpu())
prec, recall = torch.zeros(mask.shape[0], 256), torch.zeros(mask.shape[0], 256)
pred = pred.squeeze(dim=1).cpu()
mask = mask.squeeze(dim=1).cpu()
thlist = torch.linspace(0, 1 - 1e-10, 256)
for j in range(256):
y_temp = (pred >= thlist[j]).float()
tp = (y_temp * mask).sum(dim=-1).sum(dim=-1)
# avoid prec becomes 0
prec[:, j], recall[:, j] = (tp + 1e-10) / (y_temp.sum(dim=-1).sum(dim=-1) + 1e-10), (tp + 1e-10) / (mask.sum(dim=-1).sum(dim=-1) + 1e-10)
# (batch, threshold)
precs.append(prec)
recalls.append(recall)
prec = torch.cat(precs, dim=0).mean(dim=0)
recall = torch.cat(recalls, dim=0).mean(dim=0)
f_score = (1 + beta_square) * prec * recall / (beta_square * prec + recall)
thlist = torch.linspace(0, 1 - 1e-10, 256)
print("Max F_score :", torch.max(f_score))
print("Max_F_threshold :", thlist[torch.argmax(f_score)])
if args.logdir is not None:
writer.add_scalar("Max F_score", torch.max(f_score),
global_step=model_iter)
writer.add_scalar("Max_F_threshold", thlist[torch.argmax(f_score)],
global_step=model_iter)
pred = torch.cat(preds, 0)
mask = torch.cat(masks, 0).round().float()
if args.logdir is not None:
writer.add_pr_curve('PR_curve', mask, pred, global_step=model_iter)
writer.add_scalar('MAE', torch.mean(torch.abs(pred - mask)), global_step=model_iter)
print("MAE :", torch.mean(torch.abs(pred-mask)))
# Measure method from https://github.com/AceCoooool/DSS-pytorch solver.py