From c86319d8fd1f179c3fae0282c547e5c5d6fd196e Mon Sep 17 00:00:00 2001 From: nytschgeusen Date: Fri, 5 Jan 2024 15:15:54 +0100 Subject: [PATCH] remaining English pages added --- beispiele.html | 8 +-- en/climate_chamber.html | 97 ++++++++++++++++++++++++++++ en/contact.html | 86 +++++++++++++++++++++++++ en/examples.html | 113 +++++++++++++++++++++++++++++++++ en/radiation_surfaces.html | 127 +++++++++++++++++++++++++++++++++++++ en/therm_room_model.html | 5 +- en/vr_room_model.html | 94 +++++++++++++++++++++++++++ klimakammer.html | 4 +- kontakt.html | 4 +- strahlungsflaechen.html | 7 +- vr_raummodell.html | 4 +- 11 files changed, 533 insertions(+), 16 deletions(-) create mode 100644 en/climate_chamber.html create mode 100644 en/contact.html create mode 100644 en/examples.html create mode 100644 en/radiation_surfaces.html create mode 100644 en/vr_room_model.html diff --git a/beispiele.html b/beispiele.html index 175d7b1..4f246d0 100644 --- a/beispiele.html +++ b/beispiele.html @@ -31,8 +31,8 @@ - Virtual Reality Simulation Environment - EN + Virtual Reality Simulation Environment + EN @@ -88,7 +88,7 @@

Rooftop-Gebäude

- Interaktive Virtual Reality-Simulationsumgebung im Betrieb (Video: UdK Berlin) + Beispiel der Nutzer-Interaktion mit einer Gebäudefassade (Video: UdK Berlin)
diff --git a/en/climate_chamber.html b/en/climate_chamber.html new file mode 100644 index 0000000..1ac7700 --- /dev/null +++ b/en/climate_chamber.html @@ -0,0 +1,97 @@ + + + + + + + + + + + Virtual Reality Simulation Environment + + + + + + + + + +
+ + + +
+

Climate Chamber

+

The climate chamber consists of a combination of an + igloo-shaped tent and a wooden floor substructure, which + increases the maximum available internal height of the dome to 2.8 m + and has an internal diameter of 3.6 m. Two circumferential ring pipes + are embedded in the floor construction, which circulate the hot and cold air + through 16 circular openings from two air conditioning units into the dome.

+ +
+
+ +
+ Climate chamber of the Virtual Reality simulation environment with thermal feedback (Source: UdK Berlin) +
+
+
+ +

The climate dome is equipped with following devices: +

    +
  • two AC devices with Heating, cooling and dehumidification functionality for supplying the twi aur tubes,
  • +
  • one AC split device for fast internal lowering of the air temperature level within the dome,
  • +
  • two humidifiers for increasing the air humidity within the dome,
  • +
  • two convective heating devices for fast internal increasing of the air temperature level within the dome,
  • +
  • two fans with 26 stages for simulating the felt air movement through room openings and
  • +
  • one electrical radiator with three power stages for the simulation of the felt soalr radiation through transparent room surfaces.
  • +
+

+
+ +
+

© UdK Berlin, Fachgebiet Versorgungsplanung und Versorgungstechnik 2024

+

Imprint Privacy

+
+
+ + + + + + + + + + diff --git a/en/contact.html b/en/contact.html new file mode 100644 index 0000000..e06b03b --- /dev/null +++ b/en/contact.html @@ -0,0 +1,86 @@ + + + + + + + + + + + Virtual Reality Simulation Environment + + + + + + + + + +
+ + + +
+

Contact

+
+ +
+
+

Contact perspon Interaktive Virtual Reality simulation environment

+
+
+

Prof. Dr.-Ing. Christoph Nytsch-Geusen

+

Berlin University of the Art (UdK Berlin)
+ Institute for Architecture and Urban Planning
+ Department Building Physics and Building Technology

+

Einsteinufer 43-53
+ 10587 Berlin, Germany
+

+

Email: nytsch@udk-berlin.de

+
+
+
+

© UdK Berlin, Fachgebiet Versorgungsplanung und Versorgungstechnik 2024

+

Imprint Privacy

+
+
+ + + + + + + + + diff --git a/en/examples.html b/en/examples.html new file mode 100644 index 0000000..dacdd8c --- /dev/null +++ b/en/examples.html @@ -0,0 +1,113 @@ + + + + + + + + + + + Virtual Reality Simulation Environment + + + + + + + + + +
+ + + +
+

Application Examples

+ +

The interactive VR simulation environment can be flexibly adapted to different applications.

+ +

Two room model

+ +

This example involves a room model with a floor area of 6 m x 6 m and a + height of 3 m, which can be a height of 3 m, which can be partially or + completely divided into two separate rooms, which can also be air-conditioned differently. + The right-hand half of the room has an almost completely glazed façade with a + high potential for daylight utilization, while the left half of the room has a + very small window.

+ +
+
+ +
+ Example of a two room model with individual room usage (Source: UdK Berlin) +
+
+
+ +

In the ceiling area, there are two artificial light sources per half of the room, + one close to the facade and one at a greater depth in the room. Both side walls + can be fully thermally conditioned in the model in order to create the feeling + of radiant heat or radiant cold in VR in addition to the perception of a small + and very warm surface (radiator).

+ +

Rooftop Building

+

This example shows a digital twin of a solar research building + (Rooftop-Gebäude). + The video demonstrates the interaction of the user of the + VR simulation with the adaptive facades of the building model:

+ + +

.

+
+ + +
+ + + + + + + + + + diff --git a/en/radiation_surfaces.html b/en/radiation_surfaces.html new file mode 100644 index 0000000..9ea1f61 --- /dev/null +++ b/en/radiation_surfaces.html @@ -0,0 +1,127 @@ + + + + + + + + + + + Virtual Reality Simulation Environment + + + + + + + + + +
+ + + +
+

Radiation Surfaces

+

For the perception of thermal radiation in the VR simulation environment, + a cylinder with discretized radiation surfaces was added inside the climate + dome, with the user positioned in the central axis of the cylinder.

+ +
+
+ +
+ Extension of the climate chamber with an inside positioned cylinder with individual controllable radiation surfaces (Source: UdK Berlin) +
+
+
+ +

The cylindrical lateral surface is discretized vertically and horizontally + into 30 cm x 30 cm rectangular radiation surfaces. For each of these radiant surfaces + of the cylinder, the view factors on all enclosing interior surfaces of the room model + are calculated as a function of time and user position. These view factors form the basis + for the calculation of a weighted equivalent temperature, which represents a projection + of all surface temperatures of the room model onto a single virtual radiant surface.

+
+ +
+

Thermal Pixel

+

The individual square radiant surfaces are digitally controlled and radiate + thermally in a wide temperature range from 10 to 60 °C of a specified target temperature. + So-called thermal pixels were developed for this purpose, each of which is equipped with + four thermoelectric elements (TECs) with heating and cooling functions. At the front, heat + is dissipated via thermal radiation and at the rear, the waste heat from the TECs is dissipated + via a water cooling system.

+ +
+
+ +
+ Thermal pixel: left radiating front side, right back side with water cooling system and digital controller (Source: UdK Berlin) +
+
+
+

The TECs on the back side of the thermal pixels are supplied with a constant DC power supply + whose polarity changes depending on the heating or cooling mode. A digital + THErmal PIxel COntroller (ThePiCo) was developed for this purpose. Each ThePiCo has + two independent H-bridges with low-pass filters to smooth the PWM signal. The controller + regulates the electrical power and changes polarity if necessary so that the thermal + pixels always reach the desired temperature by cooling or heating the surface.

+ +
+
+ +
+ rdaition field, which consists of 5 x 3 thermal pixels in dynamic operation (Source: UdK Berlin) +
+
+
+ +

The infrared image shows an arrangement of 5 x 3 thermal pixels, which are alternately heated horizontally and vertically + to a certain temperature and then cooled down again.

+
+ +
+

© UdK Berlin, Fachgebiet Versorgungsplanung und Versorgungstechnik 2024

+

Imprint Privacy

+
+
+ + + + + + + + + + diff --git a/en/therm_room_model.html b/en/therm_room_model.html index feaedc4..aa7fb53 100644 --- a/en/therm_room_model.html +++ b/en/therm_room_model.html @@ -72,9 +72,8 @@

Thermal Room Model

The Modelica model runs in parallel in real time to the operation of the climate chamber and provides the data for reproducing the simulated indoor climate (air and radiation temperature, humidity, air velocity through room - openings, solar radiation through transparent facades, ...) - inside the climate igloo. facades, ...) inside the climate igloo. - Certain parameters in the Modelica model can change dynamically + openings, solar radiation through transparent facades, ...) inside the climate igloo. + Certain parameters of the Modelica model can change dynamically as a result of user interaction, e.g. the position of the user in the room, the opening status of the windows or the set temperatures for heating and cooling.

diff --git a/en/vr_room_model.html b/en/vr_room_model.html new file mode 100644 index 0000000..3462854 --- /dev/null +++ b/en/vr_room_model.html @@ -0,0 +1,94 @@ + + + + + + + + + + + Virtual Reality Simulation Environment + + + + + + + + + +
+ + + +
+

Virtual Room Model

+

The virtual room model of the interactive VR simulation environment is realized in Unity + and can be adapted to different scenarios (single room, complex building with several zones, ...). + The illustration shows a simple one-room model with models of a desk, a chair, a lamp and + a room thermostat. The room in this example has a dimension of 3 m x 3 m x 3 m, a + window measuring size of 1 m x 1 m and a door with a height of 2 m and a width of 1 m.

+ +
+
+ +
+ VR-Room model of the der Virtual Reality simulation environment with thermal feedback (Source: UdK Berlin) +
+
+
+ +

The virtual room model allows user interaction with the door (open or closed), + the light (off or on), the window (closed, tilted, fully open) and the room + thermostat for the air conditioning system (set temperatures for heating and cooling). + When the user is present in the room, their body emits heat and water vapor. + All the effects of user interactions are transmitted from Unity to the + Modelica thermal room model in real time via the UDP protocol. + +

Explore a simple example of a VR room model in your web browser.

+
+ +
+

© UdK Berlin, Fachgebiet Versorgungsplanung und Versorgungstechnik 2024

+

Imprint Privacy

+
+
+ + + + + + + + + + diff --git a/klimakammer.html b/klimakammer.html index 57932f8..58842f0 100644 --- a/klimakammer.html +++ b/klimakammer.html @@ -31,8 +31,8 @@ - Virtual Reality Simulation Environment - EN + Virtual Reality Simulation Environment + EN @@ -56,7 +56,7 @@

Kontakt

-

Ansprechpartner Interaktive Virtual Reality-Simulationsumgebung für das Raumklima

+

Ansprechpartner Interaktive Virtual Reality-Simulationsumgebung

Prof. Dr.-Ing. Christoph Nytsch-Geusen

diff --git a/strahlungsflaechen.html b/strahlungsflaechen.html index ac3de5f..5adc7ac 100644 --- a/strahlungsflaechen.html +++ b/strahlungsflaechen.html @@ -31,8 +31,8 @@ - Virtual Reality Simulation Environment - EN + Virtual Reality Simulation Environment + EN
@@ -98,6 +98,7 @@

Thermo-Pixel

mit Tiefpassfiltern zur Glättung des PWM-Signals. Der Controller regelt die elektrische Leistung und wechselt falls notwendig die Polarität, so dass die Thermo-Pixel durch Kühlen oder Beheizen der Oberfläche stets die gewünschte Solltenperatur erreichen.

+
diff --git a/vr_raummodell.html b/vr_raummodell.html index 1062dc0..a970d68 100644 --- a/vr_raummodell.html +++ b/vr_raummodell.html @@ -31,8 +31,8 @@ - Virtual Reality Simulation Environment - EN + Virtual Reality Simulation Environment + EN