-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathXXYYAvgFreqCalc.py
223 lines (180 loc) · 7.98 KB
/
XXYYAvgFreqCalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from __future__ import print_function
import numpy as np
import capo
import matplotlib.pyplot as plt
import glob
from baselineorderer import get_baselines
import os
from operator import itemgetter
import time
def avgfreqall(data_dir):
keys = sorted(get_baselines(ex_ants=[81]))
baselines = get_baselines(ex_ants=[81])
my_path = '/data4/paper/rkb/'
t0 = time.time()
xx_data = sorted(glob.glob(''.join([data_dir, 'zen.*.xx.HH.uvcORR'])))
xy_data = sorted(glob.glob(''.join([data_dir, 'zen.*.xy.HH.uvcORR'])))
yx_data = sorted(glob.glob(''.join([data_dir, 'zen.*.yx.HH.uvcORR'])))
yy_data = sorted(glob.glob(''.join([data_dir, 'zen.*.yy.HH.uvcORR'])))
avgstokes_dict = {}
faulty = []
antstr_all = ''
antlist = []
n_avg = len(xx_data)
for i in keys:
x = sorted(set(baselines[i]), key=itemgetter(2))
for elem, antstr in enumerate(x):
antlist.append("%s_%s" % (x[elem][0], x[elem][1]))
antstr_all += "{}_{}".format(x[elem][0], x[elem][1]) + ","
n_avg = len(xx_data)*vis_xx.shape[0]
avgstokes_dict={}
for i in range(len(xx_data)):
print (i,end=" ")
#print("Reading {}...".format(xx_data[i]))
t_xx, d_xx, f_xx = capo.miriad.read_files(xx_data, antstr=antstr_all, polstr='xx')
#print("Reading {}...".format(xy_data[i]))
t_xy, d_xy, f_xy = capo.miriad.read_files(xy_data, antstr=antstr_all, polstr='xy')
#print("Reading {}...".format(yx_data[i]))
t_yx, d_yx, f_yx = capo.miriad.read_files(yx_data, antstr=antstr_all, polstr='yx')
#print("Reading {}...".format(yy_data[i]))
t_yy, d_yy, f_yy = capo.miriad.read_files(yy_data, antstr=antstr_all, polstr='yy')
for elem,antstr in enumerate(antlist_all):
#print (antstr)
ant_i, ant_j = map(int, antstr.split('_'))
vis_xx = d_xx[(ant_i, ant_j)]['xx']
#print ("vis_xx",vis_xx.shape)
vis_yy = d_yy[(ant_i, ant_j)]['yy']
# vis_yx = d_yx[(ant_i, ant_j)]['yx']
# vis_xy = d_xy[(ant_i, ant_j)]['xy']
vis_xx_real = vis_xx.real
vis_xx_imag = vis_xx.imag
vis_yy_real = vis_yy.real
vis_yy_imag = vis_yy.imag
if ('%s' %(antstr) not in avgstokes_dict):
avgstokes_dict['%s' %(antstr)]={}
avgstokes_dict['%s' %(antstr)]['visxx_real'] = np.zeros((vis_xx.shape[1]))
avgstokes_dict['%s' %(antstr)]['visxx_imag'] = np.zeros((vis_xx.shape[1]))
avgstokes_dict['%s' %(antstr)]['visyy_real'] = np.zeros((vis_xx.shape[1]))
avgstokes_dict['%s' %(antstr)]['visyy_imag'] = np.zeros((vis_xx.shape[1]))
for it in range(vis_xx.shape[0]):
avgstokes_dict['%s' %(antstr)]['visxx_real'] += vis_xx_real[it,:]
avgstokes_dict['%s' %(antstr)]['visxx_imag'] += vis_xx_imag[it,:]
avgstokes_dict['%s' %(antstr)]['visyy_real'] += vis_yy_real[it,:]
avgstokes_dict['%s' %(antstr)]['visyy_imag'] += vis_yy_imag[it,:]
else :
for it in range(vis_xx.shape[0]):
avgstokes_dict['%s' %(antstr)]['visxx_real'] += vis_xx_real[it,:]
avgstokes_dict['%s' %(antstr)]['visxx_imag'] += vis_xx_imag[it,:]
avgstokes_dict['%s' %(antstr)]['visyy_real'] += vis_yy_real[it,:]
avgstokes_dict['%s' %(antstr)]['visyy_imag'] += vis_yy_imag[it,:]
#print ('avgstokeIshape',avgstokes_dict['%s' %(antstr)]['i_real'].shape)
for elem,antstr in enumerate(antlist_all):
avgstokes_dict['%s' %(antstr)]['visxx_real'] /= n_avg
avgstokes_dict['%s' %(antstr)]['visxx_imag'] /= n_avg
avgstokes_dict['%s' %(antstr)]['visyy_real'] /= n_avg
avgstokes_dict['%s' %(antstr)]['visyy_imag'] /= n_avg
np.savez(my_path+'zen.2457746.avgstokes.npz',
avgstokes_dict = avgstokes_dict)
print ("faulty",faulty)
t1 = time.time()
total = t1-t0
print (total,"secs")
def avgfreqcalc(data_dir, antstr, visibility):
xx_data = glob.glob(''.join([data_dir, 'zen.*.xx.HH.uvcORR']))
xy_data = glob.glob(''.join([data_dir, 'zen.*.xy.HH.uvcORR']))
yx_data = glob.glob(''.join([data_dir, 'zen.*.yx.HH.uvcORR']))
yy_data = glob.glob(''.join([data_dir, 'zen.*.yy.HH.uvcORR']))
ant_i, ant_j = map(int, antstr.split('_'))
# initialize average power
avg_freq = None
n_avg = 0
# loop over files
for i in np.arange(len(xx_data)):
t_xx, d_xx, f_xx = capo.miriad.read_files([xx_data[i]], antstr=antstr, polstr='xx', verbose=True)
t_yy, d_yy, f_yy = capo.miriad.read_files([yy_data[i]], antstr=antstr, polstr='yy', verbose=True)
vis_xx = d_xx[(ant_i, ant_j)]['xx']
vis_yy = d_yy[(ant_i, ant_j)]['yy']
channels = vis_xx.shape[1]
if avg_freq is None:
avg_freq = np.zeros((vis_xx.shape[1]), dtype=np.complex128)
if visibility == "XX":
for it in range(vis_xx.shape[0]):
avg_freq += (vis_xx[it, :])
n_avg += 1
elif stokes == "YY":
for it in range(vis_xx.shape[0]):
avg_freq += (vis_yy[it, :])
n_avg += 1
# finish averaging
avg_freq = np.abs(avg_freq/n_avg)
return avg_freq, channels
# def avgfreqcalc2(data_dir, antstr, stokes):
# xx_data = glob.glob(''.join([data_dir, 'zen.*.xx.HH.uvcORR']))
# xy_data = glob.glob(''.join([data_dir, 'zen.*.xy.HH.uvcORR']))
# yx_data = glob.glob(''.join([data_dir, 'zen.*.yx.HH.uvcORR']))
# yy_data = glob.glob(''.join([data_dir, 'zen.*.yy.HH.uvcORR']))
# ant_i, ant_j = map(int, antstr.split('_'))
# # initialize average power
# avg_freq = None
# n_avg = 0
# # loop over files
# for i in np.arange(len(xx_data)):
# t_xx, d_xx, f_xx = capo.miriad.read_files([xx_data[i]], antstr=antstr, polstr='xx', verbose=True)
# t_yy, d_yy, f_yy = capo.miriad.read_files([yy_data[i]], antstr=antstr, polstr='yy', verbose=True)
# t_xy, d_xy, f_xy = capo.miriad.read_files([xy_data[i]], antstr=antstr, polstr='xy', verbose=True)
# t_yx, d_yx, f_yx = capo.miriad.read_files([yx_data[i]], antstr=antstr, polstr='yx', verbose=True)
# vis_xx = d_xx[(ant_i, ant_j)]['xx']
# vis_yy = d_yy[(ant_i, ant_j)]['yy']
# vis_xy = d_xy[(ant_i, ant_j)]['xy']
# vis_yx = d_yx[(ant_i, ant_j)]['yx']
# channels = vis_xx.shape[1]
# if avg_freq is None:
# avg_freq = np.zeros((vis_xx.shape[1]))
# stokes_I = vis_xx + vis_yy
# for it in range(vis_xx.shape[0]):
# avg_freq += stokes_I[it, :]
# n_avg += 1
# elif stokes == "Q":
# stokes_Q = vis_xx - vis_yy
# for it in range(vis_xx.shape[0]):
# avg_freq += (stokes_Q[it, :])
# n_avg += 1
# for i in np.arange(len(xy_data)):
# channels = vis_xy.shape[1]
# if avg_freq is None:
# avg_freq = np.zeros((vis_xy.shape[1]))
# if stokes == "U":
# stokes_U = vis_xy + vis_yx
# for it in range(vis_xy.shape[0]):
# avg_freq += (stokes_U[it, :])
# n_avg += 1
# elif stokes == "V":
# stokes_V = np.imag(vis_xy) - np.imag(vis_yx)
# for it in range(vis_yx.shape[0]):
# avg_freq += np.abs(stokes_V[it, :])
# n_avg += 1
# # finish averaging
# avg_freq = np.abs(avg_freq/n_avg)
# return avg_freq, channels
# # plot the result
# # plt.plot(avg_freq)
# # plt.title("Average Stokes I over time")
# # plt.xlabel("Frequency channel")
# # plt.ylabel("Average power")
# # plt.show()
# def avgfreqloop(data_dir, stokes):
# baselines = ['64_88', '64_80', '9_105', '9_53', '53_104', '22_72', '20_22', '20_31', '31_96', '65_89', '10_97', '10_43', '72_105', '88_105', '22_112', '9_22', '9_64', '20_53', '53_80', '10_89', '31_89', '31_104', '43_65', '65_96', '72_112', '97_112', '22_105', '9_88', '9_20', '20_89', '43_89', '53_64', '31_53', '31_65', '80_104', '96_104']
# for antstr in baselines:
# ant_i, ant_j = map(int, antstr.split('_'))
# if stokes == "I":
# xx_data = glob.glob(''.join([data_dir, 'zen.*.xx.HH.uvcORR']))
# yy_data = glob.glob(''.join([data_dir, 'zen.*.yy.HH.uvcORR']))
# for i in np.arange(len(xx_data)):
# t_xx, d_xx, f_xx = capo.miriad.read_files([xx_data[i]], antstr=antstr, polstr='xx')
# t_yy, d_yy, f_yy = capo.miriad.read_files([yy_data[i]], antstr=antstr, polstr='yy')
# vis_xx = d_xx[(ant_i, ant_j)]['xx']
# vis_yy = d_yy[(ant_i, ant_j)]['yy']
# xx_data = glob.glob(''.join([data_dir, 'zen.*.xx.HH.uvcORR']))
# #xy_data = glob.glob(''.join([data_dir, 'zen.*.xy.HH.uvcORR']))
# #yx_data = glob.glob(''.join([data_dir, 'zen.*.yx.HH.uvcORR']))
# yy_data = glob.glob(''.join([data_dir, 'zen.*.yy.HH.uvcORR']))