Skip to content

UPU710/Rahul_CODIFY

This branch is 27 commits behind rahul-raoniar/The_Researchers_Guide:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
Rahul raoniar
Jul 8, 2020
205f49f · Jul 8, 2020

History

62 Commits
Jun 18, 2019
Jun 19, 2019
Oct 3, 2019
Mar 10, 2020
Mar 7, 2020
Jun 19, 2019
Mar 30, 2020
Mar 31, 2020
Jun 18, 2019
Jun 18, 2019
Jun 18, 2019
Jun 19, 2019
Jun 18, 2019
Jun 18, 2019
Jun 18, 2019
Jul 8, 2020
Jun 19, 2019
Jun 9, 2019
Jun 19, 2019
Feb 10, 2019

Repository files navigation

Welcome to Rahul_CODIFY (YouTube Channel) blog posts

Hello, I am Rahul Raoniar (PhD Student at IIT Guwahati, India) and welcome to Rahul_CODIFY !

"If you have knowledge, let others light their candles in it." - Margaret Fuller

This is a R data Science Repository for Learning, Contributing and Improving Data Science Literacy

The future blogs will include the following

  1. Blog posts

  2. Codes and instructions for

    • Loading data into R
      • using base R and packages
    • Data manipulaton
      • Using Base R
      • dplyr
      • forcats
      • data.table
    • Data tidying
      • tidyr package
      • broom package
    • Static Visualization
      • Base R
      • ggplot2
    • Interactive Visualization
      • ggvis
      • rbokeh
      • plotly
      • TrelliscopeJS (Big Data)
    • Modelling
      • Supervised
        • Linear models
        • Logit models (binary, multinominal classification and ordered)
        • Tree based models (classification and regression)
        • naive bayes classifier (Probabilistic models)
        • k-nearest neighbour (classification)
        • Ensemble learners (Boot strap aggregation, random forest, Boosting, Extreme gradient boosting)
        • Support Vector Machines
        • Neural Networks
          • shalow Neural Network (nntool, neuralnet packages)
          • Deep Neural Network (h2o, Keras, MXNet packages etc.)
        • Auto ML (h2o package)
      • Unsupervised
        • Clustering
          • K-means
          • Hirarchical
          • Model based
          • Density Based
        • Association Analysis and Sequence Mining
        • Dimension Reduction
          • Principal Component Analysis
          • Multidimensional Scaling
          • Singular Value Decomposition
          • Non-linear dimension reduction (ISOMAP and Locally Linear Embeding)
    • Model Evaluation
      • Contigency Table
      • Cross Validation
      • Performance metrices (Metrics package)
      • ROCR Curve
      • F-measure
      • Hyperparameter tuning using
        • caret
        • mlr
        • H2O
      • Interpretation of ML models using lime (Local Interpretable Model-Agnostic Explanations)
  3. Datasets

  4. R codes in the form of scripts & markdown documents

The table of content

The upcoming tutorials will cover the following.

** TS = Tutorial Series **

  • TS 1. Introduction to R
  • TS 2. Function
  • TS 3. Loading, Data Extracting and Transforming
    • Base R, readr, readxl
  • TS 4. Data Preparation
    • Base R
  • TS 5. Data Manipulation
    • dplyr and data.table
  • TS 6. Visualization using ggplot2
    • Base R
    • ggplot2
  • TS 7. Map preparation
    • ggmap
    • tmap
    • map using rbokeh
  • TS 8. Interactive ploting
    • ggvis
    • plotly
    • rbokeh
  • TS 9. R Markdown and Shiny
    • rmarkdown (markdown report preparation)
    • shiny (Web application development)
  • TS 10. Statistics with R
    • Basic statistics
    • Statistical Tests and Inferences from Data
  • TS11. Supervised Machine learning
    • Regression
    • Classification
  • TS12. Unsupervised Machine learning with R
    • Clustering
    • Association Analysis and Sequence Mining
    • Dimension Reduction

These tutorial videos are a small contribution to the society from my side. **Happy Coding :)

About

Data Sets of Youtube Channel Rahul_CODIFY

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 90.1%
  • R 9.9%