forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 1
/
timeout.c
267 lines (214 loc) · 6.79 KB
/
timeout.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
Copyright 2016 - 2021 Benjamin Vedder [email protected]
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "timeout.h"
#include "mc_interface.h"
#include "stm32f4xx_conf.h"
#include "shutdown.h"
#include "utils.h"
// Private variables
static volatile bool init_done = false;
static volatile systime_t timeout_msec;
static volatile systime_t last_update_time;
static volatile float timeout_brake_current;
static volatile KILL_SW_MODE timeout_kill_sw_mode;
static volatile bool has_timeout;
static volatile bool kill_sw_active;
static volatile uint32_t feed_counter[MAX_THREADS_MONITOR];
// Threads
static THD_WORKING_AREA(timeout_thread_wa, 256);
static THD_FUNCTION(timeout_thread, arg);
void timeout_init(void) {
timeout_msec = 1000;
last_update_time = 0;
timeout_brake_current = 0.0;
timeout_kill_sw_mode = KILL_SW_MODE_DISABLED;
has_timeout = false;
kill_sw_active = false;
init_done = true;
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
// IWDG counter clock: LSI/4
IWDG_SetPrescaler(IWDG_Prescaler_4);
/* Set counter reload value to obtain 12ms IWDG TimeOut.
*
* LSI timer per datasheet is 32KHz typical, but 17KHz min
* and 47KHz max over the complete range of operating conditions,
* so reload time must ensure watchdog will work correctly under
* all conditions.
*
* Timeout threads runs every 10ms. Take 20% margin so wdt should
* be fed every 12ms. The worst condition occurs when the wdt clock
* runs at the max freq (47KHz) due to oscillator tolerances.
*
* t_IWDG(ms) = t_LSI(ms) * 4 * 2^(IWDG_PR[2:0]) * (IWDG_RLR[11:0] + 1)
* t_LSI(ms) [MAX] = 0.021276ms
* 12ms = 0.0212765 * 4 * 1 * (140 + 1)
*
* Counter Reload Value = 140
*
* When LSI clock runs the slowest, the IWDG will expire every 33.17ms
*/
IWDG_SetReload(140);
IWDG_ReloadCounter();
/* Enable IWDG (the LSI oscillator will be enabled by hardware) */
IWDG_Enable();
chThdSleepMilliseconds(10);
chThdCreateStatic(timeout_thread_wa, sizeof(timeout_thread_wa), NORMALPRIO, timeout_thread, NULL);
}
void timeout_configure(systime_t timeout, float brake_current, KILL_SW_MODE kill_sw_mode) {
timeout_msec = timeout;
timeout_brake_current = brake_current;
timeout_kill_sw_mode = kill_sw_mode;
}
void timeout_reset(void) {
last_update_time = chVTGetSystemTime();
}
bool timeout_has_timeout(void) {
return has_timeout;
}
float timeout_secs_since_update(void) {
return UTILS_AGE_S(last_update_time);
}
bool timeout_kill_sw_active(void) {
return kill_sw_active;
}
systime_t timeout_get_timeout_msec(void) {
return timeout_msec;
}
float timeout_get_brake_current(void) {
return timeout_brake_current;
}
KILL_SW_MODE timeout_get_kill_sw_mode(void) {
return timeout_kill_sw_mode;
}
void timeout_feed_WDT(uint8_t index) {
++feed_counter[index];
}
void timeout_configure_IWDT_slowest(void) {
if (!init_done) {
return;
}
// As we expect to lock the CPU for a couple of ms make sure that shutdown is not sampling the button input,
// as that can cause a shutdown.
SHUTDOWN_SET_SAMPLING_DISABLED(true);
while(((IWDG->SR & IWDG_SR_RVU) != 0) || ((IWDG->SR & IWDG_SR_PVU) != 0)) {
// Continue to kick the dog
IWDG_ReloadCounter();
}
// Unlock register
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
// Update configuration
IWDG_SetReload(4000);
IWDG_SetPrescaler(IWDG_Prescaler_256);
// Wait for the new configuration to be taken into account
while(((IWDG->SR & IWDG_SR_RVU) != 0) || ((IWDG->SR & IWDG_SR_PVU) != 0)) {
// Continue to kick the dog
IWDG_ReloadCounter();
}
}
void timeout_configure_IWDT(void) {
if (!init_done) {
return;
}
SHUTDOWN_SET_SAMPLING_DISABLED(false);
while(((IWDG->SR & IWDG_SR_RVU) != 0) || ((IWDG->SR & IWDG_SR_PVU) != 0)) {
// Continue to kick the dog
IWDG_ReloadCounter();
}
// Unlock register
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);
// Update configuration
IWDG_SetReload(140);
IWDG_SetPrescaler(IWDG_Prescaler_4);
// Wait for the new configuration to be taken into account
while(((IWDG->SR & IWDG_SR_RVU) != 0) || ((IWDG->SR & IWDG_SR_PVU) != 0)) {
// Continue to kick the dog
IWDG_ReloadCounter();
}
}
bool timeout_had_IWDG_reset(void) {
// Check if the system has resumed from IWDG reset
if (RCC_GetFlagStatus(RCC_FLAG_IWDGRST) != RESET) {
/* IWDGRST flag set */
/* Clear reset flags */
RCC_ClearFlag();
return true;
}
return false;
}
static THD_FUNCTION(timeout_thread, arg) {
(void)arg;
chRegSetThreadName("Timeout");
for(;;) {
bool kill_sw = false;
switch (timeout_kill_sw_mode) {
case KILL_SW_MODE_PPM_LOW:
kill_sw = !palReadPad(HW_ICU_GPIO, HW_ICU_PIN);
break;
case KILL_SW_MODE_PPM_HIGH:
kill_sw = palReadPad(HW_ICU_GPIO, HW_ICU_PIN);
break;
case KILL_SW_MODE_ADC2_LOW:
kill_sw = ADC_VOLTS(ADC_IND_EXT2) < 1.65;
break;
case KILL_SW_MODE_ADC2_HIGH:
kill_sw = ADC_VOLTS(ADC_IND_EXT2) > 1.65;
break;
default:
break;
}
if (kill_sw || (timeout_msec != 0 && chVTTimeElapsedSinceX(last_update_time) > MS2ST(timeout_msec))) {
if (!has_timeout && !kill_sw_active) {
mc_interface_release_motor_override();
}
mc_interface_unlock();
mc_interface_select_motor_thread(1);
mc_interface_set_brake_current(timeout_brake_current);
mc_interface_select_motor_thread(2);
mc_interface_set_brake_current(timeout_brake_current);
if (kill_sw) {
mc_interface_ignore_input_both(20);
} else {
has_timeout = true;
}
} else {
has_timeout = false;
}
kill_sw_active = kill_sw;
bool threads_ok = true;
// Monitored threads (foc, can, timer) must report at least one iteration,
// otherwise the watchdog won't be feed and MCU will reset. All threads should
// be monitored
if(feed_counter[THREAD_MCPWM] < MIN_THREAD_ITERATIONS) {
threads_ok = false;
}
#if CAN_ENABLE
if(feed_counter[THREAD_CANBUS] < MIN_THREAD_ITERATIONS) {
threads_ok = false;
}
#endif
for( int i = 0; i < MAX_THREADS_MONITOR; i++) {
feed_counter[i] = 0;
}
if (threads_ok == true) {
// Feed WDT
IWDG_ReloadCounter(); // must reload in <12ms
} else {
// not reloading the watchdog will produce a reset.
// This can be checked from the GUI logs as
// "FAULT_CODE_BOOTING_FROM_WATCHDOG_RESET"
}
chThdSleepMilliseconds(10);
}
}