-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathclient_example.py
48 lines (36 loc) · 1.36 KB
/
client_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from flask_ml.flask_ml_client import MLClient
from flask_ml.flask_ml_server.models import BatchFileInput, BatchTextInput, Input
DUMMY_MODEL_URL = "http://127.0.0.1:5000/dummymodel" # The URL of the server
SENTIMENT_MODEL_URL = "http://127.0.0.1:5000/randomsentimentanalysis"
IMAGE_STYLE_TRANSFER_MODEL_URL = "http://127.0.0.1:5000/imagestyletransfer"
client = MLClient(DUMMY_MODEL_URL) # Create an instance of the MLClient object
inputs = {
"text_inputs": Input(
root=BatchTextInput.model_validate(
{"texts": [{"text": "Text to be classified"}, {"text": "Another text to be classified"}]}
)
)
}
parameters = {"model_parameter": 1.43}
response = client.request(inputs, parameters) # Send a request to the server
print("dummy model response:")
print(response) # Print the response
print()
parameters = {}
client.set_url(SENTIMENT_MODEL_URL)
response = client.request(inputs, parameters)
print("sentiment model response:")
print(response)
print()
client.set_url(IMAGE_STYLE_TRANSFER_MODEL_URL)
inputs = {
"image_input": Input(
root=BatchFileInput.model_validate(
{"files": [{"path": "/path/to/image1.jpg"}, {"path": "/path/to/image2.jpg"}]}
)
)
}
response = client.request(inputs, parameters)
print("image style transfer model response:")
print(response)
print()