-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmshf_loss.py
124 lines (85 loc) · 3.8 KB
/
mshf_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch.nn as nn
import numpy as np
import torch
import torch.nn.functional as F
from skimage import measure
def SoftIoULoss( pred, target):
pred = torch.sigmoid(pred)
smooth = 1
intersection = pred * target
intersection_sum = torch.sum(intersection, dim=(1,2,3))
pred_sum = torch.sum(pred, dim=(1,2,3))
target_sum = torch.sum(target, dim=(1,2,3))
loss = (intersection_sum + smooth) / \
(pred_sum + target_sum - intersection_sum + smooth)
loss = 1 - loss.mean()
return loss
def Dice( pred, target,warm_epoch=1, epoch=1, layer=0):
pred = torch.sigmoid(pred)
smooth = 1
intersection = pred * target
intersection_sum = torch.sum(intersection, dim=(1,2,3))
pred_sum = torch.sum(pred, dim=(1,2,3))
target_sum = torch.sum(target, dim=(1,2,3))
loss = (2*intersection_sum + smooth) / \
(pred_sum + target_sum + intersection_sum + smooth)
loss = 1 - loss.mean()
return loss
class SLSIoULoss(nn.Module):
def __init__(self):
super(SLSIoULoss, self).__init__()
def forward(self, pred_log, target,warm_epoch, epoch, with_shape=True):
pred = torch.sigmoid(pred_log)
smooth = 0.0
intersection = pred * target
intersection_sum = torch.sum(intersection, dim=(1,2,3))
pred_sum = torch.sum(pred, dim=(1,2,3))
target_sum = torch.sum(target, dim=(1,2,3))
dis = torch.pow((pred_sum-target_sum)/2, 2)
alpha = (torch.min(pred_sum, target_sum) + dis + smooth) / (torch.max(pred_sum, target_sum) + dis + smooth)
loss = (intersection_sum + smooth) / \
(pred_sum + target_sum - intersection_sum + smooth)
lloss = LLoss(pred, target)
if epoch>warm_epoch:
siou_loss = alpha * loss
if with_shape:
loss = 1 - siou_loss.mean() + lloss
else:
loss = 1 -siou_loss.mean()
else:
loss = 1 - loss.mean()
return loss
def LLoss(pred, target):
loss = torch.tensor(0.0, requires_grad=True).to(pred)
patch_size = pred.shape[0]
h = pred.shape[2]
w = pred.shape[3]
x_index = torch.arange(0,w,1).view(1, 1, w).repeat((1,h,1)).to(pred) / w
y_index = torch.arange(0,h,1).view(1, h, 1).repeat((1,1,w)).to(pred) / h
smooth = 1e-8
for i in range(patch_size):
pred_centerx = (x_index*pred[i]).mean()
pred_centery = (y_index*pred[i]).mean()
target_centerx = (x_index*target[i]).mean()
target_centery = (y_index*target[i]).mean()
angle_loss = (4 / (torch.pi**2) ) * (torch.square(torch.arctan((pred_centery) / (pred_centerx + smooth))
- torch.arctan((target_centery) / (target_centerx + smooth))))
pred_length = torch.sqrt(pred_centerx*pred_centerx + pred_centery*pred_centery + smooth)
target_length = torch.sqrt(target_centerx*target_centerx + target_centery*target_centery + smooth)
length_loss = (torch.min(pred_length, target_length)) / (torch.max(pred_length, target_length) + smooth)
loss = loss + (1 - length_loss + angle_loss) / patch_size
return loss
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count