-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
479 lines (394 loc) · 21.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
from utils import *
import matplotlib.pyplot as plt
import os
from PIL import Image, ImageFilter, ImageEnhance, ImageOps
import torchvision.transforms.functional as F
import torchvision as t
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
import matplotlib.pyplot as plt
import numpy as np
import albumentations as A
import cv2
class Target_Augmentation1(object):
# Based on Random Erasing
def __init__(self, sl = 0.02, sh = 0.4, r1 = 0.3, numbers = 2):
self.sl = sl
self.sh = sh
self.r1 = r1
self.target_numbers = numbers
def __call__(self, img, mask):
img = np.expand_dims(img, axis=0)
img= np.tile(img, (3, 1, 1))
# print(img.shape)
area = 9 * 9
w = []
h = []
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1/self.r1)
for i in range(self.target_numbers):
h.append(int(round(math.sqrt(target_area * aspect_ratio))))
w.append(int(round(math.sqrt(target_area / aspect_ratio))))
img_aug = np.array(img)
mask_aug = np.array(mask)
# plt.figure(figsize=(8, 6)) # 设置图像显示窗口的尺寸
# plt.imshow(image_array, cmap='gray') # cmap参数用于指定颜色映射,'gray'用于灰度图像
# plt.axis('off') # 关闭坐标轴显示
# plt.show() # 显示图像
# img_aug = img_aug.swapaxes(0,2)
# mask_aug = mask_aug.swapaxes(0,1)
x = []
y = []
# print(img_aug.shape)
if img_aug.shape[0]== 3:
for i in range(self.target_numbers):
if w[i] < img_aug.shape[1] and h[i] < img_aug.shape[2]:
x.append(random.randint(0, img_aug.shape[1] - h[i]))
y.append(random.randint(0, img_aug.shape[2] - w[i]))
if img_aug[0,x[i],y[i]] > 0:
m1, m2 = np.mgrid[:h[i], :w[i]]
target = (m2 - h[i]//2) ** 2 + (m1 - w[i]//2) ** 2
target = -target + np.mean((img_aug)[0])
target[target < np.min((img_aug)[0])] = np.min((img_aug)[0])
theta = int(np.min((img_aug)[0])/np.max((img_aug)[0]) * np.mean((img_aug)[0]))
target[target >= theta] = np.max((img_aug)[0])
hh = target.shape[0]
ww = target.shape[1]
img_aug[0, x[i]:x[i]+hh, y[i]:y[i]+ww] = target
img_aug[1, x[i]:x[i]+hh, y[i]:y[i]+ww] = target
img_aug[2, x[i]:x[i]+hh, y[i]:y[i]+ww] = target
mask_aug[x[i]:x[i]+hh, y[i]:y[i]+ww] = 255
# img = img_aug.swapaxes(0,2)
# mask = mask_aug.swapaxes(0,1)
img = img_aug
mask = mask_aug
return img[0], mask
class Target_Augmentation2(object):
# Based on Random Erasing
def __init__(self, sl = 0.02, sh = 0.4, r1 = 0.3, numbers = 2):
self.sl = sl
self.sh = sh
self.r1 = r1
self.target_numbers = numbers
def __call__(self, img, mask):
img = np.expand_dims(img, axis=0)
img= np.tile(img, (3, 1, 1))
# print(img.shape)
area = 9 * 9
w = []
h = []
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1/self.r1)
for i in range(self.target_numbers):
h.append(int(round(math.sqrt(target_area * aspect_ratio))))
w.append(int(round(math.sqrt(target_area / aspect_ratio))))
img_aug = np.array(img)
mask_aug = np.array(mask)
# mask_aug=Image.fromarray((mask_aug))
# mask_aug.save('saved_mask.jpg', format='JPEG', quality=90)
# img_aug = img_aug.swapaxes(0,2)
# mask_aug = mask_aug.swapaxes(0,1)
x = []
y = []
# print(img_aug.shape)
if img_aug.shape[0]== 3:
for i in range(self.target_numbers):
if w[i] < img_aug.shape[1] and h[i] < img_aug.shape[2]:
x.append(random.randint(0, img_aug.shape[1] - h[i]))
y.append(random.randint(0, img_aug.shape[2] - w[i]))
if img_aug[0,x[i],y[i]] > 0:
# pdb.set_trace()
m1, m2 = np.mgrid[:h[i], :w[i]]
target = (m2 - h[i]//2) ** 2 + (m1 - w[i]//2) ** 2
target = -target + np.mean((img_aug)[0]) #某一个位置
# target[target < np.min((img_aug)[0])] = np.min((img_aug)[0])
target[target < np.mean((img_aug)[0])] = np.mean((img_aug)[0])
# theta = int(np.min((img_aug)[0])/np.max((img_aug)[0]) * np.mean((img_aug)[0]))
# target[target >= np.min((img_aug)[0])] = np.max((img_aug)[0])
target[target >= np.mean((img_aug)[0])] = np.max((img_aug)[0])
hh = target.shape[0]
ww = target.shape[1]
img_aug[0, x[i]:x[i]+hh, y[i]:y[i]+ww] = target
img_aug[1, x[i]:x[i]+hh, y[i]:y[i]+ww] = target
img_aug[2, x[i]:x[i]+hh, y[i]:y[i]+ww] = target
mask_aug[x[i]:x[i]+hh, y[i]:y[i]+ww] = 255
# img = img_aug.swapaxes(0,2)
# mask = mask_aug.swapaxes(0,1)
img = img_aug
mask = mask_aug
# pdb.set_trace()
return img[0], mask
def copy_paste_augmentation(image, mask, target_threshold=5, scale_range=(0.6, 0.9)):
"""
对输入图像进行copy-paste增强。
参数:
- image: 输入图像
- mask: 目标掩码
- target_threshold: 目标数量阈值,小于该值时进行copy-paste
- scale_range: 缩放范围
返回:
- augmented_image: 增强后的图像
- augmented_mask: 增强后的掩码
"""
augmented_image = image.copy()
augmented_mask = mask.copy()
# 找到所有目标的连通区域
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(mask.astype(np.uint8), connectivity=8)
if num_labels-1 == 0:
return augmented_image, augmented_mask
# 如果目标数量小于 target_threshold,则复制某个目标两次
if num_labels - 1 < target_threshold:
target_idx = random.choice(range(1, num_labels))
# pdb.set_trace()
for _ in range(2): # 复制两次
# 提取目标块
ys, xs = np.where(labels == target_idx)
target_image_patch = image[min(ys):max(ys)+1, min(xs):max(xs)+1]
target_mask_patch = mask[min(ys):max(ys)+1, min(xs):max(xs)+1]
# 随机缩放
scale = random.uniform(scale_range[0], scale_range[1])
target_image_patch = cv2.resize(target_image_patch, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
target_mask_patch = cv2.resize(target_mask_patch, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST)
# 随机粘贴位置
paste_y = random.randint(0, image.shape[0] - target_image_patch.shape[0])
paste_x = random.randint(0, image.shape[1] - target_image_patch.shape[1])
# 粘贴目标块
patch_ys, patch_xs = np.where(target_mask_patch > 0)
for dy, dx in zip(patch_ys, patch_xs):
# pdb.set_trace()
augmented_image[paste_y + dy, paste_x + dx] = target_image_patch[dy, dx]
augmented_mask[paste_y + dy, paste_x + dx] = target_mask_patch[dy, dx]
return augmented_image, augmented_mask
from sklearn.model_selection import KFold
class TrainSetLoader(Dataset):
def __init__(self, dataset_dir, dataset_name, patch_size, img_norm_cfg=None,fold=0,nfolds=4, train=True,seed=2024):
super(TrainSetLoader).__init__()
self.dataset_name = dataset_name
self.dataset_dir = dataset_dir #+ '/' + dataset_name
self.patch_size = patch_size
self.fold = fold
# pdb.set_trace()
# with open(self.dataset_dir +'/img_idx/train_' + dataset_name + '.txt', 'r') as f:
# kf = KFold(n_splits=nfolds,random_state=seed,shuffle=True)
with open(self.dataset_dir +'train_' + dataset_name + '.txt', 'r') as f:
# with open(f'/home/dww/OD/BasicIRSTD/train_fold{self.fold}.txt', 'w') as f:
self.train_list = f.read().splitlines()
#pdb.set_trace()
'''begin'''
# train_list = list(kf.split(self.train_list))[fold][0 if train else 1]
# self.train_list=[self.train_list[i] for i in train_list]
'''end'''
if img_norm_cfg == None:
self.img_norm_cfg = get_img_norm_cfg(dataset_name, dataset_dir)
else:
self.img_norm_cfg = img_norm_cfg
self.tranform = augumentation()
self.transform2 = A.Compose([ ####其他增强
A.HorizontalFlip(p=0.5),
# A.RandomBrightnessContrast(p=0.2),
A.VerticalFlip(p=0.5),
A.Rotate(limit=30, p=0.5),
# A.RandomBrightnessContrast(p=0.5),
# A.HueSaturationValue(p=0.5),
# A.GaussianBlur(blur_limit=(3, 7), p=0.5),
# A.GaussNoise(p=0.5),
# A.MultiplicativeNoise(p=0.5),
])
# file_name = self.train_list[0]
# img_path=file_name.replace(file_name.split("/")[0], '')
# img_path=img_path.replace(img_path.split("/")[-1][-4:],'')
# # img = Image.open((self.dataset_dir + '/images/' + self.train_list[idx] + '.jpg').replace('//','/')).convert('I')
# # mask = Image.open((self.dataset_dir + '/masks/' + self.train_list[idx] + '.png').replace('//','/')).convert('L')
# img = Image.open((self.dataset_dir + '/images' + img_path + '.jpg').replace('//','/')).convert('L')#I
# mask = Image.open((self.dataset_dir + '/masks' + img_path + '.png').replace('//','/')).convert('L')
# # imag = np.array(img).astype(np.uint8)
# # mas = np.array(mask).astype(np.uint8)
# img.save('saved_image.jpg', format='JPEG', quality=90)
# mask.save('mask.jpg', format='JPEG', quality=90)
# img,mask = copy_paste_augmentation(np.array(img).astype(np.uint8), np.array(mask).astype(np.uint8)) ###copypaste 增强
# # pdb.set_trace()
# img , mask = Target_Augmentation2()(img, mask)
# # img=Image.fromarray((img * 255).astype(np.uint8))
# # mask=Image.fromarray((mask * 255).astype(np.uint8))
# img=Image.fromarray((img))
# mask=Image.fromarray((mask))
# img.save('saved_image1.jpg', format='JPEG', quality=90)
# mask.save('mask1.jpg', format='JPEG', quality=90)
# pdb.set_trace()
# # img = Image.fromarray(img)
def __getitem__(self, idx):
try:
file_name = self.train_list[idx]
img_path=file_name.replace(file_name.split("/")[0], '')
img_path=img_path.replace(img_path.split("/")[-1][-4:],'')
# img = Image.open((self.dataset_dir + '/images/' + self.train_list[idx] + '.jpg').replace('//','/')).convert('I')
# mask = Image.open((self.dataset_dir + '/masks/' + self.train_list[idx] + '.png').replace('//','/')).convert('L')
if self.dataset_name == 'IRDST':
img = Image.open((self.dataset_dir + '/images' + img_path + '.bmp').replace('//','/')).convert('I')
elif self.dataset_name=='MWIRSTD':
img = Image.open((self.dataset_dir + '/images' + img_path + '.jpg').replace('//','/')).convert('I')
else:
img = Image.open((self.dataset_dir + '/images' + img_path + '.png').replace('//','/')).convert('I')
mask = Image.open((self.dataset_dir + '/masks' + img_path + '.png').replace('//','/')).convert('L')
# imag = np.array(img).astype(np.uint8)
# mas = np.array(mask).astype(np.uint8)
'''数据增强1'''
# img,mask = copy_paste_augmentation(np.array(img).astype(np.uint8), np.array(mask).astype(np.uint8)) ###copypaste 增强
'''end'''
# img = Image.fromarray(img)
# mask = Image.fromarray(mask)
# img,mask = self.transform2(image=imag, mask=mas)
# img = Image.fromarray(np.uint8(img))
# mask = Image.fromarray(np.uint8(mask))
# plt.imshow(mask)
# plt.savefig('mask.jpg', dpi=400)
# transformed = self.transform2(image=np.array(img).astype(np.uint8), mask=np.array(mask).astype(np.uint8)) ###增强
# newimg = transformed['image']
# newmask = transformed['mask']
'''数据增强2'''
# img , mask = Target_Augmentation2()(img, mask)
'''end'''
# plt.imshow(mask)
# plt.savefig('mask2.jpg', dpi=400)
except:
img = Image.open((self.dataset_dir + '/images/' + self.train_list[idx] + '.bmp').replace('//','/')).convert('I')
mask = Image.open((self.dataset_dir + '/masks/' + self.train_list[idx] + '.png').replace('//','/'))
img = Normalized(np.array(img, dtype=np.float32), self.img_norm_cfg)
mask = np.array(mask, dtype=np.float32) / 255.0
if len(mask.shape) > 2:
mask = mask[:,:,0]
img_patch, mask_patch = random_crop(img, mask, self.patch_size, pos_prob=0.5)
img_patch, mask_patch = self.tranform(img_patch, mask_patch)
img_patch, mask_patch = img_patch[np.newaxis,:], mask_patch[np.newaxis,:]
img_patch = torch.from_numpy(np.ascontiguousarray(img_patch))
mask_patch = torch.from_numpy(np.ascontiguousarray(mask_patch))
return img_patch, mask_patch
def __len__(self):
return len(self.train_list)
class TestSetLoader(Dataset):
def __init__(self, dataset_dir, train_dataset_name, test_dataset_name, img_norm_cfg=None,fold=0,nfolds=4, train=False,seed=2024):
super(TestSetLoader).__init__()
self.dataset_dir = dataset_dir #+ '/' + test_dataset_name
self.dataset_name=test_dataset_name
self.fold = fold
#with open(self.dataset_dir+'/img_idx/test_' + test_dataset_name + '.txt', 'r') as f:
# with open(f'/home/dww/OD/BasicIRSTD/val_fold{fold}.txt', 'w') as f:
# kf = KFold(n_splits=nfolds,random_state=seed,shuffle=True)
with open(self.dataset_dir +'test_' + test_dataset_name + '.txt', 'r') as f:
# with open(f'/home/dww/OD/BasicIRSTD/train_fold{self.fold}.txt', 'w') as f:
self.test_list = f.read().splitlines()
'''begin'''
# test_list = list(kf.split(self.test_list))[fold][0 if train else 1]
# self.test_list=[self.test_list[i] for i in test_list]
# print(len())
#self.test_list = set(self.test_list[list(kf.split(self.test_list))[fold][0 if train else 1]])
'''end'''
#self.test_list = f.read().splitlines()
if img_norm_cfg == None:
self.img_norm_cfg = get_img_norm_cfg(train_dataset_name, dataset_dir)
else:
self.img_norm_cfg = img_norm_cfg
def __getitem__(self, idx):
try:
# file_name = self.train_list[idx]
# img_path=file_name.replace(file_name.split("/")[0], '')
# img_path=img_path.replace(img_path.split("/")[-1][-4:],'')
# # img = Image.open((self.dataset_dir + '/images/' + self.train_list[idx] + '.jpg').replace('//','/')).convert('I')
# # mask = Image.open((self.dataset_dir + '/masks/' + self.train_list[idx] + '.png').replace('//','/')).convert('L')
# img = Image.open((self.dataset_dir + '/images' + img_path + '.bmp').replace('//','/')).convert('I')
# mask = Image.open((self.dataset_dir + '/masks' + img_path + '.png').replace('//','/')).convert('L')
# imag = np.array(img).astype(np.uint8)
file_name = self.test_list[idx]
img_path=file_name.replace(file_name.split("/")[0], '')
img_path=img_path.replace(img_path.split("/")[-1][-4:],'')
# img = Image.open((self.dataset_dir + '/images/' + self.train_list[idx] + '.jpg').replace('//','/')).convert('I')
# mask = Image.open((self.dataset_dir + '/masks/' + self.train_list[idx] + '.png').replace('//','/')).convert('L')
if self.dataset_name == 'IRDST':
img = Image.open((self.dataset_dir + '/images' + img_path + '.bmp').replace('//','/')).convert('I')
elif self.dataset_name=='MWIRSTD':
img = Image.open((self.dataset_dir + '/images' + img_path + '.jpg').replace('//','/')).convert('I')
else:
img = Image.open((self.dataset_dir + '/images' + img_path + '.png').replace('//','/')).convert('I')
# img = Image.open((self.dataset_dir + '/images' + img_path + '.bmp').replace('//','/')).convert('I')
mask = Image.open((self.dataset_dir + '/masks' + img_path + '.png').replace('//','/')).convert('L')
# img = Image.open((self.dataset_dir + '/images/' + self.test_list[idx] + '.png').replace('//','/')).convert('I')
# #img_path=(self.dataset_dir + '/images/' + self.test_list[idx] + '.png').replace('//','/')
# #pdb.set_trace()
# mask = Image.open((self.dataset_dir + '/masks/' + self.test_list[idx] + '.png').replace('//','/')).convert('L')
###resize下
# img = img.resize((512, 512))
# mask = mask.resize((512, 512))
except:
img = Image.open((self.dataset_dir + '/images/' + self.test_list[idx] + '.bmp').replace('//','/')).convert('I')
mask = Image.open((self.dataset_dir + '/masks/' + self.test_list[idx] + '.png').replace('//','/'))
#img_path=(self.dataset_dir + '/images/' + self.test_list[idx] + '.png').replace('//','/')
img = Normalized(np.array(img, dtype=np.float32), self.img_norm_cfg)
mask = np.array(mask, dtype=np.float32) / 255.0
if len(mask.shape) > 2:
mask = mask[:,:,0]
h, w = img.shape
img = PadImg(img)
mask = PadImg(mask)
img, mask = img[np.newaxis,:], mask[np.newaxis,:]
img = torch.from_numpy(np.ascontiguousarray(img))
mask = torch.from_numpy(np.ascontiguousarray(mask))
return img, mask,[h,w], self.test_list[idx]
def __len__(self):
return len(self.test_list)
class EvalSetLoader(Dataset):
def __init__(self, dataset_dir, mask_pred_dir, test_dataset_name, model_name):
super(EvalSetLoader).__init__()
self.dataset_dir = dataset_dir
self.mask_pred_dir = mask_pred_dir
self.test_dataset_name = test_dataset_name
self.model_name = model_name
with open(self.dataset_dir+'/img_idx/val' + test_dataset_name + '.txt', 'r') as f:
self.test_list = f.read().splitlines()
def __getitem__(self, idx):
mask_pred = Image.open((self.mask_pred_dir + self.test_dataset_name + '/' + self.model_name + '/' + self.test_list[idx] + '.png').replace('//','/'))
mask_gt = Image.open(self.dataset_dir + '/masks/' + self.test_list[idx] + '.png')
mask_pred = np.array(mask_pred, dtype=np.float32) / 255.0
mask_gt = np.array(mask_gt, dtype=np.float32) / 255.0
if len(mask_pred.shape) == 3:
mask_pred = mask_pred[:,:,0]
h, w = mask_pred.shape
mask_pred, mask_gt = mask_pred[np.newaxis,:], mask_gt[np.newaxis,:]
mask_pred = torch.from_numpy(np.ascontiguousarray(mask_pred))
mask_gt = torch.from_numpy(np.ascontiguousarray(mask_gt))
return mask_pred, mask_gt, [h,w]
def __len__(self):
return len(self.test_list)
class InferenceSetLoader(Dataset):
def __init__(self, dataset_dir, train_dataset_name, test_dataset_name, img_norm_cfg=None):
super(InferenceSetLoader).__init__()
self.dataset_dir = dataset_dir + '/' + test_dataset_name
with open(self.dataset_dir + '/img_idx/test_' + test_dataset_name + '.txt', 'r') as f:
self.test_list = f.read().splitlines()
if img_norm_cfg == None:
self.img_norm_cfg = get_img_norm_cfg(train_dataset_name, dataset_dir)
else:
self.img_norm_cfg = img_norm_cfg
def __getitem__(self, idx):
try:
img = Image.open((self.dataset_dir + '/images/' + self.test_list[idx] + '.png').replace('//','/')).convert('I')
except:
img = Image.open((self.dataset_dir + '/images/' + self.test_list[idx] + '.bmp').replace('//','/')).convert('I')
img = Normalized(np.array(img, dtype=np.float32), self.img_norm_cfg)
h, w = img.shape
img = PadImg(img)
img = img[np.newaxis,:]
img = torch.from_numpy(np.ascontiguousarray(img))
return img, [h,w], self.test_list[idx]
def __len__(self):
return len(self.test_list)
class augumentation(object):
def __call__(self, input, target):
if random.random()<0.5:
input = input[::-1, :]
target = target[::-1, :]
if random.random()>0.5:
input = input[:, ::-1]
target = target[:, ::-1]
if random.random()<0.5:
input = input.transpose(1, 0)
target = target.transpose(1, 0)
return input, target