-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_metirc_image.py
34 lines (30 loc) · 1.28 KB
/
compute_metirc_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import argparse
from torch.autograd import Variable
from torch.utils.data import DataLoader
from net import Net
from dataset import *
import matplotlib.pyplot as plt
from metrics import *
import os
import time
import pdb
from torchvision.transforms import ToTensor
from PIL import Image
import torch.nn.functional as F
pred=pred[:,:,:size[0],:size[1]]
#pdb.set_trace()
gt_mask = gt_mask[:,:,:size[0],:size[1]]
eval_mIoU.update((pred>opt.threshold).cpu(), gt_mask)
eval_PD_FA.update((pred[0,0,:,:]>opt.threshold).cpu(), gt_mask[0,0,:,:], size)
### save img
if opt.save_img == True:
img_save = transforms.ToPILImage()((pred[0,0,:,:]).cpu())
if not os.path.exists(opt.save_img_dir + opt.test_dataset_name + '/' + opt.model_name):
os.makedirs(opt.save_img_dir + opt.test_dataset_name + '/' + opt.model_name)
img_save.save(opt.save_img_dir + opt.test_dataset_name + '/' + opt.model_name + '/' + img_dir[0] + '.png')
results1 = eval_mIoU.get()
results2 = eval_PD_FA.get()
print("pixAcc, mIoU:\t" + str(results1))
print("PD, FA:\t" + str(results2))
opt.f.write("pixAcc, mIoU:\t" + str(results1) + '\n')
opt.f.write("PD, FA:\t" + str(results2) + '\n')