-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vanilla.py
333 lines (278 loc) · 13.1 KB
/
train_vanilla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import os
import random
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision
import numpy as np
from tensorboard_logger import configure, log_value
import models.densenet as dn
import models.wideresnet as wn
from utils.custom_cifar_loader import CIFAR10_Subset
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--gpu', default='0', type=str, help='which gpu to use')
parser.add_argument('--in-dataset', default="CIFAR-10", type=str, help='in-distribution dataset')
parser.add_argument('--model-arch', default='densenet', type=str, help='model architecture')
parser.add_argument('--epochs', default=100, type=int, help='number of total epochs to run')
parser.add_argument('--save-epoch', default=10, type=int, help='save the model every save_epoch')
parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=64, type=int, help='mini-batch size for in-distribution data')
parser.add_argument('--ood-batch-size', default=64, type=int, help='mini-batch size for out-of-distribution data')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', '--wd', default=0.0005, type=float,
help='weight decay (default: 0.0001 for densenet, 0.0005 for wideresnet)')
parser.add_argument('--print-freq', '-p', default=100, type=int, help='print frequency')
parser.add_argument('--layers', default=100, type=int, help='total number of layers of densenet')
parser.add_argument('--depth', default=40, type=int, help='depth of resnet')
parser.add_argument('--width', default=2, type=int, help='width of resnet')
parser.add_argument('--growth', default=12, type=int, help='number of new channels per layer (default: 12) for densenet')
parser.add_argument('--reduce', default=0.5, type=float,
help='compression rate in transition stage (default: 0.5) for densenet')
parser.add_argument('--droprate', default=0.0, type=float, help='dropout probability (default: 0.0)')
parser.set_defaults(bottleneck=True)
parser.set_defaults(augment=True)
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--exp-cat-name', required=True, type=str, help='the name of experience categories, e.g., oe')
parser.add_argument('--name', required=True, type=str, help='name of experiment')
parser.add_argument('--tensorboard', default=True, help='Log progress to TensorBoard', action='store_true')
parser.add_argument('--seed', required=True, type=int, help='random initialization of network')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
print(state)
directory = "checkpoints/{exp_cat_name}/{in_dataset}/no_auxiliary/{model_arch}/{name}/".\
format(exp_cat_name=args.exp_cat_name, in_dataset=args.in_dataset, model_arch= args.model_arch, name=args.name)
if not os.path.exists(directory):
os.makedirs(directory)
save_state_file = os.path.join(directory, 'args.txt')
fw = open(save_state_file, 'w')
print(state, file=fw)
fw.close()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
def set_seeds(seed:int):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = True
def main():
if args.tensorboard: configure("runs/%s/%s/no_auxiliary/%s/%s"%(args.exp_cat_name, args.in_dataset, args.model_arch, args.name))
if args.augment:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
else:
transform_train = transforms.Compose([
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
kwargs = {'num_workers': 1, 'pin_memory': True}
if args.in_dataset == "CIFAR-10":
# Data loading code
normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
train_loader = torch.utils.data.DataLoader(datasets.CIFAR10('./datasets/cifar10', train=True,
download=True, transform=transform_train), batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(datasets.CIFAR10('./datasets/cifar10', train=False,
transform=transform_test), batch_size=args.batch_size, shuffle=True, **kwargs)
lr_schedule=[50, 75, 90]
num_classes = 10
elif args.in_dataset == "CIFAR-100":
# Data loading code
normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
train_loader = torch.utils.data.DataLoader(datasets.CIFAR100('./datasets/cifar100', train=True,
download=True, transform=transform_train), batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(datasets.CIFAR100('./datasets/cifar100', train=False,
transform=transform_test), batch_size=args.batch_size, shuffle=True, **kwargs)
lr_schedule=[50, 75, 90]
num_classes = 100
elif args.in_dataset == "CIFAR-10_subset":
# Data loading code
normalizer = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
train_loader = torch.utils.data.DataLoader(
CIFAR10_Subset('./datasets/cifar10', train=True, download=True,
transform=transform_train),
batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(
CIFAR10_Subset('./datasets/cifar10', train=False, transform=transform_test),
batch_size=args.batch_size, shuffle=True, **kwargs)
lr_schedule=[50, 75, 90]
num_classes = 10
else:
assert False, 'Not supported dataset: {}'.format(args.in_dataset)
set_seeds(args.seed)
# create model
if args.model_arch == 'densenet':
model = dn.DenseNet3(args.layers, num_classes, args.growth, reduction=args.reduce,
bottleneck=args.bottleneck, dropRate=args.droprate, normalizer=normalizer)
elif args.model_arch == 'wideresnet':
model = wn.WideResNet(args.depth, num_classes, widen_factor=args.width, dropRate=args.droprate, normalizer=normalizer)
else:
assert False, 'Not supported model arch: {}'.format(args.model_arch)
# get the number of model parameters
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
model = model.cuda()
# define loss function (criterion) and pptimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
nesterov=True,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, lr_schedule)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
prec1 = validate(val_loader, model, criterion, epoch)
# remember best prec@1 and save checkpoint
if (epoch + 1) % args.save_epoch == 0:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
}, epoch + 1)
def train(train_loader, model, criterion, optimizer, epoch):
"""Train for one epoch on the training set"""
batch_time = AverageMeter()
nat_losses = AverageMeter()
nat_top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
input = input.cuda()
target = target.cuda()
nat_output = model(input)
nat_loss = criterion(nat_output, target)
# measure accuracy and record loss
nat_prec1 = accuracy(nat_output.data, target, topk=(1,))[0]
nat_losses.update(nat_loss.data, input.size(0))
nat_top1.update(nat_prec1, input.size(0))
# compute gradient and do SGD step
loss = nat_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=nat_losses, top1=nat_top1))
# log to TensorBoard
if args.tensorboard:
log_value('nat_train_loss', nat_losses.avg, epoch)
log_value('nat_train_acc', nat_top1.avg, epoch)
def validate(val_loader, model, criterion, epoch):
"""Perform validation on the validation set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
input = input.cuda()
target = target.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data, input.size(0))
top1.update(prec1, input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
# log to TensorBoard
if args.tensorboard:
log_value('val_loss', losses.avg, epoch)
log_value('val_acc', top1.avg, epoch)
return top1.avg
def save_checkpoint(state, epoch):
"""Saves checkpoint to disk"""
directory = "checkpoints/{exp_cat_name}/{in_dataset}/no_auxiliary/{model_arch}/{name}/".format(
exp_cat_name=args.exp_cat_name, in_dataset=args.in_dataset, model_arch= args.model_arch, name=args.name)
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + 'checkpoint_{}.pth.tar'.format(epoch)
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, lr_schedule=[50, 75, 90]):
"""Sets the learning rate to the initial LR decayed by 10 after 40 and 80 epochs"""
lr = args.lr
if epoch >= lr_schedule[0]:
lr *= 0.1
if epoch >= lr_schedule[1]:
lr *= 0.1
if epoch >= lr_schedule[2]:
lr *= 0.1
# log to TensorBoard
if args.tensorboard:
log_value('learning_rate', lr, epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()