-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_GLS_direct_train.py
164 lines (137 loc) · 6.29 KB
/
main_GLS_direct_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding:utf-8 -*-
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.transforms as transforms
from data.cifar import CIFAR10
from data.datasets import input_dataset
from models import *
import argparse, sys
import numpy as np
import datetime
import shutil
from random import sample
from loss import loss_gls
from torch.utils.data import RandomSampler
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type = float, default = 0.1)
parser.add_argument('--loss', type = str, help = 'gls', default = 'gls')
parser.add_argument('--result_dir', type = str, help = 'dir to save result txt files', default = 'results')
parser.add_argument('--noise_rate', type = float, help = 'corruption rate, should be less than 1', default = 0.2)
parser.add_argument('--noise_type', type = str, help='[pairflip, symmetric]', default='symmetric')
parser.add_argument('--top_bn', action='store_true')
parser.add_argument('--ideal', action='store_true')
parser.add_argument('--dataset', type = str, help = 'mnist, cifar10, or cifar100', default = 'cifar10')
parser.add_argument('--model', type = str, help = 'cnn,resnet', default = 'resnet')
parser.add_argument('--n_epoch', type=int, default=200)
parser.add_argument('--wa', type=float, default=0)
parser.add_argument('--wb', type=float, default=1)
parser.add_argument('--smooth_rate', type=float, default=0.1)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--print_freq', type=int, default=50)
parser.add_argument('--num_workers', type=int, default=4, help='how many subprocesses to use for data loading')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
def adjust_learning_rate(optimizer, epoch, lr_plan):
for param_group in optimizer.param_groups:
param_group['lr']=lr_plan[epoch]
# Train the Model
def train(epoch, num_classes, train_loader, model, optimizer, smooth_rate, wa, wb):
for i, (images, labels, indexes) in enumerate(train_loader):
ind=indexes.cpu().numpy().transpose()
batch_size = len(ind)
images = Variable(images).cuda()
labels = Variable(labels).cuda()
logits = model(images)
loss = loss_gls(epoch,logits, labels, smooth_rate, wa, wb)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % args.print_freq == 0:
print ('Epoch [%d/%d], Iter [%d/%d], Loss: %.4f'
%(epoch+1, args.n_epoch, i+1, len(train_dataset)//batch_size, loss.data))
train_acc=0.0
return train_acc
# Evaluate the Model
def evaluate(test_loader,model,save=False,epoch=0,best_acc_=0,args=None):
model.eval() # Change model to 'eval' mode.
print('previous_best', best_acc_)
correct = 0
total = 0
for images, labels, _ in test_loader:
images = Variable(images).cuda()
logits = model(images)
outputs = F.softmax(logits, dim=1)
_, pred = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (pred.cpu() == labels).sum()
acc = 100*float(correct)/float(total)
if save:
if acc > best_acc_:
state = {'state_dict': model.state_dict(),
'epoch':epoch,
'acc':acc,
}
torch.save(state,os.path.join(save_dir, 'Direct_train_'+args.loss + args.noise_type + str(args.noise_rate)+'wa'+str(args.wa)+'wb'+str(args.wb)+'smooth_rate'+str(args.smooth_rate)+'best.pth.tar'))
best_acc_ = acc
if epoch == args.n_epoch -1:
state = {'state_dict': model.state_dict(),
'epoch':epoch,
'acc':acc,
}
torch.save(state,os.path.join(save_dir,'Direct_train_'+args.loss + args.noise_type + str(args.noise_rate)+'wa'+str(args.wa)+'wb'+str(args.wb)+'smooth_rate'+str(args.smooth_rate)+'last.pth.tar'))
return acc, best_acc_
#####################################main code ################################################
args = parser.parse_args()
# Seed
torch.manual_seed(args.seed)
# Hyper Parameters
batch_size = 128
learning_rate = args.lr
wa_val = args.wa
wb_val = args.wb
smooth_rate_val = args.smooth_rate
n_type = args.noise_type
# load dataset
train_dataset,test_dataset,num_classes,num_training_samples = input_dataset(args.dataset,args.noise_type,args.noise_rate)
# load model
print('building model...')
if args.model == 'cnn':
model = CNN(input_channel=3, n_outputs=num_classes)
else:
model = ResNet34(num_classes)
print('building model done')
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0001, nesterov= True)
### save result and model checkpoint #######
save_dir = args.result_dir +'/' +args.dataset + '/' + args.model
if not os.path.exists(save_dir):
os.system('mkdir -p %s' % save_dir)
train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
batch_size = 128,
num_workers=args.num_workers,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size = 64,
num_workers=args.num_workers,
shuffle=False)
lr_plan = [0.1] * 100 + [0.01] * 50 + [0.001] * 50
model.cuda()
txtfile=save_dir + '/' + 'Direct_train_'+args.loss + args.noise_type + str(args.noise_rate)+'wa'+str(args.wa)+'wb'+str(args.wb)+'smooth_rate'+str(args.smooth_rate)+ '.txt'
if os.path.exists(txtfile):
os.system('rm %s' % txtfile)
with open(txtfile, "a") as myfile:
myfile.write('epoch: test_acc \n')
epoch=0
train_acc = 0
best_acc_ = 0.0
for epoch in range(args.n_epoch):
# train models
adjust_learning_rate(optimizer, epoch, lr_plan)
model.train()
train_acc = train(epoch,num_classes,train_loader, model, optimizer, smooth_rate=smooth_rate_val, wa=wa_val, wb=wb_val)
# evaluate models
test_acc, best_acc_ = evaluate(test_loader=test_loader, save=True, model=model,epoch=epoch,best_acc_=best_acc_,args=args)
print('test acc on test images is ', test_acc)
with open(txtfile, "a") as myfile:
myfile.write(str(int(epoch)) + ': ' + str(test_acc) + "\n")