forked from GuanhuaWang/codeGen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrealcuda.cu
200 lines (172 loc) · 5.36 KB
/
realcuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <cuda.h>
#include <pthread.h>
#include "fiddlelink.h"
#define SIZE 10240
#define ROW 12
void read_schedule(const char* file_name, int matrix[ROW][5])
{
char buffer[1024] ;
char *record,*line;
int i=0,j=0;
FILE *fstream = fopen(file_name,"r");
if(fstream == NULL)
{
printf("\n file opening failed \n");
return ;
}
while((line=fgets(buffer,sizeof(buffer),fstream))!=NULL)
{
record = strtok(line,",");
while(record != NULL)
{
//printf("record : %s",record) ;
matrix[i][(j++)%5] = atoi(record) ;
record = strtok(NULL,",");
}
++i ;
}
return ;
}
/*
void *peer_access(void *addr){
int *tx1 = (int*)addr;
int *rx1 = (int*)(addr + sizeof(int));
int tx = *tx1;
int rx = *rx1;
printf("tx is %d, rx is %d\n",tx,rx);
cudaSetDevice(tx);
cudaDeviceEnablePeerAccess(rx,0);
}
*/
int distinct(int arr[],int n){
int count = 0;
for(int i = 0;i<n;i++){
int j;
for(j=0;j<i;j++)
if(arr[i]==arr[j])
break;
if(i == j){
printf("%i ",arr[i]);
count++;
}
}
printf("\n");
printf("count of distinct GPU node is %i\n", count);
return count;
}
int* one_hot(int scheme[ROW][5]){
static int one_hot[ROW]={0};
for(int i =0;i<ROW;i++){
for(int j =2;j<5;j++){
if(scheme[i][j]==1){
one_hot[i] = j-1;
}
}
}
/*
for(int i =0;i<ROW;i++){
printf("row %i,partition %i\n",i,one_hot[i]);
}
*/
return one_hot;
}
int main(){
const char* name = "dir.csv";
int matrix[ROW][5];
int column0[ROW];
read_schedule(name,matrix);
printf("======================Print scheme=======================\n");
for(int i =0;i<ROW;i++){
column0[i] = matrix[i][0];
for(int j = 0;j<5;j++){
printf("%d ",matrix[i][j]);
}
printf("\n");
}
int batch = sizeof(matrix[0])/sizeof(int)-2;
long int total_size = sizeof(int)*SIZE*SIZE;
printf("\n==============Total Data Size in Transfer================\n");
printf("total data size on GPU0 is %f GB\n",total_size/(1024.0*1024.0*1024.0));
long int batch_size = total_size/batch;
printf("\n================Count distinct GPU in use================\n");
int count = distinct(column0,ROW);
int* mem[count];
for(int x = 0;x<count;x++){
cudaSetDevice(x);
cudaMalloc((void**)&mem[x],total_size);
}
int* partition;
partition = one_hot(matrix);
printf("\n=================OneHot to Number transfer===============\n");
for(int i =0;i<ROW;i++){
printf("row %i,partition %i\n",i,partition[i]);
}
// Split mem_addr on each GPU to # of batch pieces
void* addr[count][batch];
for(int i = 0; i<count;i++){
for(int j =0; j<batch;j++){
addr[i][j] =(void*)((long long unsigned)mem[i] + j*batch_size);
}
}
// pre transfer setup (enable peer access, allocate GPU mem)
//Open multi-thread for enable peer access in parallel
printf("\n==============Pthread open peer access===================\n");
int peer[ROW][2];
for(int i =0;i<ROW;i++){
peer[i][0]=matrix[i][0];
peer[i][1]=matrix[i][1];
}
pthread_t tid[ROW];
for(int j = 0; j<ROW; j++){
pthread_create(&tid[j],NULL,peer_access,&peer[j]);
}
for(int m = 0; m<ROW; m++){
pthread_join(tid[m],NULL);
}
// Start transfer based on data scheduling scheme (colomn 2 - N)
printf("\n===================Print data transfer===================\n");
for(int i =0;i<ROW;i++){
if(partition[i]!=0)
printf("start transfer -- rx: %i, tx: %i, addr_rx: addr[%i][%i], addr_tx: addr[%i][%i], batch_size: %f GB\n", matrix[i][1], matrix[i][0],matrix[i][1],partition[i]-1,matrix[i][0],partition[i]-1,batch_size/(1024.0*1024.0*1024.0));
pair_stream(matrix[i][1],matrix[i][0],addr[matrix[i][1]][partition[i]-1],addr[matrix[i][0]][partition[i]-1],batch_size,1);
}
// post transfer (e.g. Free memory)
for(int i = 0; i<count;i++){
cudaFree(mem[i]);
}
printf("\n==============Generate code to broadcast.cu==============\n");
//Print out to .cu file
FILE *output = fopen("broadcast.cu","w");
fprintf(output,"//This is generated cuda code using scheduling scheme\n");
//Print header
fprintf(output,"#include <stdio.h>\n#include <string.h>\n#include <stdlib.h>\n#include <time.h>\n#include <cuda.h>\n#include <pthread.h>\n#include \"fiddlelink.h\"\n\n");
//Print main function
fprintf(output,"int main(){\n\tlong int total_size = %li;\n",total_size);
fprintf(output,"\tlong int batch_size = %li;\n",batch_size);
//Cuda Malloc
fprintf(output,"\n\tint* mem[%i];\n",count);
fprintf(output,"\tfor(int x = 0;x<%i;x++){\n",count);
fprintf(output,"\t\tcudaSetDevice(x);\n\t\tcudaMalloc((void**)&mem[x],total_size);\n\t}\n");
//Split Mem addr to # of partitions
fprintf(output,"\n\tvoid* addr[%i][%i];\n",count,batch);
fprintf(output,"\tfor(int i = 0; i<%i;i++){\n",count);
fprintf(output,"\t\tfor(int j =0; j<%i;j++){\n",batch);
fprintf(output,"\t\t\taddr[i][j] = (void*)((long long unsigned)mem[i] + j * batch_size);\n\t\t}\n\t}\n\n");
//Start data transfer
for(int i = 0;i<ROW;i++){
if(partition[i]!=0)
fprintf(output,"\tpair_stream(%i,%i,addr[%i][%i],addr[%i][%i],batch_size,1);\n",matrix[i][1],matrix[i][0],matrix[i][1],partition[i]-1,matrix[i][0],partition[i]-1);
}
//Free Memory
fprintf(output,"\n\tfor(int i = 0; i<%i;i++){\n",count);
fprintf(output,"\t\tcudaFree(mem[i]);\n\t}\n");
//End of line
fprintf(output,"\n\treturn 0;\n");
fprintf(output,"}\n");
fclose(output);
return 0;
}