-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCWGANGP_generate.py
144 lines (110 loc) · 4.89 KB
/
CWGANGP_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from data import *
from CWGANGP import Generator
import torch
import matplotlib.pyplot as plt
import matplotlib
import soundfile as sf
import time
import argparse
matplotlib.use('Qt5Agg') # Use this backend to support interactive display
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='config_CWGAN_GP.yaml')
parser.add_argument('--model', default='log/models/CWGANGP_D/CWGANGP1000.pt')
parser.add_argument('--num_gen', default=1)
parser.add_argument('--use_cuda', default=False, action='store_true')
parser.add_argument('--drill_force', default=1) # 0, 1, 2, 3
parser.add_argument('--drill_angle', default=0) # 0, 1, 2
a = parser.parse_args()
config = load_yaml(a.config)
def generate():
force = int(a.drill_force)
angle = int(a.drill_angle)
# Device to run the computations on
if a.use_cuda:
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
else:
device = "cpu"
# For Griffin Lim algorithm
transform = AudioTransforms(sample_rate=config["sample_rate"],
n_fft=int(config["n_fft"]),
n_stft=int(config["n_stft"]),
win_length=config["win_length"],
hop_length=config["hop_length"],
f_min=config["f_min"],
f_max=config["f_max"],
n_mels=config["n_mels"],
window_fn=config["window_fn"],
power=config["power"],
normalized=config["normalized"],
momentum=config["momentum"],
n_iter=config["n_iter"],
device=device).to(device)
model_info_dict = torch.load(a.model)
generator = Generator(input_shape=(1, 128, 128),
z_dim=config['latent_dim'],
classes=config['num_class']).to(device)
generator.load_state_dict(model_info_dict['gen_state_dict'])
# Class condition
c = torch.tensor([[angle], [force]]).to(device)
# Sampling from random noise
z = torch.randn(1, config['latent_dim']).to(device)
print("Setting up generators to the selected device.........")
# Warm up phase. Established the generator in the gpu/cpu
generator.eval()
with torch.inference_mode():
_ = generator(z, c)
print(" ---- Setup completed ---- ")
total_time = 0
index = 0
if not a.use_cuda:
for num in range(a.num_gen):
current = time.time()
z = torch.randn(1, config['latent_dim']).to(device)
c = torch.tensor([[angle], [force]]).to(device)
with torch.inference_mode():
mel_recon = generator(z, c)
total_time = total_time + (time.time() - current)
mel_recon = torch.squeeze(mel_recon)
# Invert the mel spectrogram into audio waveform
y_wav = transform.GriffinLim(transform.inv_mel_spec(mel_recon))
# Save the audio waveform into a wav file
sf.write(f"test/{index}.wav",
y_wav.cpu().numpy(), config["sample_rate"])
mel_recon = mel_recon.cpu().numpy()
plt.figure(figsize=(128 / 96, 128 / 96), dpi=96)
plt.axis('off')
plt.tight_layout(pad=0)
plt.imshow(mel_recon, cmap="jet", vmin=0.0, vmax=5.0)
plt.savefig(f"test/{index}.png", dpi=96)
plt.close()
index = index + 1
print(total_time / float(a.num_gen))
else:
for num in range(a.num_gen):
st = torch.cuda.Event(enable_timing=True) # start
ed = torch.cuda.Event(enable_timing=True) # end
st.record()
z = torch.randn(1, config['latent_dim']).to(device)
c = torch.tensor([[angle], [force]]).to(device)
with torch.inference_mode():
mel_recon = generator(z, c)
ed.record()
torch.cuda.synchronize()
total_time = total_time + (st.elapsed_time(ed) / 1000.0)
mel_recon = torch.squeeze(mel_recon)
# Invert the mel spectrogram into audio waveform
y_wav = transform.GriffinLim(transform.inv_mel_spec(mel_recon))
# Save the audio waveform into a wav file
sf.write(f"test/{index}.wav",
y_wav.cpu().numpy(), config["sample_rate"])
mel_recon = mel_recon.cpu().numpy()
plt.figure(figsize=(128 / 96, 128 / 96), dpi=96)
plt.axis('off')
plt.tight_layout(pad=0)
plt.imshow(mel_recon, cmap="jet", vmin=0.0, vmax=5.0)
plt.savefig(f"test/{index}.png", dpi=96)
plt.close()
index = index + 1
print(total_time / float(a.num_gen))
if __name__ == '__main__':
generate()