forked from snap-stanford/roland
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroland_generic.py
366 lines (301 loc) · 13.9 KB
/
roland_generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""
A generic loader for the roland project, modify this template to build
loaders for other financial transaction datasets.
Mar. 22, 2021
"""
import os
from datetime import datetime
from typing import List, Union
import dask.dataframe as dd
import deepsnap
import numpy as np
import pandas as pd
import torch
from dask_ml.preprocessing import OrdinalEncoder
from deepsnap.graph import Graph
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import OrdinalEncoder as SkOrdinalEncoder
from graphgym.config import cfg
from graphgym.register import register_loader
# =============================================================================
# Configure and instantiate the loader here.
# =============================================================================
# TODO: set attributes here.
# Required for all graphs.
SRC_NODE: str = 'Payer'
DST_NODE: str = 'Payee'
TIMESTAMP: str = 'Timestamp'
AMOUNT: str = 'AmountEUR'
# Categorical columns are SRC_NODE+var and DST_NODE+var.
# Note that '' corresponds to columns SRC_NODE and DST_NODE.
NODE_CATE_VARS: List[str] = ['', 'Bank', 'Country', 'Region', 'Skd', 'SkdL1',
'SkdL2', 'Skis', 'SkisL1', 'SkisL2']
EDGE_CATE_VARS: List[str] = ['# System', 'Currency']
EDGE_FEATURE_COLS: List[str] = ['PayerBank', 'PayeeBank',
'PayerCountry', 'PayeeCountry',
'PayerRegion', 'PayeeRegion',
'PayerSkdL1', 'PayeeSkdL1',
'PayerSkdL2', 'PayeeSkdL2',
'PayerSkisL1', 'PayeeSkisL1',
'PayerSkisL2', 'PayeeSkisL2',
'# System', 'Currency',
AMOUNT, 'TimestampScaled']
# Required for heterogeneous graphs only.
# Node and edge features used to define node and edge type in hete GNN.
NODE_TYPE_DEFN: List[str] = ['Country']
EDGE_TYPE_DEFN: List[str] = ['# System']
# Required for graphs with node features only.
NODE_FEATURE_LIST: List[str] = ['Bank', 'Country', 'Region', 'SkdL1', 'SkisL1']
# =============================================================================
# Helper Functions.
# =============================================================================
# Some helper functions, inputs should be a timestamp integer.
# See http://strftime.org for references.
def dayofyear(t: int) -> int:
# '%j': Day of the year as a zero-padded decimal number.
return int(datetime.fromtimestamp(t).strftime('%j'))
def weekofyear(t: int) -> int:
# '%W' Week number of the year (Monday as the first day of the week)
# as a decimal number.
# All days in a new year preceding the first Monday are considered to be
# in week 0.
return int(datetime.fromtimestamp(t).strftime('%W'))
def monthofyear(t: int) -> int:
# Get the month of year.
return int(datetime.fromtimestamp(t).month)
def quarterofyear(t: int) -> int:
m = datetime.fromtimestamp(t).month
return int((m - 1) // 3 + 1)
def get_node_feature(df: pd.DataFrame,
required_features: List[str]) -> pd.DataFrame:
"""Extract node features from a transaction dataset.
"""
char_lst = list()
for party in [SRC_NODE, DST_NODE]:
# ['Payer', 'PayerBank', 'PayerCountry', ...]
cols = [party] + [party + var for var in required_features]
relevant = df[cols].copy()
# ['Company', 'Bank', 'Country', ...]
relevant.columns = ['Company'] + required_features
char_lst.append(relevant)
df_char = pd.concat(char_lst, axis=0)
df_char = df_char.groupby('Company').first()
df_char = df_char[required_features]
return df_char
def construct_additional_features(df: pd.DataFrame) -> pd.DataFrame:
"""
Constructs additional features of the transaction dataset.
"""
# TODO: construct customized transaction feature here.
# e.g., df['LargeTransaction'] = (df['Amount'] >= 1000)
return df
def load_single_dataset(dataset_dir: str, is_hetero: bool = True,
type_info_loc: str = 'append',
include_node_features: bool = False
) -> Graph:
"""
Loads a single graph object from tsv file.
Args:
dataset_dir: the path of tsv file to be loaded.
is_hetero: whether to load heterogeneous graph.
type_info_loc: 'append' or 'graph_attribute'.
include_node_features: when set to True, load node features into
graph.node_feature, otherwise, the loader assumes node features
are subsumed in edge_features, and set graph.node_feature to all 1.
Returns:
graph: a (homogenous) deepsnap graph object.
"""
# Load dataset using dask for fast parallel loading.
df_trans = dd.read_csv(dataset_dir, sep='\t', low_memory=False)
df_trans = df_trans.fillna('missing')
df_trans = df_trans.compute()
df_trans = construct_additional_features(df_trans)
df_trans.reset_index(drop=True, inplace=True)
# a unique values of node-level categorical variables.
node_cat_uniques = dict() # Dict[str, np.ndarray]
for var in NODE_CATE_VARS:
relevant = df_trans[[SRC_NODE + var, DST_NODE + var]]
unique_var = pd.unique(relevant.to_numpy().ravel())
node_cat_uniques[var] = np.sort(unique_var)
# %% Convert to pandas categorical variables data type for fast encoding.
for var in NODE_CATE_VARS:
unique_val = np.sort(node_cat_uniques[var])
cate_type = pd.api.types.CategoricalDtype(categories=unique_val,
ordered=True)
df_trans[SRC_NODE + var] = df_trans[SRC_NODE + var].astype(cate_type)
df_trans[DST_NODE + var] = df_trans[DST_NODE + var].astype(cate_type)
# Another 2 edge level categorical variables.
for var in EDGE_CATE_VARS:
unique_var = np.sort(pd.unique(df_trans[[var]].to_numpy().ravel()))
cate_type = pd.api.types.CategoricalDtype(categories=unique_var,
ordered=True)
df_trans[var] = df_trans[var].astype(cate_type)
# %% Encoding categorical variables.
enc = OrdinalEncoder()
df_encoded = enc.fit_transform(df_trans)
df_encoded.reset_index(drop=True, inplace=True)
# Scaling transaction amount.
scaler = MinMaxScaler((0, 2))
df_encoded[AMOUNT] = scaler.fit_transform(
df_encoded[AMOUNT].values.reshape(-1, 1))
time_scaler = MinMaxScaler((0, 2))
df_encoded['TimestampScaled'] = time_scaler.fit_transform(
df_encoded[TIMESTAMP].values.reshape(-1, 1))
# %% Prepare for output.
edge_feature = torch.Tensor(
df_encoded[EDGE_FEATURE_COLS].values) # (E, edge_dim)
edge_index = torch.Tensor(
df_encoded[[SRC_NODE, DST_NODE]].values.transpose()).long() # (2, E)
num_nodes = torch.max(edge_index) + 1
assert num_nodes == len(node_cat_uniques[''])
if include_node_features:
df_char = get_node_feature(df_encoded, NODE_FEATURE_LIST)
node_feature = torch.Tensor(df_char.astype(float).values)
# print([int(torch.max(node_feature[:, i])) + 1 for i in range(len(NODE_FEATURE_LIST))])
else:
node_feature = torch.ones(num_nodes, 1).float()
edge_time = torch.FloatTensor(df_encoded[TIMESTAMP].values)
graph = Graph(
node_feature=node_feature,
edge_feature=edge_feature,
edge_index=edge_index,
edge_time=edge_time,
directed=True
)
if is_hetero:
char_lst = list()
for party in [SRC_NODE, DST_NODE]:
cols = [party] + [party + var for var in NODE_TYPE_DEFN]
relevant = df_encoded[cols].copy()
relevant.columns = ['Company'] + NODE_TYPE_DEFN
char_lst.append(relevant)
df_char = pd.concat(char_lst, axis=0)
df_char = df_char.groupby('Company').first()
df_char = df_char[NODE_TYPE_DEFN].astype(str)
# Construct node type signatures.
df_char['NodeType'] = df_char[NODE_TYPE_DEFN[0]].astype(str)
for var in NODE_TYPE_DEFN[1:]:
df_char['NodeType'] += ('--' + df_char[var].astype(str))
node_type_enc = SkOrdinalEncoder()
node_type_int = node_type_enc.fit_transform(
df_char['NodeType'].values.reshape(-1, 1))
node_type_int = torch.FloatTensor(node_type_int)
assert len(node_type_int) == num_nodes
# Construct edge type signatures.
df_trans['EdgeType'] = df_trans[EDGE_TYPE_DEFN[0]].astype(str)
for var in EDGE_TYPE_DEFN[1:]:
df_trans['EdgeType'] += ('--' + df_trans[var].astype(str))
edge_type_enc = SkOrdinalEncoder()
edge_type_int = edge_type_enc.fit_transform(
df_trans['EdgeType'].values.reshape(-1, 1))
edge_type_int = torch.FloatTensor(edge_type_int)
if type_info_loc == 'append':
graph.edge_feature = torch.cat((graph.edge_feature, edge_type_int),
dim=1)
graph.node_feature = torch.cat((graph.node_feature, node_type_int),
dim=1)
elif type_info_loc == 'graph_attribute':
graph.node_type = node_type_int.reshape(-1, )
graph.edge_type = edge_type_int.reshape(-1, )
else:
raise ValueError(f'Unsupported type info loc: {type_info_loc}')
graph.list_n_type = node_type_int.unique().long()
graph.list_e_type = edge_type_int.unique().long()
return graph
def make_graph_snapshot(g_all: Graph,
snapshot_freq: str,
is_hetero: bool = True) -> list:
"""
Constructs a list of graph snapshots (Graph or HeteroGraph) based
on g_all and snapshot_freq.
Args:
g_all: the entire homogenous graph.
snapshot_freq: snapshot frequency.
is_hetero: if make heterogeneous graphs.
"""
t = g_all.edge_time.numpy().astype(np.int64)
snapshot_freq = snapshot_freq.upper()
period_split = pd.DataFrame(
{'Timestamp': t,
'TransactionTime': pd.to_datetime(t, unit='s')},
index=range(len(g_all.edge_time)))
freq_map = {'D': '%j', # day of year.
'W': '%W', # week of year.
'M': '%m' # month of year.
}
period_split['Year'] = period_split['TransactionTime'].dt.strftime(
'%Y').astype(int)
period_split['SubYearFlag'] = period_split['TransactionTime'].dt.strftime(
freq_map[snapshot_freq]).astype(int)
period2id = period_split.groupby(['Year', 'SubYearFlag']).indices
# e.g., dictionary w/ key = (2021, 3) and val = array(edges).
periods = sorted(list(period2id.keys()))
snapshot_list = list()
for p in periods:
# unique IDs of edges in this period.
period_members = period2id[p]
assert np.all(period_members == np.unique(period_members))
g_incr = Graph(
node_feature=g_all.node_feature,
edge_feature=g_all.edge_feature[period_members, :],
edge_index=g_all.edge_index[:, period_members],
edge_time=g_all.edge_time[period_members],
directed=g_all.directed,
list_n_type=g_all.list_n_type if is_hetero else None,
list_e_type=g_all.list_e_type if is_hetero else None,
)
if is_hetero and hasattr(g_all, 'node_type'):
g_incr.node_type = g_all.node_type
g_incr.edge_type = g_all.edge_type[period_members]
snapshot_list.append(g_incr)
return snapshot_list
def load_generic(dataset_dir: str,
snapshot: bool = True,
snapshot_freq: str = None,
is_hetero: bool = True,
type_info_loc: str = 'append',
include_node_features: bool = False
) -> Union[deepsnap.graph.Graph,
List[deepsnap.graph.Graph]]:
g_all = load_single_dataset(dataset_dir, is_hetero=is_hetero,
type_info_loc=type_info_loc,
include_node_features=include_node_features)
if not snapshot:
return g_all
else:
snapshot_list = make_graph_snapshot(g_all, snapshot_freq, is_hetero)
num_nodes = g_all.edge_index.max() + 1
for g_snapshot in snapshot_list:
g_snapshot.node_states = [0 for _ in range(cfg.gnn.layers_mp)]
g_snapshot.node_cells = [0 for _ in range(cfg.gnn.layers_mp)]
g_snapshot.node_degree_existing = torch.zeros(num_nodes)
return snapshot_list
def load_generic_dataset(format, name, dataset_dir):
# TODO: change the format name.
if format == 'generic':
dataset_dir = os.path.join(dataset_dir, name)
graphs = load_generic(dataset_dir,
snapshot=cfg.transaction.snapshot,
snapshot_freq=cfg.transaction.snapshot_freq,
is_hetero=cfg.dataset.is_hetero,
type_info_loc=cfg.dataset.type_info_loc,
include_node_features=cfg.dataset.include_node_features)
return graphs
# TODO: change the loader name.
register_loader('roland_generic', load_generic_dataset)
if __name__ == '__main__':
# Example usage.
# TODO: change the directory to your sample dataset.
dataset_dir = '/lfs/hyperturing2/0/tianyudu/bsi/all/data/transactions_svt_2008.tsv'
# a list of homogenous monthly transaction graphs.
graphs = load_generic(dataset_dir,
snapshot=True,
snapshot_freq='M',
is_hetero=False,
type_info_loc='graph_attribute')
# a list of heterogeneous weekly transaction graphs.
hete_graphs = load_generic(dataset_dir,
snapshot=True,
snapshot_freq='W',
is_hetero=True,
type_info_loc='graph_attribute')