-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
76 lines (63 loc) · 2.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import pandas as pd
import torch
import random
import numpy as np
from sentence_transformers import SentenceTransformer
from collections import defaultdict
from sklearn.metrics import recall_score, precision_score, f1_score, accuracy_score
def read_data(filename='data.csv'):
df = pd.read_csv(filename)
records = df.to_dict('records')
return records
def split_train_test(records, train_test_split=0.95):
random.shuffle(records)
train_ids = random.sample([n for n in range(len(records))], k=int(train_test_split*len(records)))
train_records, test_records = [], []
for i, row in enumerate(records):
if i in train_ids:
train_records.append(row)
else:
test_records.append(row)
return train_records, test_records
def label_to_idx(records):
label2idx = defaultdict(int)
label2name = defaultdict(str)
num_labels = 0
for i, record in enumerate(records):
if record['ONET'] not in label2name:
label2name[record['ONET']] = record['ONET_NAME']
label2idx[record['ONET']] = num_labels
num_labels += 1
records[i]['idx'] = label2idx[record['ONET']]
return records, label2idx, label2name
def append_embeddings(records, title_embeddings, body_embeddings, title_body_embeddings):
for i, row in enumerate(title_embeddings):
records[i]['title_embedding'] = title_embeddings[i]
records[i]['body_embedding'] = body_embeddings[i]
records[i]['title_body_embedding'] = title_body_embeddings[i]
return records
def get_labels(records, label2idx):
labels = []
for i, record in enumerate(records):
labels.append(label2idx[record['ONET']])
return labels
def flatten_preds(preds):
flatten = []
for pred in preds:
flatten.append(pred[0])
return flatten
def generate_scores(preds, labels):
averaging = "weighted"
print(f'prec: {precision_score(labels, preds, average=averaging)} '
f'recall: {recall_score(labels, preds, average=averaging)} '
f'f1: {f1_score(labels, preds, average=averaging)} '
f'accuracy: {accuracy_score(labels, preds)}')
def get_metrics(preds, labels):
res_title, res_body, res_title_body = preds
res_title, res_body, res_title_body = flatten_preds(res_title), flatten_preds(res_body), flatten_preds(res_title_body)
print('Generate scores only with title embedding....')
generate_scores(res_title, labels)
print('\nGenerate scores only with body embedding....')
generate_scores(res_body, labels)
print('\nGenerate scores with both title and body embedding.....')
generate_scores(res_title_body, labels)