-
Notifications
You must be signed in to change notification settings - Fork 45
/
tap.py
127 lines (102 loc) · 5.02 KB
/
tap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
from ..utils import *
from ..attack import Attack
import torch.nn as nn
mid_outputs = []
class TAP(Attack):
"""
TAP Attack
'Transferable Adversarial Perturbations (ECCV 2018)'(https://openaccess.thecvf.com/content_ECCV_2018/papers/Bruce_Hou_Transferable_Adversarial_Perturbations_ECCV_2018_paper.pdf)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
beta (float): the relative value for the neighborhood.
num_neighbor (int): the number of samples for estimating the gradient variance.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, beta=1.5, num_scale=20, epoch=10, decay=1.
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/tap/resnet18 --attack tap --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/tap/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, beta=1.5, num_scale=30, random=False, epoch=100, decay=1., targeted=False,
random_start=False, norm='linfty', loss='crossentropy', device=None, attack='TAP', lam=0.005,alpha_tap=0.5,s=3,yita=0.01,learning_rate=0.006,**kwargs):
super().__init__(attack, model_name, epsilon, targeted, random_start, norm, loss, device)
self.alpha = alpha
self.radius = beta * epsilon
self.epoch = epoch
self.decay = decay
self.num_scale = num_scale
self.random = random
self.lam = lam
self.alpha_tap = alpha_tap
self.s = s
self.yita = yita
self.learning_rate = learning_rate
def get_loss(self, logits, label, x, x_adv, original_mids, new_mids):
"""
Overriden for TAP
"""
l1 = nn.CrossEntropyLoss()(logits, label)
l2 = 0.
for i, new_mid in enumerate(new_mids):
a = torch.sign(original_mids[i] ) * torch.pow(torch.abs(original_mids[i]),self.alpha_tap)
b = torch.sign(new_mid) * torch.pow(torch.abs(new_mid),self.alpha_tap)
l2 += self.lam * (a-b).norm() **2
l3 = self.yita * torch.abs(nn.AvgPool2d(self.s)(x-x_adv)).sum()
return -(l1 + l2 + l3) if self.targeted else l1 + l2 + l3
def forward(self, data, label, **kwargs):
"""
The general attack procedure
Arguments:
data: (N, C, H, W) tensor for input images
labels: (N,) tensor for ground-truth labels if untargetd, otherwise targeted labels
"""
if self.targeted:
assert len(label) == 2
label = label[1] # the second element is the targeted label tensor
data = data.clone().detach().to(self.device)
label = label.clone().detach().to(self.device)
# Initialize adversarial perturbation
delta = self.init_delta(data)
global mid_outputs
feature_layers = self.model[1]._modules.keys()
hs = []
def get_mid_output(model_, input_, o):
global mid_outputs
mid_outputs.append(o)
for layer_name in feature_layers:
if isinstance(self.model[1]._modules.get(layer_name), nn.Sequential):
for i in range(len(self.model[1]._modules.get(layer_name))):
hs.append(self.model[1]._modules.get(layer_name)[i].register_forward_hook(get_mid_output))
else:
hs.append(self.model[1]._modules.get(layer_name).register_forward_hook(get_mid_output))
out = self.model(data)
mid_originals = []
for mid_output in mid_outputs:
mid_original = torch.zeros(mid_output.size()).to(self.device)
mid_originals.append(mid_original.copy_(mid_output))
mid_outputs = []
for _ in range(self.epoch):
# Obtain the output
logits = self.get_logits(self.transform(data+delta))
mid_originals_ = []
for mid_original in mid_originals:
mid_originals_.append(mid_original.detach())
# Calculate the loss
loss = self.get_loss(logits, label,data, data+delta,mid_originals_,mid_outputs)
# Calculate the gradients
grad = self.get_grad(loss, delta)
# Update adversarial perturbation
delta = self.update_delta(delta, data, grad, self.alpha)
mid_outputs = []
for h in hs:
h.remove()
return delta.detach()