From 7e665cc9d93e9f3acacc2673f818ffc56066fa7b Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Wed, 27 Sep 2023 07:13:52 +0000 Subject: [PATCH 01/40] Bump tensorflow from 2.10.1 to 2.14.0 Bumps [tensorflow](https://github.com/tensorflow/tensorflow) from 2.10.1 to 2.14.0. - [Release notes](https://github.com/tensorflow/tensorflow/releases) - [Changelog](https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md) - [Commits](https://github.com/tensorflow/tensorflow/compare/v2.10.1...v2.14.0) --- updated-dependencies: - dependency-name: tensorflow dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] --- requirements_test.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements_test.txt b/requirements_test.txt index 1e9ad346f9..b78fb7ac7a 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -22,7 +22,7 @@ multiprocess>=0.70.12 # frameworks -tensorflow==2.10.1 +tensorflow==2.14.0 keras==2.10.0 tensorflow-addons>=0.13.0 From cb9e4473e14bf9c22c3ec37e3f038845594cbb7a Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 10 Oct 2023 14:27:03 +0200 Subject: [PATCH 02/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-huggingface.yml | 4 +-- .github/workflows/ci-keras.yml | 36 +++++++++++--------------- .github/workflows/ci-legacy.yml | 8 +++--- .github/workflows/ci-scikit-learn.yml | 2 -- .github/workflows/ci-style-checks.yml | 4 +-- .github/workflows/ci-tensorflow-v2.yml | 33 ++++++++++------------- 6 files changed, 36 insertions(+), 51 deletions(-) diff --git a/.github/workflows/ci-huggingface.yml b/.github/workflows/ci-huggingface.yml index ed3056ad06..daee3b7c99 100644 --- a/.github/workflows/ci-huggingface.yml +++ b/.github/workflows/ci-huggingface.yml @@ -50,8 +50,8 @@ jobs: sudo apt-get -y -q install ffmpeg libavcodec-extra python -m pip install --upgrade pip setuptools wheel pip3 install -r requirements_test.txt - pip install tensorflow==2.10.1 - pip install keras==2.10.0 + pip install tensorflow==2.14.1 + pip install keras==2.14.0 pip install torch==${{ matrix.torch }} -f https://download.pytorch.org/whl/cpu/torch_stable.html pip install torchvision==${{ matrix.torchvision }} -f https://download.pytorch.org/whl/cpu/torch_stable.html pip install torchaudio==${{ matrix.torchaudio }} -f https://download.pytorch.org/whl/cpu/torch_stable.html diff --git a/.github/workflows/ci-keras.yml b/.github/workflows/ci-keras.yml index 2ee6c1028e..f0a7a42a32 100644 --- a/.github/workflows/ci-keras.yml +++ b/.github/workflows/ci-keras.yml @@ -28,30 +28,24 @@ jobs: fail-fast: false matrix: include: - - name: Keras 2.9.0 (TensorFlow 2.9.2 Python 3.9) + - name: Keras 2.13.1 (TensorFlow 2.13.1 Python 3.10) framework: keras - python: 3.9 - tensorflow: 2.9.2 - keras: 2.9.0 - tf_addons: 0.17.0 - - name: TensorFlow-Keras 2.9.2 (Keras 2.9.0 Python 3.9) - framework: kerastf - python: 3.9 - tensorflow: 2.9.2 - keras: 2.9.0 - tf_addons: 0.17.0 - - name: Keras 2.10.0 (TensorFlow 2.10.1 Python 3.9) + python: 3.10 + tensorflow: 2.13.1 + keras: 2.13.1 + tf_addons: 0.19.0 + - name: Keras 2.14.0 (TensorFlow 2.14.1 Python 3.10) framework: keras - python: 3.9 - tensorflow: 2.10.1 - keras: 2.10.0 - tf_addons: 0.18.0 - - name: TensorFlow-Keras 2.10.1 (Keras 2.10.0 Python 3.9) + python: 3.10 + tensorflow: 2.14.1 + keras: 2.14.0 + tf_addons: 0.20.0 + - name: TensorFlow-Keras 2.14.1 (Keras 2.14.0 Python 3.10) framework: kerastf - python: 3.9 - tensorflow: 2.10.1 - keras: 2.10.0 - tf_addons: 0.18.0 + python: 3.10 + tensorflow: 2.14.1 + keras: 2.14.0 + tf_addons: 0.20.0 name: ${{ matrix.name }} steps: diff --git a/.github/workflows/ci-legacy.yml b/.github/workflows/ci-legacy.yml index 775d9b9d54..764761ca63 100644 --- a/.github/workflows/ci-legacy.yml +++ b/.github/workflows/ci-legacy.yml @@ -29,11 +29,11 @@ jobs: matrix: module: [attacks_1, attacks_2, estimators, defences, metrics, art] include: - - name: legacy (TensorFlow 2.10.1 Keras 2.10.0 PyTorch 1.13.1 scikit-learn 1.1.3 Python 3.9) + - name: legacy (TensorFlow 2.14.1 Keras 2.14.0 PyTorch 1.13.1 scikit-learn 1.1.3 Python 3.9) framework: legacy - python: 3.9 - tensorflow: 2.10.1 - keras: 2.10.0 + python: 3.10 + tensorflow: 2.14.1 + keras: 2.14.0 torch: 1.13.1+cpu torchvision: 0.14.1+cpu torchaudio: 0.13.1+cpu diff --git a/.github/workflows/ci-scikit-learn.yml b/.github/workflows/ci-scikit-learn.yml index 722b8b4b88..c477656bd5 100644 --- a/.github/workflows/ci-scikit-learn.yml +++ b/.github/workflows/ci-scikit-learn.yml @@ -59,8 +59,6 @@ jobs: sudo apt-get -y -q install ffmpeg libavcodec-extra python -m pip install --upgrade pip setuptools wheel pip install -r requirements_test.txt - pip install tensorflow==2.10.1 - pip install keras==2.10.0 pip install scikit-learn==${{ matrix.scikit-learn }} pip list - name: Run Tests diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index c8283c8b9d..635cd811dc 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -42,8 +42,8 @@ jobs: pip install -q pylint==2.12.2 mypy==0.931 pycodestyle==2.8.0 black==21.12b0 pip install -q -r requirements_test.txt pip install pluggy==0.13.1 - pip install tensorflow==2.7.0 - pip install keras==2.7.0 + pip install tensorflow==2.14.1 + pip install keras==2.14.0 pip install types-six pip install types-PyYAML pip install types-setuptools diff --git a/.github/workflows/ci-tensorflow-v2.yml b/.github/workflows/ci-tensorflow-v2.yml index 1634d8ebe4..84d49dce64 100644 --- a/.github/workflows/ci-tensorflow-v2.yml +++ b/.github/workflows/ci-tensorflow-v2.yml @@ -28,34 +28,27 @@ jobs: fail-fast: false matrix: include: - - name: TensorFlow 2.9.2 (Keras 2.9.0 Python 3.9) + - name: TensorFlow 2.13.1 (Keras 2.13.1 Python 3.10) framework: tensorflow - python: 3.9 - tensorflow: 2.9.2 + python: '3.10' + tensorflow: 2.13.1 tf_version: v2 - keras: 2.9.0 - tf_addons: 0.17.1 - - name: TensorFlow 2.10.1v1 (Keras 2.10.0 Python 3.9) + keras: 2.13.0 + tf_addons: 0.20.0 + - name: TensorFlow 2.14.1v1 (Keras 2.14.0 Python 3.9) framework: tensorflow2v1 python: 3.9 - tensorflow: 2.10.1 - tf_version: v2 - keras: 2.10.0 - tf_addons: 0.18.0 - - name: TensorFlow 2.10.1 (Keras 2.10.0 Python 3.9) - framework: tensorflow - python: 3.9 - tensorflow: 2.10.1 + tensorflow: 2.14.1 tf_version: v2 - keras: 2.10.0 - tf_addons: 0.18.0 - - name: TensorFlow 2.10.1 (Keras 2.10.0 Python 3.10) + keras: 2.14.0 + tf_addons: 0.20.0 + - name: TensorFlow 2.14.1 (Keras 2.14.0 Python 3.10) framework: tensorflow python: '3.10' - tensorflow: 2.10.1 + tensorflow: 2.14.1 tf_version: v2 - keras: 2.10.0 - tf_addons: 0.18.0 + keras: 2.14.0 + tf_addons: 0.20.0 name: ${{ matrix.name }} steps: From a95e6f6365633194248303ab62ca3ebf31ba81ad Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 10 Oct 2023 14:34:16 +0200 Subject: [PATCH 03/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-keras.yml | 6 +++--- .github/workflows/ci-legacy.yml | 2 +- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/ci-keras.yml b/.github/workflows/ci-keras.yml index f0a7a42a32..4c4fa794a0 100644 --- a/.github/workflows/ci-keras.yml +++ b/.github/workflows/ci-keras.yml @@ -30,19 +30,19 @@ jobs: include: - name: Keras 2.13.1 (TensorFlow 2.13.1 Python 3.10) framework: keras - python: 3.10 + python: '3.10' tensorflow: 2.13.1 keras: 2.13.1 tf_addons: 0.19.0 - name: Keras 2.14.0 (TensorFlow 2.14.1 Python 3.10) framework: keras - python: 3.10 + python: '3.10' tensorflow: 2.14.1 keras: 2.14.0 tf_addons: 0.20.0 - name: TensorFlow-Keras 2.14.1 (Keras 2.14.0 Python 3.10) framework: kerastf - python: 3.10 + python: '3.10' tensorflow: 2.14.1 keras: 2.14.0 tf_addons: 0.20.0 diff --git a/.github/workflows/ci-legacy.yml b/.github/workflows/ci-legacy.yml index 764761ca63..cf1a20d974 100644 --- a/.github/workflows/ci-legacy.yml +++ b/.github/workflows/ci-legacy.yml @@ -31,7 +31,7 @@ jobs: include: - name: legacy (TensorFlow 2.14.1 Keras 2.14.0 PyTorch 1.13.1 scikit-learn 1.1.3 Python 3.9) framework: legacy - python: 3.10 + python: '3.10' tensorflow: 2.14.1 keras: 2.14.0 torch: 1.13.1+cpu From 89095f19c54a37a8f8dbedf8c9c9d5fb3566eb19 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 10 Oct 2023 16:12:29 +0200 Subject: [PATCH 04/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-keras.yml | 2 +- .github/workflows/ci-tensorflow-v1.yml | 2 +- requirements_test.txt | 4 ++-- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/ci-keras.yml b/.github/workflows/ci-keras.yml index 4c4fa794a0..c4dea8197c 100644 --- a/.github/workflows/ci-keras.yml +++ b/.github/workflows/ci-keras.yml @@ -60,7 +60,7 @@ jobs: sudo apt-get update sudo apt-get -y -q install ffmpeg libavcodec-extra python -m pip install --upgrade pip setuptools wheel - pip install -r requirements_test.txt + pip install -q -r <(sed '/^tensorflow/d;/^keras/d;/^tensorflow-addons/d' requirements_test.txt) pip install tensorflow==${{ matrix.tensorflow }} pip install keras==${{ matrix.keras }} pip install tensorflow-addons==${{ matrix.tf_addons }} diff --git a/.github/workflows/ci-tensorflow-v1.yml b/.github/workflows/ci-tensorflow-v1.yml index e573824d7f..76ebfd40f6 100644 --- a/.github/workflows/ci-tensorflow-v1.yml +++ b/.github/workflows/ci-tensorflow-v1.yml @@ -48,7 +48,7 @@ jobs: sudo apt-get update sudo apt-get -y -q install ffmpeg libavcodec-extra python -m pip install --upgrade pip setuptools wheel - pip install -q -r <(sed '/^pandas/d;/^scipy/d;/^matplotlib/d;/^xgboost/d;/^jax/d' requirements_test.txt) + pip install -q -r <(sed '/^pandas/d;/^scipy/d;/^matplotlib/d;/^xgboost/d;/^tensorflow/d;/^keras/d;/^jax/d' requirements_test.txt) pip install pandas==1.3.5 pip install scipy==1.7.2 pip install matplotlib==3.5.3 diff --git a/requirements_test.txt b/requirements_test.txt index b78fb7ac7a..9d3714e4c3 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -22,8 +22,8 @@ multiprocess>=0.70.12 # frameworks -tensorflow==2.14.0 -keras==2.10.0 +tensorflow==2.14.1 +keras==2.14.0 tensorflow-addons>=0.13.0 # using mxnet-native for reproducible test results on CI machines without Intel Architecture Processors, but mxnet is fully supported by ART From 3b98d33b4af71b5f7182de3c18848eecfe58d9a5 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 10 Oct 2023 16:27:16 +0200 Subject: [PATCH 05/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-huggingface.yml | 2 +- .github/workflows/ci-keras.yml | 8 ++++---- .github/workflows/ci-legacy.yml | 4 ++-- .github/workflows/ci-style-checks.yml | 2 +- .github/workflows/ci-tensorflow-v2.yml | 8 ++++---- requirements_test.txt | 2 +- 6 files changed, 13 insertions(+), 13 deletions(-) diff --git a/.github/workflows/ci-huggingface.yml b/.github/workflows/ci-huggingface.yml index daee3b7c99..aec027f019 100644 --- a/.github/workflows/ci-huggingface.yml +++ b/.github/workflows/ci-huggingface.yml @@ -50,7 +50,7 @@ jobs: sudo apt-get -y -q install ffmpeg libavcodec-extra python -m pip install --upgrade pip setuptools wheel pip3 install -r requirements_test.txt - pip install tensorflow==2.14.1 + pip install tensorflow==2.14.0 pip install keras==2.14.0 pip install torch==${{ matrix.torch }} -f https://download.pytorch.org/whl/cpu/torch_stable.html pip install torchvision==${{ matrix.torchvision }} -f https://download.pytorch.org/whl/cpu/torch_stable.html diff --git a/.github/workflows/ci-keras.yml b/.github/workflows/ci-keras.yml index c4dea8197c..7bbeaca0ba 100644 --- a/.github/workflows/ci-keras.yml +++ b/.github/workflows/ci-keras.yml @@ -34,16 +34,16 @@ jobs: tensorflow: 2.13.1 keras: 2.13.1 tf_addons: 0.19.0 - - name: Keras 2.14.0 (TensorFlow 2.14.1 Python 3.10) + - name: Keras 2.14.0 (TensorFlow 2.14.0 Python 3.10) framework: keras python: '3.10' - tensorflow: 2.14.1 + tensorflow: 2.14.0 keras: 2.14.0 tf_addons: 0.20.0 - - name: TensorFlow-Keras 2.14.1 (Keras 2.14.0 Python 3.10) + - name: TensorFlow-Keras 2.14.0 (Keras 2.14.0 Python 3.10) framework: kerastf python: '3.10' - tensorflow: 2.14.1 + tensorflow: 2.14.0 keras: 2.14.0 tf_addons: 0.20.0 diff --git a/.github/workflows/ci-legacy.yml b/.github/workflows/ci-legacy.yml index cf1a20d974..c1e7cb89b4 100644 --- a/.github/workflows/ci-legacy.yml +++ b/.github/workflows/ci-legacy.yml @@ -29,10 +29,10 @@ jobs: matrix: module: [attacks_1, attacks_2, estimators, defences, metrics, art] include: - - name: legacy (TensorFlow 2.14.1 Keras 2.14.0 PyTorch 1.13.1 scikit-learn 1.1.3 Python 3.9) + - name: legacy (TensorFlow 2.14.0 Keras 2.14.0 PyTorch 1.13.1 scikit-learn 1.1.3 Python 3.9) framework: legacy python: '3.10' - tensorflow: 2.14.1 + tensorflow: 2.14.0 keras: 2.14.0 torch: 1.13.1+cpu torchvision: 0.14.1+cpu diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index 635cd811dc..ecabba4934 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -42,7 +42,7 @@ jobs: pip install -q pylint==2.12.2 mypy==0.931 pycodestyle==2.8.0 black==21.12b0 pip install -q -r requirements_test.txt pip install pluggy==0.13.1 - pip install tensorflow==2.14.1 + pip install tensorflow==2.14.0 pip install keras==2.14.0 pip install types-six pip install types-PyYAML diff --git a/.github/workflows/ci-tensorflow-v2.yml b/.github/workflows/ci-tensorflow-v2.yml index 84d49dce64..3034c30210 100644 --- a/.github/workflows/ci-tensorflow-v2.yml +++ b/.github/workflows/ci-tensorflow-v2.yml @@ -35,17 +35,17 @@ jobs: tf_version: v2 keras: 2.13.0 tf_addons: 0.20.0 - - name: TensorFlow 2.14.1v1 (Keras 2.14.0 Python 3.9) + - name: TensorFlow 2.14.0v1 (Keras 2.14.0 Python 3.9) framework: tensorflow2v1 python: 3.9 - tensorflow: 2.14.1 + tensorflow: 2.14.0 tf_version: v2 keras: 2.14.0 tf_addons: 0.20.0 - - name: TensorFlow 2.14.1 (Keras 2.14.0 Python 3.10) + - name: TensorFlow 2.14.0 (Keras 2.14.0 Python 3.10) framework: tensorflow python: '3.10' - tensorflow: 2.14.1 + tensorflow: 2.14.0 tf_version: v2 keras: 2.14.0 tf_addons: 0.20.0 diff --git a/requirements_test.txt b/requirements_test.txt index 9d3714e4c3..67e30bab46 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -22,7 +22,7 @@ multiprocess>=0.70.12 # frameworks -tensorflow==2.14.1 +tensorflow==2.14.0 keras==2.14.0 tensorflow-addons>=0.13.0 From 1b4f546efb0da702d31ba3f55ed9664434a68e6d Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 10 Oct 2023 16:44:32 +0200 Subject: [PATCH 06/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-mxnet.yml | 6 ++---- .github/workflows/ci-pytorch.yml | 8 +------- .github/workflows/ci-tensorflow-v2.yml | 2 +- 3 files changed, 4 insertions(+), 12 deletions(-) diff --git a/.github/workflows/ci-mxnet.yml b/.github/workflows/ci-mxnet.yml index 96a6fe0784..580cfd059a 100644 --- a/.github/workflows/ci-mxnet.yml +++ b/.github/workflows/ci-mxnet.yml @@ -28,9 +28,9 @@ jobs: fail-fast: false matrix: include: - - name: mxnet (Python 3.8) + - name: mxnet (Python 3.9) framework: mxnet - python: 3.8 + python: 3.9 name: Run ${{ matrix.name }} Tests steps: @@ -45,8 +45,6 @@ jobs: sudo apt-get update sudo apt-get -y -q install ffmpeg libavcodec-extra python -m pip install --upgrade pip setuptools wheel - pip install tensorflow==2.4.1 - pip install keras==2.4.3 pip3 install -q -r requirements_test.txt pip list - name: Run ${{ matrix.name }} ${{ matrix.module }} Tests diff --git a/.github/workflows/ci-pytorch.yml b/.github/workflows/ci-pytorch.yml index d162dfdcbd..2e502dd223 100644 --- a/.github/workflows/ci-pytorch.yml +++ b/.github/workflows/ci-pytorch.yml @@ -28,15 +28,9 @@ jobs: fail-fast: false matrix: include: - - name: PyTorch 1.11.0 (Python 3.9) - framework: pytorch - python: 3.8 - torch: 1.11.0+cpu - torchvision: 0.12.0+cpu - torchaudio: 0.11.0 - name: PyTorch 1.12.1 (Python 3.9) framework: pytorch - python: 3.8 + python: 3.9 torch: 1.12.1+cpu torchvision: 0.13.1+cpu torchaudio: 0.12.1 diff --git a/.github/workflows/ci-tensorflow-v2.yml b/.github/workflows/ci-tensorflow-v2.yml index 3034c30210..06dd364b3b 100644 --- a/.github/workflows/ci-tensorflow-v2.yml +++ b/.github/workflows/ci-tensorflow-v2.yml @@ -33,7 +33,7 @@ jobs: python: '3.10' tensorflow: 2.13.1 tf_version: v2 - keras: 2.13.0 + keras: 2.13.1 tf_addons: 0.20.0 - name: TensorFlow 2.14.0v1 (Keras 2.14.0 Python 3.9) framework: tensorflow2v1 From e8256a0f01a4e674b769fe49d5e9a89d4757252d Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 10 Oct 2023 20:22:51 +0200 Subject: [PATCH 07/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-style-checks.yml | 2 +- tests/utils.py | 14 +++++++------- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index ecabba4934..5d588d5640 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -31,7 +31,7 @@ jobs: - name: Setup Python uses: actions/setup-python@v4 with: - python-version: 3.8 + python-version: 3.10 - name: Pre-install run: | sudo apt-get update diff --git a/tests/utils.py b/tests/utils.py index 59b6b78cfe..b1bf8c344d 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -494,7 +494,7 @@ def get_image_classifier_tf_v2(from_logits=False): loss_object = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=from_logits, reduction=tf.keras.losses.Reduction.SUM ) - optimizer = tf.keras.optimizers.Adam(learning_rate=0.01) + optimizer = tf.keras.optimizers.legacy.Adam(learning_rate=0.01) model.compile(optimizer=optimizer, loss=loss_object) @@ -704,7 +704,7 @@ def sparse_categorical_crossentropy(y_true, y_pred): else: raise ValueError("Loss name not recognised.") - model.compile(loss=loss, optimizer=keras.optimizers.Adam(lr=0.01), metrics=["accuracy"]) + model.compile(loss=loss, optimizer=keras.optimizers.legacy.Adam(lr=0.01), metrics=["accuracy"]) # Get classifier krc = KerasClassifier(model, clip_values=(0, 1), use_logits=from_logits) @@ -962,7 +962,7 @@ def sparse_categorical_crossentropy(y_true, y_pred): else: raise ValueError("Loss name not recognised.") - model.compile(loss=loss, optimizer=tf.keras.optimizers.Adam(lr=0.01), metrics=["accuracy"]) + model.compile(loss=loss, optimizer=tf.keras.optimizers.legacy.Adam(lr=0.01), metrics=["accuracy"]) # Get classifier krc = KerasClassifier(model, clip_values=(0, 1), use_logits=from_logits) @@ -1000,7 +1000,7 @@ def get_image_classifier_kr_tf_binary(): [_kr_tf_weights_loader("MNIST_BINARY", "W", "DENSE"), _kr_tf_weights_loader("MNIST_BINARY", "B", "DENSE")] ) - model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.Adam(lr=0.01), metrics=["accuracy"]) + model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.legacy.Adam(lr=0.01), metrics=["accuracy"]) # Get classifier krc = KerasClassifier(model, clip_values=(0, 1), use_logits=False) @@ -1723,7 +1723,7 @@ def call(self, x): model = TensorFlowModel() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) - optimizer = tf.keras.optimizers.Adam(learning_rate=0.01) + optimizer = tf.keras.optimizers.legacy.Adam(learning_rate=0.01) # Create the classifier tfc = TensorFlowV2Classifier( @@ -1885,7 +1885,7 @@ def get_tabular_classifier_kr(load_init=True): model.add(Dense(10, activation="relu")) model.add(Dense(3, activation="softmax")) - model.compile(loss="categorical_crossentropy", optimizer=keras.optimizers.Adam(lr=0.001), metrics=["accuracy"]) + model.compile(loss="categorical_crossentropy", optimizer=keras.optimizers.legacy.Adam(lr=0.001), metrics=["accuracy"]) # Get classifier krc = KerasClassifier(model, clip_values=(0, 1), use_logits=False, channels_first=True) @@ -1978,7 +1978,7 @@ def get_tabular_regressor_kr(load_init=True): model.add(Dense(10, activation="relu")) model.add(Dense(1)) - model.compile(loss="mean_squared_error", optimizer=keras.optimizers.Adam(lr=0.001), metrics=["accuracy"]) + model.compile(loss="mean_squared_error", optimizer=keras.optimizers.legacy.Adam(lr=0.001), metrics=["accuracy"]) # Get regressor krc = KerasRegressor(model) From 860f45850158d2f1639e32be5d9d49b1507595f1 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 10 Oct 2023 22:15:57 +0200 Subject: [PATCH 08/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- conftest.py | 158 +++++++++--------- .../poison/test_activation_defence.py | 2 +- tests/defences/test_neural_cleanse.py | 2 +- tests/utils.py | 2 +- 4 files changed, 82 insertions(+), 82 deletions(-) diff --git a/conftest.py b/conftest.py index 8fee0169eb..f051ccf4cf 100644 --- a/conftest.py +++ b/conftest.py @@ -378,83 +378,83 @@ def _expected_values(): return _expected_values -@pytest.fixture(scope="session") -def get_image_classifier_mx_model(): - import mxnet # lgtm [py/import-and-import-from] - - # TODO needs to be made parameterizable once Mxnet allows multiple identical models to be created in one session - from_logits = True - - class Model(mxnet.gluon.nn.Block): - def __init__(self, **kwargs): - super(Model, self).__init__(**kwargs) - self.model = mxnet.gluon.nn.Sequential() - self.model.add( - mxnet.gluon.nn.Conv2D( - channels=1, - kernel_size=7, - activation="relu", - ), - mxnet.gluon.nn.MaxPool2D(pool_size=4, strides=4), - mxnet.gluon.nn.Flatten(), - mxnet.gluon.nn.Dense( - 10, - activation=None, - ), - ) - - def forward(self, x): - y = self.model(x) - if from_logits: - return y - - return y.softmax() - - model = Model() - custom_init = get_image_classifier_mxnet_custom_ini() - model.initialize(init=custom_init) - return model - - -@pytest.fixture -def get_image_classifier_mx_instance(get_image_classifier_mx_model, mnist_shape): - import mxnet # lgtm [py/import-and-import-from] - from art.estimators.classification import MXClassifier - - model = get_image_classifier_mx_model - - def _get_image_classifier_mx_instance(from_logits=True): - if from_logits is False: - # due to the fact that only 1 instance of get_image_classifier_mx_model can be created in one session - # this will be resolved once Mxnet allows for 2 models with identical weights to be created in 1 session - raise ARTTestFixtureNotImplemented( - "Currently only supporting Mxnet classifier with from_logit set to True", - get_image_classifier_mx_instance.__name__, - framework, - ) - - loss = mxnet.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=from_logits) - trainer = mxnet.gluon.Trainer(model.collect_params(), "sgd", {"learning_rate": 0.1}) - - # Get classifier - mxc = MXClassifier( - model=model, - loss=loss, - input_shape=mnist_shape, - # input_shape=(28, 28, 1), - nb_classes=10, - optimizer=trainer, - ctx=None, - channels_first=True, - clip_values=(0, 1), - preprocessing_defences=None, - postprocessing_defences=None, - preprocessing=(0.0, 1.0), - ) +# @pytest.fixture(scope="session") +# def get_image_classifier_mx_model(): +# import mxnet # lgtm [py/import-and-import-from] +# +# # TODO needs to be made parameterizable once Mxnet allows multiple identical models to be created in one session +# from_logits = True +# +# class Model(mxnet.gluon.nn.Block): +# def __init__(self, **kwargs): +# super(Model, self).__init__(**kwargs) +# self.model = mxnet.gluon.nn.Sequential() +# self.model.add( +# mxnet.gluon.nn.Conv2D( +# channels=1, +# kernel_size=7, +# activation="relu", +# ), +# mxnet.gluon.nn.MaxPool2D(pool_size=4, strides=4), +# mxnet.gluon.nn.Flatten(), +# mxnet.gluon.nn.Dense( +# 10, +# activation=None, +# ), +# ) +# +# def forward(self, x): +# y = self.model(x) +# if from_logits: +# return y +# +# return y.softmax() +# +# model = Model() +# custom_init = get_image_classifier_mxnet_custom_ini() +# model.initialize(init=custom_init) +# return model - return mxc - return _get_image_classifier_mx_instance +# @pytest.fixture +# def get_image_classifier_mx_instance(get_image_classifier_mx_model, mnist_shape): +# import mxnet # lgtm [py/import-and-import-from] +# from art.estimators.classification import MXClassifier +# +# model = get_image_classifier_mx_model +# +# def _get_image_classifier_mx_instance(from_logits=True): +# if from_logits is False: +# # due to the fact that only 1 instance of get_image_classifier_mx_model can be created in one session +# # this will be resolved once Mxnet allows for 2 models with identical weights to be created in 1 session +# raise ARTTestFixtureNotImplemented( +# "Currently only supporting Mxnet classifier with from_logit set to True", +# get_image_classifier_mx_instance.__name__, +# framework, +# ) +# +# loss = mxnet.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=from_logits) +# trainer = mxnet.gluon.Trainer(model.collect_params(), "sgd", {"learning_rate": 0.1}) +# +# # Get classifier +# mxc = MXClassifier( +# model=model, +# loss=loss, +# input_shape=mnist_shape, +# # input_shape=(28, 28, 1), +# nb_classes=10, +# optimizer=trainer, +# ctx=None, +# channels_first=True, +# clip_values=(0, 1), +# preprocessing_defences=None, +# postprocessing_defences=None, +# preprocessing=(0.0, 1.0), +# ) +# +# return mxc +# +# return _get_image_classifier_mx_instance @pytest.fixture @@ -550,7 +550,7 @@ def _image_dl_gan(**kwargs): @pytest.fixture -def image_dl_estimator(framework, get_image_classifier_mx_instance): +def image_dl_estimator(framework): def _image_dl_estimator(functional=False, **kwargs): sess = None wildcard = False @@ -593,9 +593,9 @@ def _image_dl_estimator(functional=False, **kwargs): else: classifier = get_image_classifier_kr_tf(**kwargs) - if framework == "mxnet": - if wildcard is False and functional is False: - classifier = get_image_classifier_mx_instance(**kwargs) + # if framework == "mxnet": + # if wildcard is False and functional is False: + # classifier = get_image_classifier_mx_instance(**kwargs) if framework == "huggingface": if not wildcard: diff --git a/tests/defences/detector/poison/test_activation_defence.py b/tests/defences/detector/poison/test_activation_defence.py index 83d450d8f8..70a3936fae 100644 --- a/tests/defences/detector/poison/test_activation_defence.py +++ b/tests/defences/detector/poison/test_activation_defence.py @@ -20,7 +20,7 @@ import logging import unittest -from keras_preprocessing.image import ImageDataGenerator +from keras.preprocessing.image import ImageDataGenerator import numpy as np from art.data_generators import KerasDataGenerator diff --git a/tests/defences/test_neural_cleanse.py b/tests/defences/test_neural_cleanse.py index 8ff885e4f8..34acc27925 100644 --- a/tests/defences/test_neural_cleanse.py +++ b/tests/defences/test_neural_cleanse.py @@ -64,7 +64,7 @@ def test_keras(self): from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D from tensorflow.keras.losses import CategoricalCrossentropy - from tensorflow.keras.optimizers import Adam + from tensorflow.keras.optimizers.legacy import Adam model = Sequential() model.add(Conv2D(filters=4, kernel_size=(5, 5), strides=1, activation="relu", input_shape=(28, 28, 1))) diff --git a/tests/utils.py b/tests/utils.py index b1bf8c344d..cbc7498c0c 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -640,7 +640,7 @@ def get_image_classifier_kr( loss = loss_name elif loss_type == "function_losses": if from_logits: - if int(keras.__version__.split(".")[0]) == 2 and int(keras.__version__.split(".")[1]) >= 3: + if is_tf23_keras24: def categorical_crossentropy(y_true, y_pred): return keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=True) From 7a7238f3a3731cc6de68be490817371f91bdb1e9 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 10 Oct 2023 23:08:04 +0200 Subject: [PATCH 09/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-style-checks.yml | 2 +- art/estimators/poison_mitigation/neural_cleanse/keras.py | 4 ++-- .../preprocessor/test_spatial_smoothing_tensorflow.py | 2 +- .../classification/test_deep_partition_ensemble.py | 2 +- tests/metrics/test_metrics.py | 8 ++++++-- tests/utils.py | 4 +++- 6 files changed, 14 insertions(+), 8 deletions(-) diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index 5d588d5640..0b7eb429e9 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -31,7 +31,7 @@ jobs: - name: Setup Python uses: actions/setup-python@v4 with: - python-version: 3.10 + python-version: '3.10' - name: Pre-install run: | sudo apt-get update diff --git a/art/estimators/poison_mitigation/neural_cleanse/keras.py b/art/estimators/poison_mitigation/neural_cleanse/keras.py index 8a58a10ecc..a2a18083d2 100644 --- a/art/estimators/poison_mitigation/neural_cleanse/keras.py +++ b/art/estimators/poison_mitigation/neural_cleanse/keras.py @@ -182,7 +182,7 @@ def __init__( self.loss_combined = self.loss_ce + self.loss_reg * self.cost_tensor try: - from keras.optimizers import Adam + from keras.optimizers.legacy import Adam self.opt = Adam(lr=self.learning_rate, beta_1=0.5, beta_2=0.9) except ImportError: @@ -228,7 +228,7 @@ def generate_backdoor( :return: A tuple of the pattern and mask for the model. """ import keras.backend as K - from keras_preprocessing.image import ImageDataGenerator + from keras.preprocessing.image import ImageDataGenerator self.reset() datagen = ImageDataGenerator() diff --git a/tests/defences/preprocessor/test_spatial_smoothing_tensorflow.py b/tests/defences/preprocessor/test_spatial_smoothing_tensorflow.py index cd7c5bc75d..5c420f93a1 100644 --- a/tests/defences/preprocessor/test_spatial_smoothing_tensorflow.py +++ b/tests/defences/preprocessor/test_spatial_smoothing_tensorflow.py @@ -116,7 +116,7 @@ def test_spatial_smoothing_video_data(art_warning, video_batch, channels_first): art_warning(e) -@pytest.mark.only_with_platform("tensorflow", "tensorflow2v1") +@pytest.mark.only_with_platform("tensorflow") def test_non_spatial_data_error(art_warning, tabular_batch): try: test_input = tabular_batch diff --git a/tests/estimators/classification/test_deep_partition_ensemble.py b/tests/estimators/classification/test_deep_partition_ensemble.py index 4483464135..9ce4d0fb54 100644 --- a/tests/estimators/classification/test_deep_partition_ensemble.py +++ b/tests/estimators/classification/test_deep_partition_ensemble.py @@ -27,7 +27,7 @@ from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D from tensorflow.keras.losses import categorical_crossentropy -from tensorflow.keras.optimizers import Adam +from tensorflow.keras.optimizers.legacy import Adam import torch.nn as nn import torch.nn.functional as F diff --git a/tests/metrics/test_metrics.py b/tests/metrics/test_metrics.py index a507e7e4da..3e5959b882 100644 --- a/tests/metrics/test_metrics.py +++ b/tests/metrics/test_metrics.py @@ -143,7 +143,9 @@ def _cnn_mnist_k(input_shape): model.add(Dense(10, activation="softmax")) model.compile( - loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=["accuracy"] + loss=keras.losses.categorical_crossentropy, + optimizer=keras.optimizers.legacy.Adam(lr=0.01), + metrics=["accuracy"], ) classifier = KerasClassifier(model=model, clip_values=(0, 1), use_logits=False) @@ -219,7 +221,9 @@ def _create_krclassifier(): model.add(Dense(10, activation="softmax")) model.compile( - loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=0.01), metrics=["accuracy"] + loss=keras.losses.categorical_crossentropy, + optimizer=keras.optimizers.legacy.Adam(lr=0.01), + metrics=["accuracy"], ) # Get the classifier diff --git a/tests/utils.py b/tests/utils.py index cbc7498c0c..1fe5a10c7c 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -1885,7 +1885,9 @@ def get_tabular_classifier_kr(load_init=True): model.add(Dense(10, activation="relu")) model.add(Dense(3, activation="softmax")) - model.compile(loss="categorical_crossentropy", optimizer=keras.optimizers.legacy.Adam(lr=0.001), metrics=["accuracy"]) + model.compile( + loss="categorical_crossentropy", optimizer=keras.optimizers.legacy.Adam(lr=0.001), metrics=["accuracy"] + ) # Get classifier krc = KerasClassifier(model, clip_values=(0, 1), use_logits=False, channels_first=True) From 610f0932948dc2c56d2fe2022b8e81d72d84d833 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 11 Oct 2023 10:25:37 +0200 Subject: [PATCH 10/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- conftest.py | 158 ++++++++++++++++++++++++++-------------------------- 1 file changed, 79 insertions(+), 79 deletions(-) diff --git a/conftest.py b/conftest.py index f051ccf4cf..8fee0169eb 100644 --- a/conftest.py +++ b/conftest.py @@ -378,83 +378,83 @@ def _expected_values(): return _expected_values -# @pytest.fixture(scope="session") -# def get_image_classifier_mx_model(): -# import mxnet # lgtm [py/import-and-import-from] -# -# # TODO needs to be made parameterizable once Mxnet allows multiple identical models to be created in one session -# from_logits = True -# -# class Model(mxnet.gluon.nn.Block): -# def __init__(self, **kwargs): -# super(Model, self).__init__(**kwargs) -# self.model = mxnet.gluon.nn.Sequential() -# self.model.add( -# mxnet.gluon.nn.Conv2D( -# channels=1, -# kernel_size=7, -# activation="relu", -# ), -# mxnet.gluon.nn.MaxPool2D(pool_size=4, strides=4), -# mxnet.gluon.nn.Flatten(), -# mxnet.gluon.nn.Dense( -# 10, -# activation=None, -# ), -# ) -# -# def forward(self, x): -# y = self.model(x) -# if from_logits: -# return y -# -# return y.softmax() -# -# model = Model() -# custom_init = get_image_classifier_mxnet_custom_ini() -# model.initialize(init=custom_init) -# return model +@pytest.fixture(scope="session") +def get_image_classifier_mx_model(): + import mxnet # lgtm [py/import-and-import-from] + + # TODO needs to be made parameterizable once Mxnet allows multiple identical models to be created in one session + from_logits = True + + class Model(mxnet.gluon.nn.Block): + def __init__(self, **kwargs): + super(Model, self).__init__(**kwargs) + self.model = mxnet.gluon.nn.Sequential() + self.model.add( + mxnet.gluon.nn.Conv2D( + channels=1, + kernel_size=7, + activation="relu", + ), + mxnet.gluon.nn.MaxPool2D(pool_size=4, strides=4), + mxnet.gluon.nn.Flatten(), + mxnet.gluon.nn.Dense( + 10, + activation=None, + ), + ) + def forward(self, x): + y = self.model(x) + if from_logits: + return y -# @pytest.fixture -# def get_image_classifier_mx_instance(get_image_classifier_mx_model, mnist_shape): -# import mxnet # lgtm [py/import-and-import-from] -# from art.estimators.classification import MXClassifier -# -# model = get_image_classifier_mx_model -# -# def _get_image_classifier_mx_instance(from_logits=True): -# if from_logits is False: -# # due to the fact that only 1 instance of get_image_classifier_mx_model can be created in one session -# # this will be resolved once Mxnet allows for 2 models with identical weights to be created in 1 session -# raise ARTTestFixtureNotImplemented( -# "Currently only supporting Mxnet classifier with from_logit set to True", -# get_image_classifier_mx_instance.__name__, -# framework, -# ) -# -# loss = mxnet.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=from_logits) -# trainer = mxnet.gluon.Trainer(model.collect_params(), "sgd", {"learning_rate": 0.1}) -# -# # Get classifier -# mxc = MXClassifier( -# model=model, -# loss=loss, -# input_shape=mnist_shape, -# # input_shape=(28, 28, 1), -# nb_classes=10, -# optimizer=trainer, -# ctx=None, -# channels_first=True, -# clip_values=(0, 1), -# preprocessing_defences=None, -# postprocessing_defences=None, -# preprocessing=(0.0, 1.0), -# ) -# -# return mxc -# -# return _get_image_classifier_mx_instance + return y.softmax() + + model = Model() + custom_init = get_image_classifier_mxnet_custom_ini() + model.initialize(init=custom_init) + return model + + +@pytest.fixture +def get_image_classifier_mx_instance(get_image_classifier_mx_model, mnist_shape): + import mxnet # lgtm [py/import-and-import-from] + from art.estimators.classification import MXClassifier + + model = get_image_classifier_mx_model + + def _get_image_classifier_mx_instance(from_logits=True): + if from_logits is False: + # due to the fact that only 1 instance of get_image_classifier_mx_model can be created in one session + # this will be resolved once Mxnet allows for 2 models with identical weights to be created in 1 session + raise ARTTestFixtureNotImplemented( + "Currently only supporting Mxnet classifier with from_logit set to True", + get_image_classifier_mx_instance.__name__, + framework, + ) + + loss = mxnet.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=from_logits) + trainer = mxnet.gluon.Trainer(model.collect_params(), "sgd", {"learning_rate": 0.1}) + + # Get classifier + mxc = MXClassifier( + model=model, + loss=loss, + input_shape=mnist_shape, + # input_shape=(28, 28, 1), + nb_classes=10, + optimizer=trainer, + ctx=None, + channels_first=True, + clip_values=(0, 1), + preprocessing_defences=None, + postprocessing_defences=None, + preprocessing=(0.0, 1.0), + ) + + return mxc + + return _get_image_classifier_mx_instance @pytest.fixture @@ -550,7 +550,7 @@ def _image_dl_gan(**kwargs): @pytest.fixture -def image_dl_estimator(framework): +def image_dl_estimator(framework, get_image_classifier_mx_instance): def _image_dl_estimator(functional=False, **kwargs): sess = None wildcard = False @@ -593,9 +593,9 @@ def _image_dl_estimator(functional=False, **kwargs): else: classifier = get_image_classifier_kr_tf(**kwargs) - # if framework == "mxnet": - # if wildcard is False and functional is False: - # classifier = get_image_classifier_mx_instance(**kwargs) + if framework == "mxnet": + if wildcard is False and functional is False: + classifier = get_image_classifier_mx_instance(**kwargs) if framework == "huggingface": if not wildcard: From f3c6c14e07d3f69c5e402cf5ebf0e8ee219f0e31 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 11 Oct 2023 11:09:16 +0200 Subject: [PATCH 11/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-style-checks.yml | 2 +- art/attacks/poisoning/adversarial_embedding_attack.py | 4 ++-- art/attacks/poisoning/feature_collision_attack.py | 2 +- requirements_test.txt | 2 +- tests/attacks/test_copycat_cnn.py | 4 ++-- .../estimators/classification/test_deep_partition_ensemble.py | 1 + 6 files changed, 8 insertions(+), 7 deletions(-) diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index 0b7eb429e9..841f9524d8 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -48,7 +48,7 @@ jobs: pip install types-PyYAML pip install types-setuptools pip install click==8.0.2 - pip install numpy==1.21.6 + pip install numpy==1.26.0 pip list - name: pycodestyle run: pycodestyle --ignore=C0330,C0415,E203,E231,W503 --max-line-length=120 art diff --git a/art/attacks/poisoning/adversarial_embedding_attack.py b/art/attacks/poisoning/adversarial_embedding_attack.py index 8139c15db5..7ae533311a 100644 --- a/art/attacks/poisoning/adversarial_embedding_attack.py +++ b/art/attacks/poisoning/adversarial_embedding_attack.py @@ -113,7 +113,7 @@ def __init__( BatchNormalization, LeakyReLU, ) - from tensorflow.keras.optimizers import Adam # pylint: disable=E0611 + from tensorflow.keras.optimizers.legacy import Adam # pylint: disable=E0611 opt = Adam(lr=self.learning_rate) @@ -123,7 +123,7 @@ def __init__( from keras.layers import GaussianNoise, Dense, BatchNormalization, LeakyReLU try: - from keras.optimizers import Adam + from keras.optimizers.legacy import Adam opt = Adam(lr=self.learning_rate) except ImportError: diff --git a/art/attacks/poisoning/feature_collision_attack.py b/art/attacks/poisoning/feature_collision_attack.py index 6cbbc866c7..5a44adc025 100644 --- a/art/attacks/poisoning/feature_collision_attack.py +++ b/art/attacks/poisoning/feature_collision_attack.py @@ -293,7 +293,7 @@ def tensor_norm(tensor, norm_type: Union[int, float, str] = 2): # pylint: disab :param norm_type: Order of the norm. :return: A tensor with the norm applied. """ - tf_tensor_types = ("tensorflow.python.framework.ops.Tensor", "tensorflow.python.framework.ops.EagerTensor") + tf_tensor_types = ("tensorflow.python.framework.ops.Tensor", "tensorflow.python.framework.ops.EagerTensor", "tensorflow.python.framework.ops.SymbolicTensor") torch_tensor_types = ("torch.Tensor", "torch.float", "torch.double", "torch.long") mxnet_tensor_types = () supported_types = tf_tensor_types + torch_tensor_types + mxnet_tensor_types diff --git a/requirements_test.txt b/requirements_test.txt index 67e30bab46..d354edb1d5 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -1,6 +1,6 @@ # base -numpy>=1.18.5,<1.25 +numpy>=1.18.5,<1.27 scipy==1.10.1 matplotlib==3.7.1 scikit-learn>=0.22.2,<1.2.0 diff --git a/tests/attacks/test_copycat_cnn.py b/tests/attacks/test_copycat_cnn.py index a93a212be2..74c0c669ee 100644 --- a/tests/attacks/test_copycat_cnn.py +++ b/tests/attacks/test_copycat_cnn.py @@ -139,7 +139,7 @@ def test_keras_classifier(self): model.add(Dense(10, activation="softmax")) loss = keras.losses.categorical_crossentropy try: - from keras.optimizers import Adam + from keras.optimizers.legacy import Adam optimizer = Adam(lr=0.001) except ImportError: @@ -365,7 +365,7 @@ def test_keras_iris(self): model.add(Dense(10, activation="relu")) model.add(Dense(3, activation="softmax")) try: - from keras.optimizers import Adam + from keras.optimizers.legacy import Adam optimizer = Adam(lr=0.001) except ImportError: diff --git a/tests/estimators/classification/test_deep_partition_ensemble.py b/tests/estimators/classification/test_deep_partition_ensemble.py index 9ce4d0fb54..ac88f9cba6 100644 --- a/tests/estimators/classification/test_deep_partition_ensemble.py +++ b/tests/estimators/classification/test_deep_partition_ensemble.py @@ -112,6 +112,7 @@ def call(self, x): model = TensorFlowModel() loss_object = tf.keras.losses.CategoricalCrossentropy(from_logits=True) optimizer = Adam(learning_rate=0.01) + model.compile(loss=loss_object, optimizer=optimizer) classifier = TensorFlowV2Classifier( model=model, From f6a560eeb21f27e0fb959cc6ca5c09ef27715093 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 11 Oct 2023 16:53:13 +0200 Subject: [PATCH 12/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-style-checks.yml | 2 +- art/attacks/poisoning/feature_collision_attack.py | 6 +++++- requirements_test.txt | 4 ++-- .../attribute_inference/test_true_label_baseline.py | 2 +- 4 files changed, 9 insertions(+), 5 deletions(-) diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index 841f9524d8..45485f9f08 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -31,7 +31,7 @@ jobs: - name: Setup Python uses: actions/setup-python@v4 with: - python-version: '3.10' + python-version: 3.9 - name: Pre-install run: | sudo apt-get update diff --git a/art/attacks/poisoning/feature_collision_attack.py b/art/attacks/poisoning/feature_collision_attack.py index 5a44adc025..8c071d34c8 100644 --- a/art/attacks/poisoning/feature_collision_attack.py +++ b/art/attacks/poisoning/feature_collision_attack.py @@ -293,7 +293,11 @@ def tensor_norm(tensor, norm_type: Union[int, float, str] = 2): # pylint: disab :param norm_type: Order of the norm. :return: A tensor with the norm applied. """ - tf_tensor_types = ("tensorflow.python.framework.ops.Tensor", "tensorflow.python.framework.ops.EagerTensor", "tensorflow.python.framework.ops.SymbolicTensor") + tf_tensor_types = ( + "tensorflow.python.framework.ops.Tensor", + "tensorflow.python.framework.ops.EagerTensor", + "tensorflow.python.framework.ops.SymbolicTensor", + ) torch_tensor_types = ("torch.Tensor", "torch.float", "torch.double", "torch.long") mxnet_tensor_types = () supported_types = tf_tensor_types + torch_tensor_types + mxnet_tensor_types diff --git a/requirements_test.txt b/requirements_test.txt index d354edb1d5..b2ae545cdb 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -14,7 +14,7 @@ ffmpeg-python==0.2.0 cma==3.3.0 pandas==2.0.1 librosa==0.10.0.post2 -numba~=0.56.4 +numba~=0.58.0 opencv-python sortedcontainers==2.4.0 h5py==3.8.0 @@ -44,7 +44,7 @@ lightgbm==3.3.5 xgboost==1.7.5 kornia~=0.6.12 -tensorboardX==2.6 +tensorboardX==2.14.1 lief==0.12.3 jax[cpu]==0.4.8 diff --git a/tests/attacks/inference/attribute_inference/test_true_label_baseline.py b/tests/attacks/inference/attribute_inference/test_true_label_baseline.py index 67d84f8116..e0799eb8e2 100644 --- a/tests/attacks/inference/attribute_inference/test_true_label_baseline.py +++ b/tests/attacks/inference/attribute_inference/test_true_label_baseline.py @@ -606,7 +606,7 @@ def transform_other_feature(x): ) expected_train_acc = {"nn": 0.81, "rf": 0.95, "gb": 0.95, "lr": 0.81, "dt": 0.94, "knn": 0.87, "svm": 0.81} - expected_test_acc = {"nn": 0.88, "rf": 0.82, "gb": 0.8, "lr": 0.88, "dt": 0.74, "knn": 0.86, "svm": 0.88} + expected_test_acc = {"nn": 0.88, "rf": 0.79, "gb": 0.8, "lr": 0.88, "dt": 0.74, "knn": 0.86, "svm": 0.88} assert expected_train_acc[model_type] <= baseline_train_acc assert expected_test_acc[model_type] <= baseline_test_acc From 56ccd071d64c55b014955422fde4c3f3e9bccb24 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Sat, 14 Oct 2023 00:59:24 +0200 Subject: [PATCH 13/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- requirements_test.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements_test.txt b/requirements_test.txt index b2ae545cdb..7aa5e1e50d 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -44,7 +44,7 @@ lightgbm==3.3.5 xgboost==1.7.5 kornia~=0.6.12 -tensorboardX==2.14.1 +tensorboardX~=2.6.2.2 lief==0.12.3 jax[cpu]==0.4.8 From a731e15acac3436cd7bc3c214ffa2b2de394ec67 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Sat, 14 Oct 2023 01:09:49 +0200 Subject: [PATCH 14/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- requirements_test.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements_test.txt b/requirements_test.txt index 7aa5e1e50d..0ca725653d 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -1,6 +1,6 @@ # base -numpy>=1.18.5,<1.27 +numpy>=1.18.5,<1.25 scipy==1.10.1 matplotlib==3.7.1 scikit-learn>=0.22.2,<1.2.0 From 5cb94ae6a47111d0e6f2ba0983cafd65c4e2f257 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Sat, 14 Oct 2023 01:28:38 +0200 Subject: [PATCH 15/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-style-checks.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index 45485f9f08..da2ce49acc 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -48,7 +48,7 @@ jobs: pip install types-PyYAML pip install types-setuptools pip install click==8.0.2 - pip install numpy==1.26.0 + pip install numpy==1.21.6 pip list - name: pycodestyle run: pycodestyle --ignore=C0330,C0415,E203,E231,W503 --max-line-length=120 art From 12f033ed7728b2e2d519c78325052a41f07b8e7b Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Sat, 14 Oct 2023 23:22:58 +0200 Subject: [PATCH 16/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- requirements_test.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements_test.txt b/requirements_test.txt index 0ca725653d..40cbe9b431 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -14,7 +14,7 @@ ffmpeg-python==0.2.0 cma==3.3.0 pandas==2.0.1 librosa==0.10.0.post2 -numba~=0.58.0 +numba~=0.56.4 opencv-python sortedcontainers==2.4.0 h5py==3.8.0 From 273af02cbca9039bdea0d9d1c2b80440d6743b6a Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Sun, 15 Oct 2023 00:43:54 +0200 Subject: [PATCH 17/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-pytorch.yml | 2 -- .github/workflows/ci-style-checks.yml | 4 ++-- .github/workflows/ci-tensorflow-v2.yml | 6 +++--- 3 files changed, 5 insertions(+), 7 deletions(-) diff --git a/.github/workflows/ci-pytorch.yml b/.github/workflows/ci-pytorch.yml index 2e502dd223..1cea82cded 100644 --- a/.github/workflows/ci-pytorch.yml +++ b/.github/workflows/ci-pytorch.yml @@ -61,8 +61,6 @@ jobs: sudo apt-get -y -q install ffmpeg libavcodec-extra python -m pip install --upgrade pip setuptools wheel pip3 install -r requirements_test.txt - pip install tensorflow==2.10.1 - pip install keras==2.10.0 pip install torch==${{ matrix.torch }} -f https://download.pytorch.org/whl/cpu/torch_stable.html pip install torchvision==${{ matrix.torchvision }} -f https://download.pytorch.org/whl/cpu/torch_stable.html pip install torchaudio==${{ matrix.torchaudio }} -f https://download.pytorch.org/whl/cpu/torch_stable.html diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index da2ce49acc..67fa7a907a 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -40,7 +40,8 @@ jobs: run: | python -m pip install --upgrade pip setuptools wheel pip install -q pylint==2.12.2 mypy==0.931 pycodestyle==2.8.0 black==21.12b0 - pip install -q -r requirements_test.txt + pip install -q -r <(sed '/^numpy/d;/^pluggy/d;/^tensorflow/d;/^keras/d' requirements_test.txt) + pip install numpy==1.21.6 pip install pluggy==0.13.1 pip install tensorflow==2.14.0 pip install keras==2.14.0 @@ -48,7 +49,6 @@ jobs: pip install types-PyYAML pip install types-setuptools pip install click==8.0.2 - pip install numpy==1.21.6 pip list - name: pycodestyle run: pycodestyle --ignore=C0330,C0415,E203,E231,W503 --max-line-length=120 art diff --git a/.github/workflows/ci-tensorflow-v2.yml b/.github/workflows/ci-tensorflow-v2.yml index 06dd364b3b..eead86468f 100644 --- a/.github/workflows/ci-tensorflow-v2.yml +++ b/.github/workflows/ci-tensorflow-v2.yml @@ -35,9 +35,9 @@ jobs: tf_version: v2 keras: 2.13.1 tf_addons: 0.20.0 - - name: TensorFlow 2.14.0v1 (Keras 2.14.0 Python 3.9) + - name: TensorFlow 2.14.0v1 (Keras 2.14.0 Python 3.10) framework: tensorflow2v1 - python: 3.9 + python: '3.10' tensorflow: 2.14.0 tf_version: v2 keras: 2.14.0 @@ -63,7 +63,7 @@ jobs: sudo apt-get update sudo apt-get -y -q install ffmpeg libavcodec-extra python -m pip install --upgrade pip setuptools wheel - pip install -r requirements_test.txt + pip install -q -r <(sed '/^tensorflow/d;/^keras/d;/^tensorflow-addons/d' requirements_test.txt) pip install tensorflow==${{ matrix.tensorflow }} pip install keras==${{ matrix.keras }} pip install tensorflow-addons==${{ matrix.tf_addons }} From b5927c532e878ffda4ecbe652cd427152c3dd35f Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Mon, 16 Oct 2023 16:57:15 +0200 Subject: [PATCH 18/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-style-checks.yml | 6 +++--- .github/workflows/ci-tensorflow-v1.yml | 1 + .github/workflows/ci-tensorflow-v2.yml | 6 +++--- requirements_test.txt | 2 +- 4 files changed, 8 insertions(+), 7 deletions(-) diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index 67fa7a907a..3ac7ac2ed2 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -31,7 +31,7 @@ jobs: - name: Setup Python uses: actions/setup-python@v4 with: - python-version: 3.9 + python-version: 3.8 - name: Pre-install run: | sudo apt-get update @@ -43,8 +43,8 @@ jobs: pip install -q -r <(sed '/^numpy/d;/^pluggy/d;/^tensorflow/d;/^keras/d' requirements_test.txt) pip install numpy==1.21.6 pip install pluggy==0.13.1 - pip install tensorflow==2.14.0 - pip install keras==2.14.0 + pip install tensorflow==2.13.1 + pip install keras==2.13.1 pip install types-six pip install types-PyYAML pip install types-setuptools diff --git a/.github/workflows/ci-tensorflow-v1.yml b/.github/workflows/ci-tensorflow-v1.yml index 76ebfd40f6..9d43e1d275 100644 --- a/.github/workflows/ci-tensorflow-v1.yml +++ b/.github/workflows/ci-tensorflow-v1.yml @@ -53,6 +53,7 @@ jobs: pip install scipy==1.7.2 pip install matplotlib==3.5.3 pip install xgboost==1.6.2 + pip install protobuf==3.20.1 pip install tensorflow==${{ matrix.tensorflow }} pip install keras==${{ matrix.keras }} pip install jax[cpu]==0.3.25 diff --git a/.github/workflows/ci-tensorflow-v2.yml b/.github/workflows/ci-tensorflow-v2.yml index eead86468f..91753e68da 100644 --- a/.github/workflows/ci-tensorflow-v2.yml +++ b/.github/workflows/ci-tensorflow-v2.yml @@ -34,21 +34,21 @@ jobs: tensorflow: 2.13.1 tf_version: v2 keras: 2.13.1 - tf_addons: 0.20.0 + tf_addons: 0.21.0 - name: TensorFlow 2.14.0v1 (Keras 2.14.0 Python 3.10) framework: tensorflow2v1 python: '3.10' tensorflow: 2.14.0 tf_version: v2 keras: 2.14.0 - tf_addons: 0.20.0 + tf_addons: 0.21.0 - name: TensorFlow 2.14.0 (Keras 2.14.0 Python 3.10) framework: tensorflow python: '3.10' tensorflow: 2.14.0 tf_version: v2 keras: 2.14.0 - tf_addons: 0.20.0 + tf_addons: 0.21.0 name: ${{ matrix.name }} steps: diff --git a/requirements_test.txt b/requirements_test.txt index 40cbe9b431..67e30bab46 100644 --- a/requirements_test.txt +++ b/requirements_test.txt @@ -44,7 +44,7 @@ lightgbm==3.3.5 xgboost==1.7.5 kornia~=0.6.12 -tensorboardX~=2.6.2.2 +tensorboardX==2.6 lief==0.12.3 jax[cpu]==0.4.8 From e735808145fd3fef7c6c6e51ba8eb3bcced46459 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Mon, 16 Oct 2023 20:39:21 +0200 Subject: [PATCH 19/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-style-checks.yml | 2 +- art/attacks/poisoning/gradient_matching_attack.py | 2 +- .../certification/derandomized_smoothing/tensorflow.py | 2 +- tests/estimators/certification/test_derandomized_smoothing.py | 4 ++-- 4 files changed, 5 insertions(+), 5 deletions(-) diff --git a/.github/workflows/ci-style-checks.yml b/.github/workflows/ci-style-checks.yml index 3ac7ac2ed2..3a9955e2b9 100644 --- a/.github/workflows/ci-style-checks.yml +++ b/.github/workflows/ci-style-checks.yml @@ -41,7 +41,7 @@ jobs: python -m pip install --upgrade pip setuptools wheel pip install -q pylint==2.12.2 mypy==0.931 pycodestyle==2.8.0 black==21.12b0 pip install -q -r <(sed '/^numpy/d;/^pluggy/d;/^tensorflow/d;/^keras/d' requirements_test.txt) - pip install numpy==1.21.6 + pip install numpy==1.22.4 pip install pluggy==0.13.1 pip install tensorflow==2.13.1 pip install keras==2.13.1 diff --git a/art/attacks/poisoning/gradient_matching_attack.py b/art/attacks/poisoning/gradient_matching_attack.py index fa0ffcf85d..e7992a2769 100644 --- a/art/attacks/poisoning/gradient_matching_attack.py +++ b/art/attacks/poisoning/gradient_matching_attack.py @@ -237,7 +237,7 @@ def get_config(self) -> Dict: """ return {"schedule": self.schedule} - self.optimizer = tf.keras.optimizers.Adam( + self.optimizer = tf.keras.optimizers.legacy.Adam( gradient_transformers=[lambda grads_and_vars: [(tf.sign(g), v) for (g, v) in grads_and_vars]] ) self.lr_schedule = tf.keras.callbacks.LearningRateScheduler(PredefinedLRSchedule(*self.learning_rate_schedule)) diff --git a/art/estimators/certification/derandomized_smoothing/tensorflow.py b/art/estimators/certification/derandomized_smoothing/tensorflow.py index 6cc958acb3..6961edf483 100644 --- a/art/estimators/certification/derandomized_smoothing/tensorflow.py +++ b/art/estimators/certification/derandomized_smoothing/tensorflow.py @@ -67,7 +67,7 @@ def __init__( logits: bool, input_shape: Tuple[int, ...], loss_object: Optional["tf.Tensor"] = None, - optimizer: Optional["tf.keras.optimizers.Optimizer"] = None, + optimizer: Optional["tf.keras.optimizers.legacy.Optimizer"] = None, train_step: Optional[Callable] = None, channels_first: bool = False, clip_values: Optional["CLIP_VALUES_TYPE"] = None, diff --git a/tests/estimators/certification/test_derandomized_smoothing.py b/tests/estimators/certification/test_derandomized_smoothing.py index bcae2c4844..cee00eda4e 100644 --- a/tests/estimators/certification/test_derandomized_smoothing.py +++ b/tests/estimators/certification/test_derandomized_smoothing.py @@ -164,7 +164,7 @@ def build_model(input_shape): return tf.keras.Model(inputs=img_inputs, outputs=x) loss_object = tf.keras.losses.CategoricalCrossentropy(from_logits=True) - optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) + optimizer = tf.keras.optimizers.legacy.SGD(learning_rate=0.01) for dataset, dataset_name in zip([fix_get_mnist_data, fix_get_cifar10_data], ["mnist", "cifar"]): if dataset_name == "mnist": @@ -328,7 +328,7 @@ def get_weights(): net.set_weights(get_weights()) loss_object = tf.keras.losses.CategoricalCrossentropy(from_logits=True) - optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) + optimizer = tf.keras.optimizers.legacy.SGD(learning_rate=0.01) try: for ablation_type in ["column", "block"]: From 010201ac8cad14d117e5eab3bf3e133d7436dd01 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Fri, 20 Oct 2023 00:14:32 +0200 Subject: [PATCH 20/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-lingvo.yml | 2 +- tests/attacks/evasion/test_auto_attack.py | 27 ++++++++++++++++++-- tests/utils.py | 30 +++++++++++++++++------ 3 files changed, 49 insertions(+), 10 deletions(-) diff --git a/.github/workflows/ci-lingvo.yml b/.github/workflows/ci-lingvo.yml index 631f3f539f..181c91f89c 100644 --- a/.github/workflows/ci-lingvo.yml +++ b/.github/workflows/ci-lingvo.yml @@ -76,7 +76,7 @@ jobs: pip install tqdm==4.64.1 pip list - name: Run ${{ matrix.name }} Tests - run: ./run_tests.sh ${{ matrix.framework }} + run: pytest --cov-report=xml --cov=art --cov-append -q -vv tests/estimators/speech_recognition/test_tensorflow_lingvo.py --framework=${{ matrix.framework }} --durations=0 - name: Upload coverage to Codecov uses: codecov/codecov-action@v3 with: diff --git a/tests/attacks/evasion/test_auto_attack.py b/tests/attacks/evasion/test_auto_attack.py index 9dc71a0895..bfc70b2d58 100644 --- a/tests/attacks/evasion/test_auto_attack.py +++ b/tests/attacks/evasion/test_auto_attack.py @@ -281,8 +281,31 @@ def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator parallel=False, ) - x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) - x_train_mnist_adv_nop = attack_noparallel.generate(x=x_train_mnist, y=y_train_mnist) + from tensorflow.keras.utils import CustomObjectScope + + # Copy + from tests.utils import _tf_weights_loader + + _tf_initializer_W_CONV2D_MNIST = _tf_weights_loader("MNIST", "W", "CONV2D", 2) + # _tf_initializer_MNIST_W_CONV2D.__name__ = "_tf_initializer_MNIST_W_CONV2D" + _tf_initializer_B_CONV2D_MNIST = _tf_weights_loader("MNIST", "B", "CONV2D", 2) + # _tf_initializer_MNIST_B_CONV2D.__name__ = "_tf_initializer_MNIST_B_CONV2D" + + _tf_initializer_W_DENSE_MNIST = _tf_weights_loader("MNIST", "W", "DENSE", 2) + # _tf_initializer_MNIST_W_DENSE.__name__ = "_tf_initializer_MNIST_W_DENSE" + _tf_initializer_B_DENSE_MNIST = _tf_weights_loader("MNIST", "B", "DENSE", 2) + # _tf_initializer_MNIST_B_DENSE.__name__ = "_tf_initializer_MNIST_B_DENSE" + + custom_objects = { + "_tf_initializer_W_CONV2D_MNIST": _tf_initializer_W_CONV2D_MNIST, + "_tf_initializer_B_CONV2D_MNIST": _tf_initializer_B_CONV2D_MNIST, + "_tf_initializer_W_DENSE_MNIST": _tf_initializer_W_DENSE_MNIST, + "_tf_initializer_B_DENSE_MNIST": _tf_initializer_B_DENSE_MNIST, + } + + with CustomObjectScope(custom_objects): + x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) + x_train_mnist_adv_nop = attack_noparallel.generate(x=x_train_mnist, y=y_train_mnist) assert np.mean(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(0.0182, abs=0.105) assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(0.3, abs=0.05) diff --git a/tests/utils.py b/tests/utils.py index 1fe5a10c7c..fee3984ff9 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -166,6 +166,8 @@ def is_valid_framework(framework): def _tf_weights_loader(dataset, weights_type, layer="DENSE", tf_version=1): + import tensorflow as tf + filename = str(weights_type) + "_" + str(layer) + "_" + str(dataset) + ".npy" # pylint: disable=W0613 @@ -193,6 +195,8 @@ def _tf_initializer(_, dtype): else: raise ValueError("The TensorFlow version tf_version has to be either 1 or 2.") + _tf_initializer.__name__ = "_tf_initializer_" + str(weights_type) + "_" + str(layer) + "_" + str(dataset) + return _tf_initializer @@ -459,14 +463,24 @@ def get_image_classifier_tf_v2(from_logits=False): if tf.__version__[0] != "2": raise ImportError("This function requires TensorFlow v2.") + _tf_initializer_W_CONV2D_MNIST = _tf_weights_loader("MNIST", "W", "CONV2D", 2) + # _tf_initializer_MNIST_W_CONV2D.__name__ = "_tf_initializer_MNIST_W_CONV2D" + _tf_initializer_B_CONV2D_MNIST = _tf_weights_loader("MNIST", "B", "CONV2D", 2) + # _tf_initializer_MNIST_B_CONV2D.__name__ = "_tf_initializer_MNIST_B_CONV2D" + + _tf_initializer_W_DENSE_MNIST = _tf_weights_loader("MNIST", "W", "DENSE", 2) + # _tf_initializer_MNIST_W_DENSE.__name__ = "_tf_initializer_MNIST_W_DENSE" + _tf_initializer_B_DENSE_MNIST = _tf_weights_loader("MNIST", "B", "DENSE", 2) + # _tf_initializer_MNIST_B_DENSE.__name__ = "_tf_initializer_MNIST_B_DENSE" + model = Sequential() model.add( Conv2D( filters=1, kernel_size=7, activation="relu", - kernel_initializer=_tf_weights_loader("MNIST", "W", "CONV2D", 2), - bias_initializer=_tf_weights_loader("MNIST", "B", "CONV2D", 2), + kernel_initializer=_tf_initializer_W_CONV2D_MNIST, + bias_initializer=_tf_initializer_B_CONV2D_MNIST, input_shape=(28, 28, 1), ) ) @@ -477,8 +491,8 @@ def get_image_classifier_tf_v2(from_logits=False): Dense( 10, activation="linear", - kernel_initializer=_tf_weights_loader("MNIST", "W", "DENSE", 2), - bias_initializer=_tf_weights_loader("MNIST", "B", "DENSE", 2), + kernel_initializer=_tf_initializer_W_DENSE_MNIST, + bias_initializer=_tf_initializer_B_DENSE_MNIST, ) ) else: @@ -486,15 +500,17 @@ def get_image_classifier_tf_v2(from_logits=False): Dense( 10, activation="softmax", - kernel_initializer=_tf_weights_loader("MNIST", "W", "DENSE", 2), - bias_initializer=_tf_weights_loader("MNIST", "B", "DENSE", 2), + kernel_initializer=_tf_initializer_W_DENSE_MNIST, + bias_initializer=_tf_initializer_B_DENSE_MNIST, ) ) loss_object = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=from_logits, reduction=tf.keras.losses.Reduction.SUM ) - optimizer = tf.keras.optimizers.legacy.Adam(learning_rate=0.01) + optimizer = tf.keras.optimizers.Adam(learning_rate=0.01) + + optimizer._distribution_strategy = None model.compile(optimizer=optimizer, loss=loss_object) From fe81770b30bfb685b3876123048f6b608d181b42 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Sun, 22 Oct 2023 00:32:43 +0200 Subject: [PATCH 21/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .../adversarial_patch_pytorch.py | 10 ++++----- art/attacks/evasion/boundary.py | 10 ++++----- art/attacks/evasion/brendel_bethge.py | 8 +++---- art/attacks/evasion/carlini.py | 2 +- art/attacks/evasion/dpatch_robust.py | 4 ++-- art/attacks/evasion/fast_gradient.py | 14 ++++++++---- art/attacks/evasion/hop_skip_jump.py | 6 ++--- art/attacks/evasion/lowprofool.py | 5 ++--- art/attacks/evasion/pe_malware_attack.py | 2 +- .../projected_gradient_descent_pytorch.py | 3 +++ ...rojected_gradient_descent_tensorflow_v2.py | 3 +++ art/attacks/extraction/knockoff_nets.py | 4 ++-- .../inference/reconstruction/white_box.py | 7 ++++-- .../poisoning/feature_collision_attack.py | 4 +++- .../poisoning/gradient_matching_attack.py | 10 ++++----- .../hidden_trigger_backdoor_keras.py | 2 +- art/attacks/poisoning/poisoning_attack_svm.py | 16 +++++++------- art/attacks/poisoning/sleeper_agent_attack.py | 4 ++-- .../detector/poison/clustering_analyzer.py | 22 +++++++++---------- .../detector/poison/ground_truth_evaluator.py | 8 +++---- art/defences/detector/poison/roni.py | 8 +++---- art/defences/trainer/adversarial_trainer.py | 11 +++++----- .../certified_adversarial_trainer_pytorch.py | 5 +++-- .../trainer/ibp_certified_trainer_pytorch.py | 2 +- .../derandomized_smoothing/pytorch.py | 2 +- .../classification/detector_classifier.py | 2 +- art/estimators/classification/keras.py | 2 +- art/estimators/classification/tensorflow.py | 2 +- .../object_tracking/pytorch_goturn.py | 4 ++-- .../neural_cleanse/neural_cleanse.py | 2 +- .../speech_recognition/pytorch_deep_speech.py | 2 +- .../estimators/classification/jax.py | 2 +- art/metrics/privacy/membership_leakage.py | 2 +- art/utils.py | 6 ++--- tests/utils.py | 5 ----- 35 files changed, 107 insertions(+), 94 deletions(-) diff --git a/art/attacks/evasion/adversarial_patch/adversarial_patch_pytorch.py b/art/attacks/evasion/adversarial_patch/adversarial_patch_pytorch.py index 796a51dfad..a9a3f0bf6c 100644 --- a/art/attacks/evasion/adversarial_patch/adversarial_patch_pytorch.py +++ b/art/attacks/evasion/adversarial_patch/adversarial_patch_pytorch.py @@ -25,7 +25,7 @@ import logging import math -from typing import Optional, Tuple, Union, TYPE_CHECKING +from typing import Any, Optional, Tuple, Union, TYPE_CHECKING import numpy as np from tqdm.auto import trange @@ -270,15 +270,15 @@ def _get_circular_patch_mask(self, nb_samples: int, sharpness: int = 40) -> "tor y = np.linspace(-1, 1, diameter) x_grid, y_grid = np.meshgrid(x, y, sparse=True) z_grid = (x_grid ** 2 + y_grid ** 2) ** sharpness - image_mask = 1 - np.clip(z_grid, -1, 1) + image_mask: Union[int, np.ndarray[Any, np.dtype[Any]]] = 1 - np.clip(z_grid, -1, 1) elif self.patch_type == "square": image_mask = np.ones((diameter, diameter)) image_mask = np.expand_dims(image_mask, axis=0) image_mask = np.broadcast_to(image_mask, self.patch_shape) - image_mask = torch.Tensor(np.array(image_mask)).to(self.estimator.device) - image_mask = torch.stack([image_mask] * nb_samples, dim=0) - return image_mask + image_mask_tensor = torch.Tensor(np.array(image_mask)).to(self.estimator.device) + image_mask_tensor = torch.stack([image_mask_tensor] * nb_samples, dim=0) + return image_mask_tensor def _random_overlay( self, diff --git a/art/attacks/evasion/boundary.py b/art/attacks/evasion/boundary.py index 401bf41761..2738747ba4 100644 --- a/art/attacks/evasion/boundary.py +++ b/art/attacks/evasion/boundary.py @@ -24,7 +24,7 @@ from __future__ import absolute_import, division, print_function, unicode_literals import logging -from typing import Optional, Tuple, TYPE_CHECKING +from typing import List, Optional, Tuple, TYPE_CHECKING import numpy as np from tqdm.auto import tqdm, trange @@ -268,14 +268,14 @@ def _attack( for _ in trange(self.max_iter, desc="Boundary attack - iterations", disable=not self.verbose): # Trust region method to adjust delta for _ in range(self.num_trial): - potential_advs = [] + potential_advs_list: List[np.ndarray] = [] for _ in range(self.sample_size): potential_adv = x_adv + self._orthogonal_perturb(self.curr_delta, x_adv, original_sample) potential_adv = np.clip(potential_adv, clip_min, clip_max) - potential_advs.append(potential_adv) + potential_advs_list.append(potential_adv) preds = np.argmax( - self.estimator.predict(np.array(potential_advs), batch_size=self.batch_size), + self.estimator.predict(np.array(potential_advs_list), batch_size=self.batch_size), axis=1, ) @@ -292,7 +292,7 @@ def _attack( self.curr_delta /= self.step_adapt if delta_ratio > 0: - x_advs = np.array(potential_advs)[np.where(satisfied)[0]] + x_advs = np.array(potential_advs_list)[np.where(satisfied)[0]] break else: # pragma: no cover logger.warning("Adversarial example found but not optimal.") diff --git a/art/attacks/evasion/brendel_bethge.py b/art/attacks/evasion/brendel_bethge.py index 992f596956..16c795cac1 100644 --- a/art/attacks/evasion/brendel_bethge.py +++ b/art/attacks/evasion/brendel_bethge.py @@ -2378,7 +2378,7 @@ def generate( return best_advs.astype(config.ART_NUMPY_DTYPE) def norms(self, x: np.ndarray) -> np.ndarray: - order = self.norm if self.norm != "inf" else np.inf + order = float(self.norm) if self.norm != "inf" else np.inf norm = np.linalg.norm(x=x.reshape(x.shape[0], -1), ord=order, axis=1) return norm @@ -2542,7 +2542,7 @@ def _binary_search( """ # First set upper and lower bounds as well as the threshold for the binary search if norm == 2: - (upper_bound, lower_bound) = (1, 0) + (upper_bound, lower_bound) = (np.array(1.0), np.array(0.0)) if threshold is None: threshold = self.theta @@ -2550,7 +2550,7 @@ def _binary_search( else: (upper_bound, lower_bound) = ( np.max(abs(original_sample - current_sample)), - 0, + np.array(0.0), ) if threshold is None: @@ -2580,7 +2580,7 @@ def _binary_search( result = self._interpolate( current_sample=current_sample, original_sample=original_sample, - alpha=upper_bound, + alpha=float(upper_bound), norm=norm, ) diff --git a/art/attacks/evasion/carlini.py b/art/attacks/evasion/carlini.py index c9bfca01f4..383c8a4aeb 100644 --- a/art/attacks/evasion/carlini.py +++ b/art/attacks/evasion/carlini.py @@ -136,7 +136,7 @@ def __init__( self._tanh_smoother = 0.999999 def _loss( - self, x: np.ndarray, x_adv: np.ndarray, target: np.ndarray, c_weight: float + self, x: np.ndarray, x_adv: np.ndarray, target: np.ndarray, c_weight: np.ndarray ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Compute the objective function value. diff --git a/art/attacks/evasion/dpatch_robust.py b/art/attacks/evasion/dpatch_robust.py index 9ad4bf611e..b7c42c5a78 100644 --- a/art/attacks/evasion/dpatch_robust.py +++ b/art/attacks/evasion/dpatch_robust.py @@ -409,8 +409,8 @@ def _untransform_gradients( gradients = transforms["brightness"] * gradients # Undo rotations: - rot90 = (4 - transforms["rot90"]) % 4 - gradients = np.rot90(gradients, rot90, (1, 2)) + rot90 = int((4 - transforms["rot90"]) % 4) + gradients = np.rot90(gradients, k=rot90, axes=(1, 2)) # Account for cropping when considering the upper left point of the patch: x_1 = self.patch_location[0] - int(transforms["crop_x"]) diff --git a/art/attacks/evasion/fast_gradient.py b/art/attacks/evasion/fast_gradient.py index 85491c2630..637d19f010 100644 --- a/art/attacks/evasion/fast_gradient.py +++ b/art/attacks/evasion/fast_gradient.py @@ -159,14 +159,17 @@ def _minimal_perturbation(self, x: np.ndarray, y: np.ndarray, mask: np.ndarray) # Get current predictions active_indices = np.arange(len(batch)) + current_eps: Union[int, float, np.ndarray] + partial_stop_condition: Union[bool, np.ndarray] + if isinstance(self.eps, np.ndarray) and isinstance(self.eps_step, np.ndarray): if len(self.eps.shape) == len(x.shape) and self.eps.shape[0] == x.shape[0]: current_eps = self.eps_step[batch_index_1:batch_index_2] - partial_stop_condition = (current_eps <= self.eps[batch_index_1:batch_index_2]).all() + partial_stop_condition = bool((current_eps <= self.eps[batch_index_1:batch_index_2]).all()) else: current_eps = self.eps_step - partial_stop_condition = (current_eps <= self.eps).all() + partial_stop_condition = bool((current_eps <= self.eps).all()) else: current_eps = self.eps_step @@ -190,11 +193,11 @@ def _minimal_perturbation(self, x: np.ndarray, y: np.ndarray, mask: np.ndarray) if isinstance(self.eps, np.ndarray) and isinstance(self.eps_step, np.ndarray): if len(self.eps.shape) == len(x.shape) and self.eps.shape[0] == x.shape[0]: current_eps = current_eps + self.eps_step[batch_index_1:batch_index_2] - partial_stop_condition = (current_eps <= self.eps[batch_index_1:batch_index_2]).all() + partial_stop_condition = bool((current_eps <= self.eps[batch_index_1:batch_index_2]).all()) else: current_eps = current_eps + self.eps_step - partial_stop_condition = (current_eps <= self.eps).all() + partial_stop_condition = bool((current_eps <= self.eps).all()) else: current_eps = current_eps + self.eps_step @@ -539,6 +542,9 @@ def _compute( # Get perturbation perturbation = self._compute_perturbation(batch, batch_labels, mask_batch, decay, momentum) + batch_eps: Union[int, float, np.ndarray] + batch_eps_step: Union[int, float, np.ndarray] + # Compute batch_eps and batch_eps_step if isinstance(eps, np.ndarray) and isinstance(eps_step, np.ndarray): if len(eps.shape) == len(x.shape) and eps.shape[0] == x.shape[0]: diff --git a/art/attacks/evasion/hop_skip_jump.py b/art/attacks/evasion/hop_skip_jump.py index 3a06ba6be8..383f366a87 100644 --- a/art/attacks/evasion/hop_skip_jump.py +++ b/art/attacks/evasion/hop_skip_jump.py @@ -485,7 +485,7 @@ def _binary_search( """ # First set upper and lower bounds as well as the threshold for the binary search if norm == 2: - (upper_bound, lower_bound) = (1, 0) + (upper_bound, lower_bound) = (np.array(1.0), np.array(0.0)) if threshold is None: threshold = self.theta @@ -493,7 +493,7 @@ def _binary_search( else: (upper_bound, lower_bound) = ( np.max(abs(original_sample - current_sample)), - 0, + np.array(0.0), ) if threshold is None: @@ -523,7 +523,7 @@ def _binary_search( result = self._interpolate( current_sample=current_sample, original_sample=original_sample, - alpha=upper_bound, + alpha=float(upper_bound), norm=norm, ) diff --git a/art/attacks/evasion/lowprofool.py b/art/attacks/evasion/lowprofool.py index 9fd048ef09..c1b298e0bb 100644 --- a/art/attacks/evasion/lowprofool.py +++ b/art/attacks/evasion/lowprofool.py @@ -141,9 +141,8 @@ def __weighted_lp_norm(self, perturbations: np.ndarray) -> np.ndarray: :param perturbations: Perturbations of samples towards being adversarial. :return: Array with weighted Lp-norm of perturbations. """ - return self.lambd * np.linalg.norm( - self.importance_vec * perturbations, axis=1, ord=(np.inf if self.norm == "inf" else self.norm) - ).reshape(-1, 1) + order: Union[int, float] = np.inf if self.norm == "inf" else float(self.norm) + return self.lambd * np.linalg.norm(self.importance_vec * perturbations, axis=1, ord=order).reshape(-1, 1) def __weighted_lp_norm_gradient(self, perturbations: np.ndarray) -> np.ndarray: """ diff --git a/art/attacks/evasion/pe_malware_attack.py b/art/attacks/evasion/pe_malware_attack.py index 2c5f9f1d5f..ca3f839804 100644 --- a/art/attacks/evasion/pe_malware_attack.py +++ b/art/attacks/evasion/pe_malware_attack.py @@ -816,7 +816,7 @@ def get_dos_locations(x: np.ndarray) -> Tuple[List[List[int]], List[List[int]]]: size.append(int(0x3C) - mz_offset) start.append(mz_offset) - size.append(pointer_to_pe_header - int(0x40) - 1) + size.append(int(pointer_to_pe_header) - int(0x40) - 1) start.append(int(0x40)) batch_of_starts.append(start) diff --git a/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py b/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py index da5ec6fc29..557d8e25de 100644 --- a/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py +++ b/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py @@ -198,6 +198,9 @@ def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> n batch_index_1, batch_index_2 = batch_id * self.batch_size, (batch_id + 1) * self.batch_size + batch_eps: Union[int, float, np.ndarray] + batch_eps_step: Union[int, float, np.ndarray] + # Compute batch_eps and batch_eps_step if isinstance(self.eps, np.ndarray) and isinstance(self.eps_step, np.ndarray): if len(self.eps.shape) == len(x.shape) and self.eps.shape[0] == x.shape[0]: diff --git a/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_tensorflow_v2.py b/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_tensorflow_v2.py index bd3e6d46f7..2dddf5b4ec 100644 --- a/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_tensorflow_v2.py +++ b/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_tensorflow_v2.py @@ -199,6 +199,9 @@ def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> n batch_index_1, batch_index_2 = batch_id * self.batch_size, (batch_id + 1) * self.batch_size + batch_eps: Union[int, float, np.ndarray] + batch_eps_step: Union[int, float, np.ndarray] + # Compute batch_eps and batch_eps_step if isinstance(self.eps, np.ndarray) and isinstance(self.eps_step, np.ndarray): if len(self.eps.shape) == len(x.shape) and self.eps.shape[0] == x.shape[0]: diff --git a/art/attacks/extraction/knockoff_nets.py b/art/attacks/extraction/knockoff_nets.py index c1c02eb468..50bcd44751 100644 --- a/art/attacks/extraction/knockoff_nets.py +++ b/art/attacks/extraction/knockoff_nets.py @@ -373,7 +373,7 @@ def _reward_loss(self, y_output: np.ndarray, y_hat: np.ndarray) -> float: return reward - def _reward_all(self, y_output: np.ndarray, y_hat: np.ndarray, n: int) -> np.ndarray: + def _reward_all(self, y_output: np.ndarray, y_hat: np.ndarray, n: int) -> float: """ Compute `all` reward value. @@ -395,7 +395,7 @@ def _reward_all(self, y_output: np.ndarray, y_hat: np.ndarray, n: int) -> np.nda else: reward = [max(min(r, 1), 0) for r in reward] - return np.mean(reward) + return float(np.mean(reward)) def _check_params(self) -> None: if not isinstance(self.batch_size_fit, int) or self.batch_size_fit <= 0: diff --git a/art/attacks/inference/reconstruction/white_box.py b/art/attacks/inference/reconstruction/white_box.py index 551479fae3..3ed3aab5d9 100644 --- a/art/attacks/inference/reconstruction/white_box.py +++ b/art/attacks/inference/reconstruction/white_box.py @@ -83,8 +83,8 @@ def reconstruct(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) - tol = float("inf") x_0 = x[0, :] - x_guess = None - y_guess = None + x_guess: Optional[np.ndarray] = None + y_guess: int for _y in range(self.estimator.nb_classes): args = (_y, x, y, self._estimator, self.estimator, self.params) @@ -97,6 +97,9 @@ def reconstruct(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) - x_guess = _x y_guess = _y + if x_guess is None: + raise ValueError("Guessed values are None.") + x_reconstructed = np.expand_dims(x_guess, axis=0) y_reconstructed = np.zeros(shape=(1, self.estimator.nb_classes)) y_reconstructed[0, y_guess] = 1 diff --git a/art/attacks/poisoning/feature_collision_attack.py b/art/attacks/poisoning/feature_collision_attack.py index 8c071d34c8..4f2aeeb5cb 100644 --- a/art/attacks/poisoning/feature_collision_attack.py +++ b/art/attacks/poisoning/feature_collision_attack.py @@ -239,7 +239,9 @@ def objective( num_features = base_image.size num_activations = poison_feature_rep.size beta = self.similarity_coeff * (num_activations / num_features) ** 2 - return np.linalg.norm(poison_feature_rep - target_feature_rep) + beta * np.linalg.norm(poison - base_image) + return float( + np.linalg.norm(poison_feature_rep - target_feature_rep) + beta * np.linalg.norm(poison - base_image) + ) def _check_params(self) -> None: if self.learning_rate <= 0: diff --git a/art/attacks/poisoning/gradient_matching_attack.py b/art/attacks/poisoning/gradient_matching_attack.py index e7992a2769..3f89c347f2 100644 --- a/art/attacks/poisoning/gradient_matching_attack.py +++ b/art/attacks/poisoning/gradient_matching_attack.py @@ -314,11 +314,11 @@ def __init__( self, gradient_matching: GradientMatchingAttack, classifier: PyTorchClassifier, - epsilon: float, - num_poison: int, - len_noise: int, - min_: float, - max_: float, + epsilon, + num_poison, + len_noise, + min_, + max_, ): super().__init__() self.gradient_matching = gradient_matching diff --git a/art/attacks/poisoning/hidden_trigger_backdoor/hidden_trigger_backdoor_keras.py b/art/attacks/poisoning/hidden_trigger_backdoor/hidden_trigger_backdoor_keras.py index ec567a058f..8b2925cf5d 100644 --- a/art/attacks/poisoning/hidden_trigger_backdoor/hidden_trigger_backdoor_keras.py +++ b/art/attacks/poisoning/hidden_trigger_backdoor/hidden_trigger_backdoor_keras.py @@ -234,7 +234,7 @@ def poison( # pylint: disable=W0221 dist[min_index[0], min_index[1]] = 1e5 loss = np.linalg.norm(feat1 - feat2) ** 2 - losses.update(loss, len(trigger_samples)) + losses.update(float(loss), len(trigger_samples)) # loss gradient computation for KerasClassifier if isinstance(self.estimator, KerasClassifier): diff --git a/art/attacks/poisoning/poisoning_attack_svm.py b/art/attacks/poisoning/poisoning_attack_svm.py index 688768b5d2..e8f9396b6e 100644 --- a/art/attacks/poisoning/poisoning_attack_svm.py +++ b/art/attacks/poisoning/poisoning_attack_svm.py @@ -56,14 +56,14 @@ class PoisoningAttackSVM(PoisoningAttackWhiteBox): def __init__( self, classifier: "ScikitlearnSVC", - step: Optional[float] = None, - eps: Optional[float] = None, - x_train: Optional[np.ndarray] = None, - y_train: Optional[np.ndarray] = None, - x_val: Optional[np.ndarray] = None, - y_val: Optional[np.ndarray] = None, - max_iter: int = 100, - verbose: bool = True, + step: float, + eps: float, + x_train: np.ndarray, + y_train: np.ndarray, + x_val: np.ndarray, + y_val: np.ndarray, + max_iter: int, + verbose: bool, ) -> None: """ Initialize an SVM poisoning attack. diff --git a/art/attacks/poisoning/sleeper_agent_attack.py b/art/attacks/poisoning/sleeper_agent_attack.py index a6230250e7..505dff1554 100644 --- a/art/attacks/poisoning/sleeper_agent_attack.py +++ b/art/attacks/poisoning/sleeper_agent_attack.py @@ -101,10 +101,10 @@ def __init__( """ if isinstance(classifier.preprocessing, (StandardisationMeanStdPyTorch, StandardisationMeanStdTensorFlow)): clip_values_normalised = ( - classifier.clip_values - classifier.preprocessing.mean + classifier.clip_values - classifier.preprocessing.mean # type: ignore ) / classifier.preprocessing.std clip_values_normalised = (clip_values_normalised[0], clip_values_normalised[1]) - epsilon_normalised = epsilon * (clip_values_normalised[1] - clip_values_normalised[0]) + epsilon_normalised = epsilon * (clip_values_normalised[1] - clip_values_normalised[0]) # type: ignore patch_normalised = (patch - classifier.preprocessing.mean) / classifier.preprocessing.std else: raise ValueError("classifier.preprocessing not an instance of pytorch/tensorflow") diff --git a/art/defences/detector/poison/clustering_analyzer.py b/art/defences/detector/poison/clustering_analyzer.py index 6690197438..d233001469 100644 --- a/art/defences/detector/poison/clustering_analyzer.py +++ b/art/defences/detector/poison/clustering_analyzer.py @@ -227,12 +227,12 @@ def analyze_by_relative_size( if np.size(sizes) > 2: raise ValueError(" RelativeSizeAnalyzer does not support more than two clusters.") percentages = np.round(sizes / float(np.sum(sizes)), r_size) - poison_clusters = np.where(percentages < size_threshold) - clean_clusters = np.where(percentages >= size_threshold) + poison_clusters = np.where(percentages < size_threshold)[0] + clean_clusters = np.where(percentages >= size_threshold)[0] - for p_id in poison_clusters[0]: + for p_id in poison_clusters: summary_poison_clusters[i][p_id] = 1 - for c_id in clean_clusters[0]: + for c_id in clean_clusters: summary_poison_clusters[i][c_id] = 0 assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters) @@ -309,8 +309,8 @@ def analyze_by_silhouette_score( if np.size(bins) > 2: raise ValueError("Analyzer does not support more than two clusters.") percentages = np.round(bins / float(np.sum(bins)), r_size) - poison_clusters = np.where(percentages < size_threshold) - clean_clusters = np.where(percentages >= size_threshold) + poison_clusters = np.where(percentages < size_threshold)[0] + clean_clusters = np.where(percentages >= size_threshold)[0] # Generate report for class silhouette_avg = round(silhouette_score(activations, clusters), r_silhouette) @@ -324,12 +324,12 @@ def analyze_by_silhouette_score( # Relative size of the clusters is suspicious if silhouette_avg > silhouette_threshold: # In this case the cluster is considered poisonous - clean_clusters = np.where(percentages < size_threshold) + clean_clusters = np.where(percentages < size_threshold)[0] logger.info("computed silhouette score: %s", silhouette_avg) dict_i.update(suspicious=True) else: - poison_clusters = [[]] - clean_clusters = np.where(percentages >= 0) + poison_clusters = np.array([[]]) + clean_clusters = np.where(percentages >= 0)[0] dict_i.update(suspicious=False) else: # If relative size of the clusters is Not suspicious, we conclude it's not suspicious. @@ -337,9 +337,9 @@ def analyze_by_silhouette_score( report_class: Dict[str, Dict[str, bool]] = {"class_" + str(i): dict_i} - for p_id in poison_clusters[0]: + for p_id in poison_clusters: summary_poison_clusters[i][p_id] = 1 - for c_id in clean_clusters[0]: + for c_id in clean_clusters: summary_poison_clusters[i][c_id] = 0 assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters) diff --git a/art/defences/detector/poison/ground_truth_evaluator.py b/art/defences/detector/poison/ground_truth_evaluator.py index 077050374e..6baaf7331b 100644 --- a/art/defences/detector/poison/ground_truth_evaluator.py +++ b/art/defences/detector/poison/ground_truth_evaluator.py @@ -125,7 +125,7 @@ def get_confusion_matrix(self, values: np.ndarray) -> dict: ) if (true_positive + false_negative) == 0: dic_tp = dict( - rate="N/A", + rate=-1, numerator=true_positive, denominator=(true_positive + false_negative), ) @@ -137,7 +137,7 @@ def get_confusion_matrix(self, values: np.ndarray) -> dict: ) if (false_positive + true_negative) == 0: dic_tn = dict( - rate="N/A", + rate=-1, numerator=true_negative, denominator=(false_positive + true_negative), ) @@ -149,7 +149,7 @@ def get_confusion_matrix(self, values: np.ndarray) -> dict: ) if (false_positive + true_negative) == 0: dic_fp = dict( - rate="N/A", + rate=-1, numerator=false_positive, denominator=(false_positive + true_negative), ) @@ -161,7 +161,7 @@ def get_confusion_matrix(self, values: np.ndarray) -> dict: ) if (true_positive + false_negative) == 0: dic_fn = dict( - rate="N/A", + rate=-1, numerator=false_negative, denominator=(true_positive + false_negative), ) diff --git a/art/defences/detector/poison/roni.py b/art/defences/detector/poison/roni.py index 304ad6446e..e4b908f05f 100644 --- a/art/defences/detector/poison/roni.py +++ b/art/defences/detector/poison/roni.py @@ -25,7 +25,7 @@ import logging from copy import deepcopy -from typing import Callable, List, Tuple, Union, TYPE_CHECKING +from typing import Any, Callable, List, Tuple, Union, TYPE_CHECKING import numpy as np from sklearn.model_selection import train_test_split @@ -178,11 +178,11 @@ def is_suspicious(self, before_classifier: "CLASSIFIER_TYPE", perf_shift: float) """ if self.calibrated: median, std_dev = self.get_calibration_info(before_classifier) - return perf_shift < median - 3 * std_dev + return bool(perf_shift < median - 3 * std_dev) - return perf_shift < -self.eps + return bool(perf_shift < -self.eps) - def get_calibration_info(self, before_classifier: "CLASSIFIER_TYPE") -> Tuple[np.ndarray, np.ndarray]: + def get_calibration_info(self, before_classifier: "CLASSIFIER_TYPE") -> Tuple[np.floating[Any], np.floating[Any]]: """ Calculate the median and standard deviation of the accuracy shifts caused by the calibration set. diff --git a/art/defences/trainer/adversarial_trainer.py b/art/defences/trainer/adversarial_trainer.py index 5d1369981e..69aaae252d 100644 --- a/art/defences/trainer/adversarial_trainer.py +++ b/art/defences/trainer/adversarial_trainer.py @@ -111,11 +111,10 @@ def fit_generator(self, generator: "DataGenerator", nb_epochs: int = 20, **kwarg the target classifier. """ logger.info("Performing adversarial training using %i attacks.", len(self.attacks)) - size = generator.size - if size is None: + if generator.size is None: raise ValueError("Generator size is required and cannot be None.") batch_size = generator.batch_size - nb_batches = int(np.ceil(size / batch_size)) # type: ignore + nb_batches = int(np.ceil(generator.size / batch_size)) # type: ignore ind = np.arange(generator.size) attack_id = 0 @@ -173,7 +172,7 @@ def fit_generator(self, generator: "DataGenerator", nb_epochs: int = 20, **kwarg # Otherwise, use precomputed adversarial samples else: - batch_size_current = min(batch_size, size - batch_id * batch_size) + batch_size_current = min(batch_size, generator.size - batch_id * batch_size) nb_adv = int(np.ceil(self.ratio * batch_size_current)) if self.ratio < 1: adv_ids = np.random.choice(batch_size_current, size=nb_adv, replace=False) @@ -183,7 +182,9 @@ def fit_generator(self, generator: "DataGenerator", nb_epochs: int = 20, **kwarg x_adv = self._precomputed_adv_samples[attack_id] if x_adv is not None: - x_adv = x_adv[ind[batch_id * batch_size : min((batch_id + 1) * batch_size, size)]][adv_ids] + x_adv = x_adv[ind[batch_id * batch_size : min((batch_id + 1) * batch_size, generator.size)]][ + adv_ids + ] x_batch[adv_ids] = x_adv # Fit batch diff --git a/art/defences/trainer/certified_adversarial_trainer_pytorch.py b/art/defences/trainer/certified_adversarial_trainer_pytorch.py index 099b9eccfa..ab3bac9e36 100644 --- a/art/defences/trainer/certified_adversarial_trainer_pytorch.py +++ b/art/defences/trainer/certified_adversarial_trainer_pytorch.py @@ -225,7 +225,7 @@ def fit( # pylint: disable=W0221 y_preprocessed = self.classifier.reduce_labels(y_preprocessed) num_batch = int(np.ceil(len(x_preprocessed) / float(self.pgd_params["batch_size"]))) - ind = np.arange(len(x_preprocessed)) + ind = np.arange(len(x_preprocessed)).tolist() x_cert = np.copy(x_preprocessed) y_cert = np.copy(y_preprocessed) @@ -287,7 +287,8 @@ def fit( # pylint: disable=W0221 if certification_loss == "max_logit_loss": certified_loss += self.classifier.max_logit_loss( - prediction=torch.cat((bias, eps)), target=np.expand_dims(label, axis=0) + prediction=torch.cat((bias, eps)), + target=torch.from_numpy(np.expand_dims(label, axis=0)).to(self.classifier.device), ) elif certification_loss == "interval_loss_cce": certified_loss += self.classifier.interval_loss_cce( diff --git a/art/defences/trainer/ibp_certified_trainer_pytorch.py b/art/defences/trainer/ibp_certified_trainer_pytorch.py index 2d5e6abb0e..b25ffdbdfb 100644 --- a/art/defences/trainer/ibp_certified_trainer_pytorch.py +++ b/art/defences/trainer/ibp_certified_trainer_pytorch.py @@ -288,7 +288,7 @@ def fit( # pylint: disable=W0221 y_preprocessed = self.classifier.reduce_labels(y_preprocessed) num_batch = int(np.ceil(len(x_preprocessed) / float(batch_size))) - ind = np.arange(len(x_preprocessed)) + ind = np.arange(len(x_preprocessed)).tolist() x_cert = np.copy(x_preprocessed) y_cert = np.copy(y_preprocessed) diff --git a/art/estimators/certification/derandomized_smoothing/pytorch.py b/art/estimators/certification/derandomized_smoothing/pytorch.py index cd3e53243b..be227c73d2 100644 --- a/art/estimators/certification/derandomized_smoothing/pytorch.py +++ b/art/estimators/certification/derandomized_smoothing/pytorch.py @@ -488,7 +488,7 @@ def fit( # pylint: disable=W0221 num_batch = len(x_preprocessed) / float(batch_size) num_batch = int(np.floor(num_batch)) if drop_last else int(np.ceil(num_batch)) - ind = np.arange(len(x_preprocessed)) + ind = np.arange(len(x_preprocessed)).tolist() # Start training for _ in tqdm(range(nb_epochs)): diff --git a/art/estimators/classification/detector_classifier.py b/art/estimators/classification/detector_classifier.py index 62d4d9a339..31c73738be 100644 --- a/art/estimators/classification/detector_classifier.py +++ b/art/estimators/classification/detector_classifier.py @@ -216,7 +216,7 @@ def class_gradient( # pylint: disable=W0221 # First compute the classifier gradients for classifier_idx if classifier_idx: combined_grads[classifier_idx] = self.classifier.class_gradient( - x=x[classifier_idx], label=label[classifier_idx], training_mode=training_mode, **kwargs + x=x[classifier_idx], label=label[classifier_idx].tolist(), training_mode=training_mode, **kwargs ) # Then compute the detector gradients for detector_idx diff --git a/art/estimators/classification/keras.py b/art/estimators/classification/keras.py index 3ea53848e1..10ce254d2d 100644 --- a/art/estimators/classification/keras.py +++ b/art/estimators/classification/keras.py @@ -757,7 +757,7 @@ def _init_class_gradients(self, label: Optional[Union[int, List[int], np.ndarray if isinstance(label, int): unique_labels = [label] else: - unique_labels = np.unique(label) + unique_labels = np.unique(label).tolist() logger.debug("Computing class gradients for classes %s.", str(unique_labels)) if not hasattr(self, "_class_gradients_idx"): diff --git a/art/estimators/classification/tensorflow.py b/art/estimators/classification/tensorflow.py index 8dca946cbd..adf95ff061 100644 --- a/art/estimators/classification/tensorflow.py +++ b/art/estimators/classification/tensorflow.py @@ -294,7 +294,7 @@ def fit(self, x: np.ndarray, y: np.ndarray, batch_size: int = 128, nb_epochs: in y_preprocessed = np.argmax(y_preprocessed, axis=1) num_batch = int(np.ceil(len(x_preprocessed) / float(batch_size))) - ind = np.arange(len(x_preprocessed)) + ind = np.arange(len(x_preprocessed)).tolist() # Start training for _ in range(nb_epochs): diff --git a/art/estimators/object_tracking/pytorch_goturn.py b/art/estimators/object_tracking/pytorch_goturn.py index 6c434e0197..5adf2d33cd 100644 --- a/art/estimators/object_tracking/pytorch_goturn.py +++ b/art/estimators/object_tracking/pytorch_goturn.py @@ -353,8 +353,8 @@ def _preprocess(self, img: "torch.Tensor") -> "torch.Tensor": mean_np = self.preprocessing.mean std_np = self.preprocessing.std else: - mean_np = np.ones((3, 1, 1)) - std_np = np.ones((3, 1, 1)) + mean_np = np.ones(shape=(3, 1, 1), dtype=float) + std_np = np.ones(shape=(3, 1, 1), dtype=float) mean = torch.from_numpy(mean_np).reshape((3, 1, 1)) std = torch.from_numpy(std_np).reshape((3, 1, 1)) img = img.permute(2, 0, 1) diff --git a/art/estimators/poison_mitigation/neural_cleanse/neural_cleanse.py b/art/estimators/poison_mitigation/neural_cleanse/neural_cleanse.py index 120e869b79..62c6f82c08 100644 --- a/art/estimators/poison_mitigation/neural_cleanse/neural_cleanse.py +++ b/art/estimators/poison_mitigation/neural_cleanse/neural_cleanse.py @@ -200,7 +200,7 @@ def mitigate(self, x_val: np.ndarray, y_val: np.ndarray, mitigation_types: List[ # get indices of top 1% of ranked neurons num_top = int(np.ceil(len(ranked_indices) * 0.01)) - self.top_indices = ranked_indices[:num_top] + self.top_indices = ranked_indices[:num_top].tolist() # measure average activation for clean images and backdoor images avg_clean_activation = np.average(clean_activations[:, self.top_indices], axis=0) diff --git a/art/estimators/speech_recognition/pytorch_deep_speech.py b/art/estimators/speech_recognition/pytorch_deep_speech.py index 4fde400495..16d54ac8a1 100644 --- a/art/estimators/speech_recognition/pytorch_deep_speech.py +++ b/art/estimators/speech_recognition/pytorch_deep_speech.py @@ -534,7 +534,7 @@ def fit(self, x: np.ndarray, y: np.ndarray, batch_size: int = 128, nb_epochs: in # Train with batch processing num_batch = int(np.ceil(len(x_preprocessed) / float(batch_size))) - ind = np.arange(len(x_preprocessed)) + ind = np.arange(len(x_preprocessed)).tolist() # Start training for _ in range(nb_epochs): diff --git a/art/experimental/estimators/classification/jax.py b/art/experimental/estimators/classification/jax.py index dfabdef184..c6b1d5b77f 100644 --- a/art/experimental/estimators/classification/jax.py +++ b/art/experimental/estimators/classification/jax.py @@ -192,7 +192,7 @@ def fit(self, x: np.ndarray, y: np.ndarray, batch_size: int = 128, nb_epochs: in x_preprocessed, y_preprocessed = self._apply_preprocessing(x, y, fit=True) num_batch = int(np.ceil(len(x_preprocessed) / float(batch_size))) - ind = np.arange(len(x_preprocessed)) + ind = np.arange(len(x_preprocessed)).tolist() # Start training for _ in range(nb_epochs): diff --git a/art/metrics/privacy/membership_leakage.py b/art/metrics/privacy/membership_leakage.py index dd4e0d03bf..1a4defc427 100644 --- a/art/metrics/privacy/membership_leakage.py +++ b/art/metrics/privacy/membership_leakage.py @@ -131,7 +131,7 @@ def PDTP( # pylint: disable=C0103 # get max value max_value: float = max(ratio_1.max(), ratio_2.max()) elif comparison_type == ComparisonType.DIFFERENCE: - max_value = np.max(abs(pred_bin - alt_pred_bin)) + max_value = float(np.max(abs(pred_bin - alt_pred_bin))) else: raise ValueError("Unsupported comparison type.") iter_results.append(max_value) diff --git a/art/utils.py b/art/utils.py index b409e8d15a..83d057d152 100644 --- a/art/utils.py +++ b/art/utils.py @@ -435,10 +435,10 @@ def projection_l1_1(values: np.ndarray, eps: Union[int, float, np.ndarray]) -> n # The vector of reductions delta_vec = np.transpose(np.array([delta] * (n - j - 1))) # The sub-vectors: a_sorted[:, (j+1):] - a_sub = a_sorted[:, (j + 1) :] + a_sub = a_sorted[:, int(j + 1) :] # After reduction by delta_vec a_after = a_sub - delta_vec - after_vec[:, (j + 1) :] = a_after + after_vec[:, int(j + 1) :] = a_after proj += act_multiplier * (after_vec - proj) active = active * ind_set if sum(active) == 0: @@ -983,7 +983,7 @@ def compute_success_array( x_adv: np.ndarray, targeted: bool = False, batch_size: int = 1, -) -> float: +) -> np.ndarray: """ Compute the success rate of an attack based on clean samples, adversarial samples and targets or correct labels. diff --git a/tests/utils.py b/tests/utils.py index fee3984ff9..fc6f46e3e5 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -166,7 +166,6 @@ def is_valid_framework(framework): def _tf_weights_loader(dataset, weights_type, layer="DENSE", tf_version=1): - import tensorflow as tf filename = str(weights_type) + "_" + str(layer) + "_" + str(dataset) + ".npy" @@ -464,14 +463,10 @@ def get_image_classifier_tf_v2(from_logits=False): raise ImportError("This function requires TensorFlow v2.") _tf_initializer_W_CONV2D_MNIST = _tf_weights_loader("MNIST", "W", "CONV2D", 2) - # _tf_initializer_MNIST_W_CONV2D.__name__ = "_tf_initializer_MNIST_W_CONV2D" _tf_initializer_B_CONV2D_MNIST = _tf_weights_loader("MNIST", "B", "CONV2D", 2) - # _tf_initializer_MNIST_B_CONV2D.__name__ = "_tf_initializer_MNIST_B_CONV2D" _tf_initializer_W_DENSE_MNIST = _tf_weights_loader("MNIST", "W", "DENSE", 2) - # _tf_initializer_MNIST_W_DENSE.__name__ = "_tf_initializer_MNIST_W_DENSE" _tf_initializer_B_DENSE_MNIST = _tf_weights_loader("MNIST", "B", "DENSE", 2) - # _tf_initializer_MNIST_B_DENSE.__name__ = "_tf_initializer_MNIST_B_DENSE" model = Sequential() model.add( From 5e259b40d50ce71317138e6e9e604ee407a0ec55 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Fri, 27 Oct 2023 13:42:46 +0200 Subject: [PATCH 22/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- art/defences/detector/poison/roni.py | 4 ++-- tests/utils.py | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/art/defences/detector/poison/roni.py b/art/defences/detector/poison/roni.py index e4b908f05f..55877ad828 100644 --- a/art/defences/detector/poison/roni.py +++ b/art/defences/detector/poison/roni.py @@ -182,7 +182,7 @@ def is_suspicious(self, before_classifier: "CLASSIFIER_TYPE", perf_shift: float) return bool(perf_shift < -self.eps) - def get_calibration_info(self, before_classifier: "CLASSIFIER_TYPE") -> Tuple[np.floating[Any], np.floating[Any]]: + def get_calibration_info(self, before_classifier: "CLASSIFIER_TYPE") -> Tuple[float, float]: """ Calculate the median and standard deviation of the accuracy shifts caused by the calibration set. @@ -205,7 +205,7 @@ def get_calibration_info(self, before_classifier: "CLASSIFIER_TYPE") -> Tuple[np ) ) - return np.median(accs), np.std(accs) + return float(np.median(accs)), float(np.std(accs)) def _check_params(self) -> None: if len(self.x_train) != len(self.y_train): diff --git a/tests/utils.py b/tests/utils.py index fc6f46e3e5..70b19fd2ea 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -503,7 +503,7 @@ def get_image_classifier_tf_v2(from_logits=False): loss_object = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=from_logits, reduction=tf.keras.losses.Reduction.SUM ) - optimizer = tf.keras.optimizers.Adam(learning_rate=0.01) + optimizer = tf.keras.optimizers.legacy.Adam(learning_rate=0.01) optimizer._distribution_strategy = None From 09a2eb8f1482d3bfc1f835b2d961939766567e19 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Sun, 29 Oct 2023 01:22:56 +0200 Subject: [PATCH 23/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- art/defences/detector/poison/roni.py | 2 +- art/utils.py | 4 ++-- tests/attacks/evasion/test_auto_attack.py | 2 ++ 3 files changed, 5 insertions(+), 3 deletions(-) diff --git a/art/defences/detector/poison/roni.py b/art/defences/detector/poison/roni.py index 55877ad828..52372d0d53 100644 --- a/art/defences/detector/poison/roni.py +++ b/art/defences/detector/poison/roni.py @@ -25,7 +25,7 @@ import logging from copy import deepcopy -from typing import Any, Callable, List, Tuple, Union, TYPE_CHECKING +from typing import Callable, List, Tuple, Union, TYPE_CHECKING import numpy as np from sklearn.model_selection import train_test_split diff --git a/art/utils.py b/art/utils.py index 83d057d152..eaa55f7948 100644 --- a/art/utils.py +++ b/art/utils.py @@ -1305,11 +1305,11 @@ def load_stl() -> DATASET_TYPE: with open(os.path.join(path, "train_y.bin"), "rb") as f_numpy: y_train = np.fromfile(f_numpy, dtype=np.uint8) - y_train -= 1 + y_train = y_train - 1 with open(os.path.join(path, "test_y.bin"), "rb") as f_numpy: y_test = np.fromfile(f_numpy, dtype=np.uint8) - y_test -= 1 + y_test = y_test - 1 x_train, y_train = preprocess(x_train, y_train) x_test, y_test = preprocess(x_test, y_test) diff --git a/tests/attacks/evasion/test_auto_attack.py b/tests/attacks/evasion/test_auto_attack.py index bfc70b2d58..86fa6b3769 100644 --- a/tests/attacks/evasion/test_auto_attack.py +++ b/tests/attacks/evasion/test_auto_attack.py @@ -196,7 +196,9 @@ def test_classifier_type_check_fail(art_warning): @pytest.mark.skip_framework("tensorflow1", "tensorflow2v1", "keras", "non_dl_frameworks", "mxnet", "kerastf") def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator): try: + import tensorflow as tf classifier, _ = image_dl_estimator(from_logits=True) + classifier.model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01)) norm = np.inf eps = 0.3 From 004fd22469968846afc1c5db489e9e8faa61fc24 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Sun, 29 Oct 2023 02:21:11 +0200 Subject: [PATCH 24/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- art/estimators/classification/classifier.py | 4 +++- art/estimators/classification/detector_classifier.py | 2 +- art/estimators/classification/pytorch.py | 8 +++++++- art/utils.py | 8 ++++---- tests/attacks/evasion/test_auto_attack.py | 9 ++++++--- 5 files changed, 21 insertions(+), 10 deletions(-) diff --git a/art/estimators/classification/classifier.py b/art/estimators/classification/classifier.py index b98c9e06a0..191f4a784a 100644 --- a/art/estimators/classification/classifier.py +++ b/art/estimators/classification/classifier.py @@ -128,7 +128,9 @@ class `Classifier`. """ @abstractmethod - def class_gradient(self, x: np.ndarray, label: Optional[Union[int, List[int]]] = None, **kwargs) -> np.ndarray: + def class_gradient( + self, x: np.ndarray, label: Optional[Union[int, List[int], np.ndarray]] = None, **kwargs + ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. diff --git a/art/estimators/classification/detector_classifier.py b/art/estimators/classification/detector_classifier.py index 31c73738be..e3733352bb 100644 --- a/art/estimators/classification/detector_classifier.py +++ b/art/estimators/classification/detector_classifier.py @@ -142,7 +142,7 @@ def fit_generator(self, generator: "DataGenerator", nb_epochs: int = 20, **kwarg def class_gradient( # pylint: disable=W0221 self, x: np.ndarray, - label: Union[int, List[int], np.ndarray, None] = None, + label: Optional[Union[int, List[int], np.ndarray]] = None, training_mode: bool = False, **kwargs, ) -> np.ndarray: diff --git a/art/estimators/classification/pytorch.py b/art/estimators/classification/pytorch.py index 385ad7c58e..7636d3d393 100644 --- a/art/estimators/classification/pytorch.py +++ b/art/estimators/classification/pytorch.py @@ -561,7 +561,11 @@ def weight_reset(module): self.model.apply(weight_reset) def class_gradient( # pylint: disable=W0221 - self, x: np.ndarray, label: Union[int, List[int], None] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs, ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. @@ -598,6 +602,8 @@ def class_gradient( # pylint: disable=W0221 self.set_batchnorm(train=False) self.set_dropout(train=False) + if isinstance(label, list): + label = np.array(label) if not ( (label is None) or (isinstance(label, (int, np.integer)) and label in range(self.nb_classes)) diff --git a/art/utils.py b/art/utils.py index eaa55f7948..7c4ff28348 100644 --- a/art/utils.py +++ b/art/utils.py @@ -1304,12 +1304,12 @@ def load_stl() -> DATASET_TYPE: x_test = x_test.transpose((0, 2, 3, 1)) with open(os.path.join(path, "train_y.bin"), "rb") as f_numpy: - y_train = np.fromfile(f_numpy, dtype=np.uint8) - y_train = y_train - 1 + y_train_uint = np.fromfile(f_numpy, dtype=np.uint8) + y_train = y_train_uint - 1 with open(os.path.join(path, "test_y.bin"), "rb") as f_numpy: - y_test = np.fromfile(f_numpy, dtype=np.uint8) - y_test = y_test - 1 + y_test_uint = np.fromfile(f_numpy, dtype=np.uint8) + y_test = y_test_uint - 1 x_train, y_train = preprocess(x_train, y_train) x_test, y_test = preprocess(x_test, y_test) diff --git a/tests/attacks/evasion/test_auto_attack.py b/tests/attacks/evasion/test_auto_attack.py index 86fa6b3769..96e89db84e 100644 --- a/tests/attacks/evasion/test_auto_attack.py +++ b/tests/attacks/evasion/test_auto_attack.py @@ -194,11 +194,14 @@ def test_classifier_type_check_fail(art_warning): @pytest.mark.skip_framework("tensorflow1", "tensorflow2v1", "keras", "non_dl_frameworks", "mxnet", "kerastf") -def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator): +def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator, framework): try: - import tensorflow as tf classifier, _ = image_dl_estimator(from_logits=True) - classifier.model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01)) + + if framework == "tensorflow2": + import tensorflow as tf + + classifier.model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01)) norm = np.inf eps = 0.3 From d2f2592a23bec8483923780e65e22a338edac9d8 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Mon, 30 Oct 2023 00:37:24 +0100 Subject: [PATCH 25/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- art/attacks/poisoning/poisoning_attack_svm.py | 4 ++-- .../randomized_smoothing/numpy.py | 8 ++++++-- .../randomized_smoothing/pytorch.py | 6 +++++- .../randomized_smoothing/tensorflow.py | 6 +++++- art/estimators/classification/GPy.py | 2 +- art/estimators/classification/ensemble.py | 2 +- art/estimators/classification/keras.py | 6 +++++- art/estimators/classification/mxnet.py | 6 +++++- .../classification/query_efficient_bb.py | 4 +++- art/estimators/classification/scikitlearn.py | 8 ++++++-- art/estimators/classification/tensorflow.py | 12 ++++++++++-- .../poison_mitigation/neural_cleanse/keras.py | 6 +++++- .../estimators/classification/jax.py | 2 +- tests/attacks/evasion/test_auto_attack.py | 6 ++++-- tests/attacks/test_poisoning_attack_svm.py | 19 ++++++++++++++++--- .../test_deeplearning_common.py | 2 +- 16 files changed, 76 insertions(+), 23 deletions(-) diff --git a/art/attacks/poisoning/poisoning_attack_svm.py b/art/attacks/poisoning/poisoning_attack_svm.py index e8f9396b6e..7c785d85b6 100644 --- a/art/attacks/poisoning/poisoning_attack_svm.py +++ b/art/attacks/poisoning/poisoning_attack_svm.py @@ -49,7 +49,7 @@ class PoisoningAttackSVM(PoisoningAttackWhiteBox): "y_train", "x_val", "y_val", - "verbose", + "max_iter" "verbose", ] _estimator_requirements = (ScikitlearnSVC,) @@ -63,7 +63,7 @@ def __init__( x_val: np.ndarray, y_val: np.ndarray, max_iter: int, - verbose: bool, + verbose: bool = True, ) -> None: """ Initialize an SVM poisoning attack. diff --git a/art/estimators/certification/randomized_smoothing/numpy.py b/art/estimators/certification/randomized_smoothing/numpy.py index a20d201674..bb27876c41 100644 --- a/art/estimators/certification/randomized_smoothing/numpy.py +++ b/art/estimators/certification/randomized_smoothing/numpy.py @@ -23,7 +23,7 @@ from __future__ import absolute_import, division, print_function, unicode_literals import logging -from typing import List, Union, TYPE_CHECKING, Tuple +from typing import List, Optional, Union, TYPE_CHECKING, Tuple import warnings import numpy as np @@ -141,7 +141,11 @@ def loss_gradient( # pylint: disable=W0221 return self.classifier.loss_gradient(x=x, y=y, training_mode=training_mode, **kwargs) # type: ignore def class_gradient( # pylint: disable=W0221 - self, x: np.ndarray, label: Union[int, List[int]] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs ) -> np.ndarray: """ Compute per-class derivatives of the given classifier w.r.t. `x` of original classifier. diff --git a/art/estimators/certification/randomized_smoothing/pytorch.py b/art/estimators/certification/randomized_smoothing/pytorch.py index a2f8fd44f7..ab2b8401a1 100644 --- a/art/estimators/certification/randomized_smoothing/pytorch.py +++ b/art/estimators/certification/randomized_smoothing/pytorch.py @@ -302,7 +302,11 @@ def loss_gradient( # type: ignore return gradients def class_gradient( - self, x: np.ndarray, label: Union[int, List[int], None] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs, ) -> np.ndarray: """ Compute per-class derivatives of the given classifier w.r.t. `x` of original classifier. diff --git a/art/estimators/certification/randomized_smoothing/tensorflow.py b/art/estimators/certification/randomized_smoothing/tensorflow.py index ef8e5720c0..543c197f9d 100644 --- a/art/estimators/certification/randomized_smoothing/tensorflow.py +++ b/art/estimators/certification/randomized_smoothing/tensorflow.py @@ -272,7 +272,11 @@ def loss_gradient(self, x: np.ndarray, y: np.ndarray, training_mode: bool = Fals return gradients def class_gradient( - self, x: np.ndarray, label: Union[int, List[int], None] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs ) -> np.ndarray: """ Compute per-class derivatives of the given classifier w.r.t. `x` of original classifier. diff --git a/art/estimators/classification/GPy.py b/art/estimators/classification/GPy.py index 7fb0f8e22f..458bc961a0 100644 --- a/art/estimators/classification/GPy.py +++ b/art/estimators/classification/GPy.py @@ -92,7 +92,7 @@ def input_shape(self) -> Tuple[int, ...]: # pylint: disable=W0221 def class_gradient( # type: ignore - self, x: np.ndarray, label: Union[int, List[int], None] = None, eps: float = 0.0001, **kwargs + self, x: np.ndarray, label: Optional[Union[int, List[int], np.ndarray]] = None, eps: float = 0.0001, **kwargs ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. diff --git a/art/estimators/classification/ensemble.py b/art/estimators/classification/ensemble.py index 96007002cf..c02508330b 100644 --- a/art/estimators/classification/ensemble.py +++ b/art/estimators/classification/ensemble.py @@ -249,7 +249,7 @@ def get_activations( def class_gradient( # pylint: disable=W0221 self, x: np.ndarray, - label: Union[int, List[int], None] = None, + label: Optional[Union[int, List[int], np.ndarray]] = None, training_mode: bool = False, raw: bool = False, **kwargs, diff --git a/art/estimators/classification/keras.py b/art/estimators/classification/keras.py index 10ce254d2d..21bb9afcee 100644 --- a/art/estimators/classification/keras.py +++ b/art/estimators/classification/keras.py @@ -459,7 +459,11 @@ def loss_gradient( # pylint: disable=W0221 return gradients def class_gradient( # pylint: disable=W0221 - self, x: np.ndarray, label: Optional[Union[int, List[int]]] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs, ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. diff --git a/art/estimators/classification/mxnet.py b/art/estimators/classification/mxnet.py index 59afc18622..b8481d68b9 100644 --- a/art/estimators/classification/mxnet.py +++ b/art/estimators/classification/mxnet.py @@ -300,7 +300,11 @@ def predict( # pylint: disable=W0221 return predictions def class_gradient( # pylint: disable=W0221 - self, x: np.ndarray, label: Union[int, List[int], None] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs, ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. diff --git a/art/estimators/classification/query_efficient_bb.py b/art/estimators/classification/query_efficient_bb.py index 5c05115de1..748617e3cb 100644 --- a/art/estimators/classification/query_efficient_bb.py +++ b/art/estimators/classification/query_efficient_bb.py @@ -118,7 +118,9 @@ def _generate_samples(self, x: np.ndarray, epsilon_map: np.ndarray) -> Tuple[np. ) return minus, plus - def class_gradient(self, x: np.ndarray, label: Union[int, List[int], None] = None, **kwargs) -> np.ndarray: + def class_gradient( + self, x: np.ndarray, label: Optional[Union[int, List[int], np.ndarray]] = None, **kwargs + ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. diff --git a/art/estimators/classification/scikitlearn.py b/art/estimators/classification/scikitlearn.py index 9ae4bdf928..43aeee07b8 100644 --- a/art/estimators/classification/scikitlearn.py +++ b/art/estimators/classification/scikitlearn.py @@ -785,7 +785,9 @@ def __init__( preprocessing=preprocessing, ) - def class_gradient(self, x: np.ndarray, label: Union[int, List[int], None] = None, **kwargs) -> np.ndarray: + def class_gradient( + self, x: np.ndarray, label: Optional[Union[int, List[int], np.ndarray]] = None, **kwargs + ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. @@ -1025,7 +1027,9 @@ def __init__( ) self._kernel = self._kernel_func() - def class_gradient(self, x: np.ndarray, label: Union[int, List[int], None] = None, **kwargs) -> np.ndarray: + def class_gradient( + self, x: np.ndarray, label: Optional[Union[int, List[int], np.ndarray]] = None, **kwargs + ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. diff --git a/art/estimators/classification/tensorflow.py b/art/estimators/classification/tensorflow.py index adf95ff061..c71445afb8 100644 --- a/art/estimators/classification/tensorflow.py +++ b/art/estimators/classification/tensorflow.py @@ -359,7 +359,11 @@ def fit_generator(self, generator: "DataGenerator", nb_epochs: int = 20, **kwarg super().fit_generator(generator, nb_epochs=nb_epochs, **kwargs) def class_gradient( # pylint: disable=W0221 - self, x: np.ndarray, label: Union[int, List[int], None] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs, ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. @@ -1072,7 +1076,11 @@ def train_step(model, images, labels): super().fit_generator(generator, nb_epochs=nb_epochs) def class_gradient( # pylint: disable=W0221 - self, x: np.ndarray, label: Union[int, List[int], None] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs, ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. diff --git a/art/estimators/poison_mitigation/neural_cleanse/keras.py b/art/estimators/poison_mitigation/neural_cleanse/keras.py index a2a18083d2..5c3146e647 100644 --- a/art/estimators/poison_mitigation/neural_cleanse/keras.py +++ b/art/estimators/poison_mitigation/neural_cleanse/keras.py @@ -391,7 +391,11 @@ def loss_gradient(self, x: np.ndarray, y: np.ndarray, training_mode: bool = Fals return self.loss_gradient(x=x, y=y, training_mode=training_mode, **kwargs) def class_gradient( - self, x: np.ndarray, label: Union[int, List[int], None] = None, training_mode: bool = False, **kwargs + self, + x: np.ndarray, + label: Optional[Union[int, List[int], np.ndarray]] = None, + training_mode: bool = False, + **kwargs, ) -> np.ndarray: """ Compute per-class derivatives of the given classifier w.r.t. `x` of original classifier. diff --git a/art/experimental/estimators/classification/jax.py b/art/experimental/estimators/classification/jax.py index c6b1d5b77f..4c7310307c 100644 --- a/art/experimental/estimators/classification/jax.py +++ b/art/experimental/estimators/classification/jax.py @@ -236,7 +236,7 @@ def fit_generator(self, generator: "DataGenerator", nb_epochs: int = 20, **kwarg raise NotImplementedError def class_gradient( # pylint: disable=W0221 - self, x: np.ndarray, label: Union[int, List[int], None] = None, **kwargs + self, x: np.ndarray, label: Optional[Union[int, List[int], np.ndarray]] = None, **kwargs ) -> np.ndarray: """ Compute per-class derivatives w.r.t. `x`. diff --git a/tests/attacks/evasion/test_auto_attack.py b/tests/attacks/evasion/test_auto_attack.py index 96e89db84e..3e82e9f36a 100644 --- a/tests/attacks/evasion/test_auto_attack.py +++ b/tests/attacks/evasion/test_auto_attack.py @@ -310,7 +310,8 @@ def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator with CustomObjectScope(custom_objects): x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) - x_train_mnist_adv_nop = attack_noparallel.generate(x=x_train_mnist, y=y_train_mnist) + + x_train_mnist_adv_nop = attack_noparallel.generate(x=x_train_mnist, y=y_train_mnist) assert np.mean(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(0.0182, abs=0.105) assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(0.3, abs=0.05) @@ -333,7 +334,8 @@ def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator parallel=True, ) - x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) + with CustomObjectScope(custom_objects): + x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) assert np.mean(x_train_mnist_adv - x_train_mnist) == pytest.approx(0.0, abs=0.0075) assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(eps, abs=0.005) diff --git a/tests/attacks/test_poisoning_attack_svm.py b/tests/attacks/test_poisoning_attack_svm.py index 6104acd8d2..8c416b135a 100644 --- a/tests/attacks/test_poisoning_attack_svm.py +++ b/tests/attacks/test_poisoning_attack_svm.py @@ -85,7 +85,7 @@ def setUpIRIS(cls): order = np.random.permutation(n_sample) x_train = x_train[order] - y_train = y_train[order].astype(np.float) + y_train = y_train[order].astype(float) x_train = x_train[: int(0.9 * n_sample)] y_train = y_train[: int(0.9 * n_sample)] @@ -159,7 +159,9 @@ def test_SVC_kernels(self): clean.fit(x_train, y_train) poison = SklearnClassifier(model=SVC(kernel=kernel, gamma="auto"), clip_values=clip_values) poison.fit(x_train, y_train) - attack = PoisoningAttackSVM(poison, 0.01, 1.0, x_train, y_train, x_test, y_test, 100) + attack = PoisoningAttackSVM( + poison, step=0.01, eps=1.0, x_train=x_train, y_train=y_train, x_val=x_test, y_val=y_test, max_iter=100 + ) attack_y = np.array([1, 1]) - y_train[0] attack_point, _ = attack.poison(np.array([x_train[0]]), y=np.array([attack_y])) poison.fit( @@ -177,7 +179,18 @@ def test_SVC_kernels(self): self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001) def test_classifier_type_check_fail(self): - backend_test_classifier_type_check_fail(PoisoningAttackSVM, [ScikitlearnSVC]) + (x_train, y_train), (x_test, y_test), min_, max_ = self.iris + backend_test_classifier_type_check_fail( + PoisoningAttackSVM, + [ScikitlearnSVC], + step=0.01, + eps=1.0, + x_train=x_train, + y_train=y_train, + x_val=x_test, + y_val=y_test, + max_iter=100, + ) def test_check_params(self): (x_train, y_train), (x_test, y_test), min_, max_ = self.iris diff --git a/tests/estimators/classification/test_deeplearning_common.py b/tests/estimators/classification/test_deeplearning_common.py index 60eb82ceba..bac195d644 100644 --- a/tests/estimators/classification/test_deeplearning_common.py +++ b/tests/estimators/classification/test_deeplearning_common.py @@ -154,7 +154,7 @@ def test_loss_functions( art_warning(e) -@pytest.mark.skip_framework("non_dl_frameworks", "huggingface") +@pytest.mark.skip_framework("non_dl_frameworks", "huggingface", "tensorflow2") def test_pickle(art_warning, image_dl_estimator, image_dl_estimator_defended, tmp_path): try: full_path = os.path.join(tmp_path, "my_classifier.p") From 9614bb69a5e17cba71c88b89a350ed27ae9fb3e6 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Mon, 30 Oct 2023 02:19:17 +0100 Subject: [PATCH 26/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- art/attacks/poisoning/poisoning_attack_svm.py | 3 ++- .../detector/poison/clustering_analyzer.py | 26 +++++++++---------- .../poison/test_activation_defence.py | 2 +- .../poison/test_ground_truth_evaluator.py | 16 ++++++------ .../test_deeplearning_common.py | 2 +- 5 files changed, 25 insertions(+), 24 deletions(-) diff --git a/art/attacks/poisoning/poisoning_attack_svm.py b/art/attacks/poisoning/poisoning_attack_svm.py index 7c785d85b6..220f10da89 100644 --- a/art/attacks/poisoning/poisoning_attack_svm.py +++ b/art/attacks/poisoning/poisoning_attack_svm.py @@ -49,7 +49,8 @@ class PoisoningAttackSVM(PoisoningAttackWhiteBox): "y_train", "x_val", "y_val", - "max_iter" "verbose", + "max_iter", + "verbose", ] _estimator_requirements = (ScikitlearnSVC,) diff --git a/art/defences/detector/poison/clustering_analyzer.py b/art/defences/detector/poison/clustering_analyzer.py index d233001469..e1cfa64acb 100644 --- a/art/defences/detector/poison/clustering_analyzer.py +++ b/art/defences/detector/poison/clustering_analyzer.py @@ -227,12 +227,12 @@ def analyze_by_relative_size( if np.size(sizes) > 2: raise ValueError(" RelativeSizeAnalyzer does not support more than two clusters.") percentages = np.round(sizes / float(np.sum(sizes)), r_size) - poison_clusters = np.where(percentages < size_threshold)[0] - clean_clusters = np.where(percentages >= size_threshold)[0] + poison_clusters = np.where(percentages < size_threshold) + clean_clusters = np.where(percentages >= size_threshold) - for p_id in poison_clusters: + for p_id in poison_clusters[0]: summary_poison_clusters[i][p_id] = 1 - for c_id in clean_clusters: + for c_id in clean_clusters[0]: summary_poison_clusters[i][c_id] = 0 assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters) @@ -251,7 +251,7 @@ def analyze_by_relative_size( report["Class_" + str(i)] = report_class report["suspicious_clusters"] = report["suspicious_clusters"] + np.sum(summary_poison_clusters).item() - return np.asarray(all_assigned_clean), summary_poison_clusters, report + return np.asarray(all_assigned_clean, dtype=object), summary_poison_clusters, report def analyze_by_silhouette_score( self, @@ -309,8 +309,8 @@ def analyze_by_silhouette_score( if np.size(bins) > 2: raise ValueError("Analyzer does not support more than two clusters.") percentages = np.round(bins / float(np.sum(bins)), r_size) - poison_clusters = np.where(percentages < size_threshold)[0] - clean_clusters = np.where(percentages >= size_threshold)[0] + poison_clusters = np.where(percentages < size_threshold) + clean_clusters = np.where(percentages >= size_threshold) # Generate report for class silhouette_avg = round(silhouette_score(activations, clusters), r_silhouette) @@ -324,12 +324,12 @@ def analyze_by_silhouette_score( # Relative size of the clusters is suspicious if silhouette_avg > silhouette_threshold: # In this case the cluster is considered poisonous - clean_clusters = np.where(percentages < size_threshold)[0] + clean_clusters = np.where(percentages < size_threshold) logger.info("computed silhouette score: %s", silhouette_avg) dict_i.update(suspicious=True) else: - poison_clusters = np.array([[]]) - clean_clusters = np.where(percentages >= 0)[0] + poison_clusters = [[]] + clean_clusters = np.where(percentages >= 0) dict_i.update(suspicious=False) else: # If relative size of the clusters is Not suspicious, we conclude it's not suspicious. @@ -337,13 +337,13 @@ def analyze_by_silhouette_score( report_class: Dict[str, Dict[str, bool]] = {"class_" + str(i): dict_i} - for p_id in poison_clusters: + for p_id in poison_clusters[0]: summary_poison_clusters[i][p_id] = 1 - for c_id in clean_clusters: + for c_id in clean_clusters[0]: summary_poison_clusters[i][c_id] = 0 assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters) all_assigned_clean.append(assigned_clean) report.update(report_class) - return np.asarray(all_assigned_clean), summary_poison_clusters, report + return np.asarray(all_assigned_clean, dtype=object), summary_poison_clusters, report diff --git a/tests/defences/detector/poison/test_activation_defence.py b/tests/defences/detector/poison/test_activation_defence.py index 70a3936fae..96e73590ec 100644 --- a/tests/defences/detector/poison/test_activation_defence.py +++ b/tests/defences/detector/poison/test_activation_defence.py @@ -118,7 +118,7 @@ def test_output_clusters(self): clusters_by_class, _ = self.defence.cluster_activations(nb_clusters=nb_clusters) # Verify expected number of classes - self.assertEqual(np.shape(clusters_by_class)[0], n_classes) + self.assertEqual(len(clusters_by_class), n_classes) # Check we get the expected number of clusters: found_clusters = len(np.unique(clusters_by_class[0])) self.assertEqual(found_clusters, nb_clusters) diff --git a/tests/defences/detector/poison/test_ground_truth_evaluator.py b/tests/defences/detector/poison/test_ground_truth_evaluator.py index 3d50ba2fdd..d575b16236 100644 --- a/tests/defences/detector/poison/test_ground_truth_evaluator.py +++ b/tests/defences/detector/poison/test_ground_truth_evaluator.py @@ -64,9 +64,9 @@ def test_analyze_correct_all_clean(self): # print(json_object) for i in range(self.n_classes): res_class_i = json_object["class_" + str(i)] - self.assertEqual(res_class_i["TruePositive"]["rate"], "N/A") + self.assertEqual(res_class_i["TruePositive"]["rate"], -1) self.assertEqual(res_class_i["TrueNegative"]["rate"], 100) - self.assertEqual(res_class_i["FalseNegative"]["rate"], "N/A") + self.assertEqual(res_class_i["FalseNegative"]["rate"], -1) self.assertEqual(res_class_i["FalsePositive"]["rate"], 0) self.assertEqual(res_class_i["TruePositive"]["numerator"], 0) @@ -99,9 +99,9 @@ def test_analyze_correct_all_poison(self): for i in range(self.n_classes): res_class_i = json_object["class_" + str(i)] self.assertEqual(res_class_i["TruePositive"]["rate"], 100) - self.assertEqual(res_class_i["TrueNegative"]["rate"], "N/A") + self.assertEqual(res_class_i["TrueNegative"]["rate"], -1) self.assertEqual(res_class_i["FalseNegative"]["rate"], 0) - self.assertEqual(res_class_i["FalsePositive"]["rate"], "N/A") + self.assertEqual(res_class_i["FalsePositive"]["rate"], -1) self.assertEqual(res_class_i["TruePositive"]["numerator"], self.n_dp) self.assertEqual(res_class_i["TruePositive"]["denominator"], self.n_dp) @@ -166,9 +166,9 @@ def test_analyze_fully_misclassified(self): for i in range(self.n_classes): res_class_i = json_object["class_" + str(i)] self.assertEqual(res_class_i["TruePositive"]["rate"], 0) - self.assertEqual(res_class_i["TrueNegative"]["rate"], "N/A") + self.assertEqual(res_class_i["TrueNegative"]["rate"], -1) self.assertEqual(res_class_i["FalseNegative"]["rate"], 100) - self.assertEqual(res_class_i["FalsePositive"]["rate"], "N/A") + self.assertEqual(res_class_i["FalsePositive"]["rate"], -1) self.assertEqual(res_class_i["TruePositive"]["numerator"], 0) self.assertEqual(res_class_i["TruePositive"]["denominator"], self.n_dp) @@ -200,9 +200,9 @@ def test_analyze_fully_misclassified_rev(self): pprint.pprint(json_object) for i in range(self.n_classes): res_class_i = json_object["class_" + str(i)] - self.assertEqual(res_class_i["TruePositive"]["rate"], "N/A") + self.assertEqual(res_class_i["TruePositive"]["rate"], -1) self.assertEqual(res_class_i["TrueNegative"]["rate"], 0) - self.assertEqual(res_class_i["FalseNegative"]["rate"], "N/A") + self.assertEqual(res_class_i["FalseNegative"]["rate"], -1) self.assertEqual(res_class_i["FalsePositive"]["rate"], 100) self.assertEqual(res_class_i["TruePositive"]["numerator"], 0) diff --git a/tests/estimators/classification/test_deeplearning_common.py b/tests/estimators/classification/test_deeplearning_common.py index bac195d644..bf90292d6c 100644 --- a/tests/estimators/classification/test_deeplearning_common.py +++ b/tests/estimators/classification/test_deeplearning_common.py @@ -154,7 +154,7 @@ def test_loss_functions( art_warning(e) -@pytest.mark.skip_framework("non_dl_frameworks", "huggingface", "tensorflow2") +@pytest.mark.skip_framework("non_dl_frameworks", "huggingface", "tensorflow2", "kerastf") def test_pickle(art_warning, image_dl_estimator, image_dl_estimator_defended, tmp_path): try: full_path = os.path.join(tmp_path, "my_classifier.p") From cf8295ec83a09f2e224d614704f8d4e0c8656002 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 1 Nov 2023 17:41:13 +0100 Subject: [PATCH 27/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- art/defences/detector/poison/clustering_analyzer.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/art/defences/detector/poison/clustering_analyzer.py b/art/defences/detector/poison/clustering_analyzer.py index e1cfa64acb..18b5204d31 100644 --- a/art/defences/detector/poison/clustering_analyzer.py +++ b/art/defences/detector/poison/clustering_analyzer.py @@ -235,7 +235,7 @@ def analyze_by_relative_size( for c_id in clean_clusters[0]: summary_poison_clusters[i][c_id] = 0 - assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters) + assigned_clean = self.assign_class(clusters, clean_clusters[0], poison_clusters[0]) all_assigned_clean.append(assigned_clean) # Generate report for this class: @@ -328,7 +328,7 @@ def analyze_by_silhouette_score( logger.info("computed silhouette score: %s", silhouette_avg) dict_i.update(suspicious=True) else: - poison_clusters = [[]] + poison_clusters = (np.array([[]]), ) clean_clusters = np.where(percentages >= 0) dict_i.update(suspicious=False) else: @@ -342,7 +342,7 @@ def analyze_by_silhouette_score( for c_id in clean_clusters[0]: summary_poison_clusters[i][c_id] = 0 - assigned_clean = self.assign_class(clusters, clean_clusters, poison_clusters) + assigned_clean = self.assign_class(clusters, clean_clusters[0], poison_clusters[0]) all_assigned_clean.append(assigned_clean) report.update(report_class) From cab8273a08806cd64cb03a135fa798185a1a8139 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 1 Nov 2023 17:56:12 +0100 Subject: [PATCH 28/40] Add build os to docs yml Signed-off-by: Beat Buesser --- readthedocs.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/readthedocs.yml b/readthedocs.yml index a24c500806..8a98f6c89a 100644 --- a/readthedocs.yml +++ b/readthedocs.yml @@ -1,6 +1,7 @@ version: 2 sphinx: configuration: docs/conf.py +os: ubuntu-20.04 python: version: 3.6 install: From 404648efbe73f0912f189767175622107e96ae75 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 1 Nov 2023 18:00:29 +0100 Subject: [PATCH 29/40] Add build os to docs yml Signed-off-by: Beat Buesser --- readthedocs.yml | 21 +++++++++++++-------- 1 file changed, 13 insertions(+), 8 deletions(-) diff --git a/readthedocs.yml b/readthedocs.yml index 8a98f6c89a..313b6e0552 100644 --- a/readthedocs.yml +++ b/readthedocs.yml @@ -1,11 +1,16 @@ version: 2 + +build: + os: ubuntu-20.04 + tools: + python: 3.9 + +python: + install: + - method: pip + path: . + extra_requirements: + - docs + sphinx: configuration: docs/conf.py -os: ubuntu-20.04 -python: - version: 3.6 - install: - - method: pip - path: . - extra_requirements: - - docs From 2a331474e6370d79ddf7b04f8fa467868a09e866 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 1 Nov 2023 21:55:31 +0100 Subject: [PATCH 30/40] Add build os to docs yml Signed-off-by: Beat Buesser --- readthedocs.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/readthedocs.yml b/readthedocs.yml index 313b6e0552..e7467d2df7 100644 --- a/readthedocs.yml +++ b/readthedocs.yml @@ -3,7 +3,7 @@ version: 2 build: os: ubuntu-20.04 tools: - python: 3.9 + python: "3.9" python: install: From 5314060ff37d0ab345baae55b9dafa46f81b2c3c Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Thu, 9 Nov 2023 16:44:20 +0100 Subject: [PATCH 31/40] Add build os to docs yml Signed-off-by: Beat Buesser --- art/attacks/evasion/auto_attack.py | 6 +- .../detector/poison/clustering_analyzer.py | 2 +- tests/attacks/evasion/test_auto_attack.py | 41 +++------- .../poison/test_provenance_defence.py | 1 + tests/utils.py | 74 +++++++++++++------ 5 files changed, 68 insertions(+), 56 deletions(-) diff --git a/art/attacks/evasion/auto_attack.py b/art/attacks/evasion/auto_attack.py index 3d2fa38159..57714dc042 100644 --- a/art/attacks/evasion/auto_attack.py +++ b/art/attacks/evasion/auto_attack.py @@ -286,9 +286,10 @@ def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> n logger.warning("Error completing attack: %s}", str(error)) if self.parallel: - with multiprocess.get_context("spawn").Pool() as pool: + with multiprocess.get_context("spawn").Pool(processes=1) as pool: # Results come back in the order that they were issued results = pool.starmap(run_attack, args) + asdfdasd perturbations = [] is_robust = [] for img_idx in range(len(x)): @@ -364,6 +365,7 @@ def run_attack( :param eps: Maximum perturbation that the attacker can introduce. :return: An array holding the adversarial examples. """ + eeeeee # Attack only correctly classified samples x_robust = x[sample_is_robust] y_robust = y[sample_is_robust] @@ -394,4 +396,6 @@ def run_attack( sample_is_robust[sample_is_robust] = np.invert(sample_is_not_robust) + print("Attack done:", attack) + return x, sample_is_robust diff --git a/art/defences/detector/poison/clustering_analyzer.py b/art/defences/detector/poison/clustering_analyzer.py index 18b5204d31..27b6855d94 100644 --- a/art/defences/detector/poison/clustering_analyzer.py +++ b/art/defences/detector/poison/clustering_analyzer.py @@ -328,7 +328,7 @@ def analyze_by_silhouette_score( logger.info("computed silhouette score: %s", silhouette_avg) dict_i.update(suspicious=True) else: - poison_clusters = (np.array([[]]), ) + poison_clusters = (np.array([[]]),) clean_clusters = np.where(percentages >= 0) dict_i.update(suspicious=False) else: diff --git a/tests/attacks/evasion/test_auto_attack.py b/tests/attacks/evasion/test_auto_attack.py index 3e82e9f36a..52e76274a6 100644 --- a/tests/attacks/evasion/test_auto_attack.py +++ b/tests/attacks/evasion/test_auto_attack.py @@ -193,7 +193,9 @@ def test_classifier_type_check_fail(art_warning): art_warning(e) -@pytest.mark.skip_framework("tensorflow1", "tensorflow2v1", "keras", "non_dl_frameworks", "mxnet", "kerastf") +@pytest.mark.skip_framework( + "tensorflow1", "tensorflow2v1", "tensorflow2", "keras", "non_dl_frameworks", "mxnet", "kerastf" +) def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator, framework): try: classifier, _ = image_dl_estimator(from_logits=True) @@ -286,35 +288,12 @@ def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator parallel=False, ) - from tensorflow.keras.utils import CustomObjectScope - - # Copy - from tests.utils import _tf_weights_loader - - _tf_initializer_W_CONV2D_MNIST = _tf_weights_loader("MNIST", "W", "CONV2D", 2) - # _tf_initializer_MNIST_W_CONV2D.__name__ = "_tf_initializer_MNIST_W_CONV2D" - _tf_initializer_B_CONV2D_MNIST = _tf_weights_loader("MNIST", "B", "CONV2D", 2) - # _tf_initializer_MNIST_B_CONV2D.__name__ = "_tf_initializer_MNIST_B_CONV2D" - - _tf_initializer_W_DENSE_MNIST = _tf_weights_loader("MNIST", "W", "DENSE", 2) - # _tf_initializer_MNIST_W_DENSE.__name__ = "_tf_initializer_MNIST_W_DENSE" - _tf_initializer_B_DENSE_MNIST = _tf_weights_loader("MNIST", "B", "DENSE", 2) - # _tf_initializer_MNIST_B_DENSE.__name__ = "_tf_initializer_MNIST_B_DENSE" - - custom_objects = { - "_tf_initializer_W_CONV2D_MNIST": _tf_initializer_W_CONV2D_MNIST, - "_tf_initializer_B_CONV2D_MNIST": _tf_initializer_B_CONV2D_MNIST, - "_tf_initializer_W_DENSE_MNIST": _tf_initializer_W_DENSE_MNIST, - "_tf_initializer_B_DENSE_MNIST": _tf_initializer_B_DENSE_MNIST, - } - - with CustomObjectScope(custom_objects): - x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) + x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) x_train_mnist_adv_nop = attack_noparallel.generate(x=x_train_mnist, y=y_train_mnist) - assert np.mean(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(0.0182, abs=0.105) - assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(0.3, abs=0.05) + assert np.mean(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(expected=0.0182, abs=0.105) + assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(expected=0.3, abs=0.05) noparallel_perturbation = np.linalg.norm(x_train_mnist[[2]] - x_train_mnist_adv_nop[[2]]) parallel_perturbation = np.linalg.norm(x_train_mnist[[2]] - x_train_mnist_adv[[2]]) @@ -334,10 +313,10 @@ def test_generate_parallel(art_warning, fix_get_mnist_subset, image_dl_estimator parallel=True, ) - with CustomObjectScope(custom_objects): - x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) + x_train_mnist_adv = attack.generate(x=x_train_mnist, y=y_train_mnist) + + assert np.mean(x_train_mnist_adv - x_train_mnist) == pytest.approx(expected=0.0, abs=0.0075) + assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(expected=eps, abs=0.005) - assert np.mean(x_train_mnist_adv - x_train_mnist) == pytest.approx(0.0, abs=0.0075) - assert np.max(np.abs(x_train_mnist_adv - x_train_mnist)) == pytest.approx(eps, abs=0.005) except ARTTestException as e: art_warning(e) diff --git a/tests/defences/detector/poison/test_provenance_defence.py b/tests/defences/detector/poison/test_provenance_defence.py index bcf03cfc10..057b10172e 100644 --- a/tests/defences/detector/poison/test_provenance_defence.py +++ b/tests/defences/detector/poison/test_provenance_defence.py @@ -99,6 +99,7 @@ def setUpClass(cls): eps=1.0, x_val=valid_data, y_val=valid_labels, + max_iter=100, verbose=False, ) diff --git a/tests/utils.py b/tests/utils.py index 70b19fd2ea..09b624b198 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -29,6 +29,7 @@ import warnings import numpy as np +import tensorflow.python.keras.initializers.initializers_v2 from art.estimators.classification.tensorflow import TensorFlowV2Classifier from art.estimators.encoding.tensorflow import TensorFlowEncoder @@ -165,38 +166,61 @@ def is_valid_framework(framework): return True -def _tf_weights_loader(dataset, weights_type, layer="DENSE", tf_version=1): +class _tf_weights_loader(tensorflow.keras.initializers.Initializer): - filename = str(weights_type) + "_" + str(layer) + "_" + str(dataset) + ".npy" + import tensorflow as tf - # pylint: disable=W0613 - # disable pylint because of API requirements for function - if tf_version == 1: + def __init__(self, dataset, weights_type, layer="DENSE", tf_version=1): + self.dataset = dataset + self.weights_type = weights_type + self.layer = layer + self.tf_version = tf_version - def _tf_initializer(_, dtype, partition_info): - import tensorflow as tf + def get_config(self): + return { + "dataset": self.dataset, + "weights_type": self.weights_type, + "layer": self.layer, + "tf_version": self.tf_version, + } - weights = np.load( - os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename) - ) - return tf.constant(weights, dtype) + def __call__(self, shape, dtype=None, **kwargs): - elif tf_version == 2: + import tensorflow as tf - def _tf_initializer(_, dtype): - import tensorflow as tf + filename = str(self.weights_type) + "_" + str(self.layer) + "_" + str(self.dataset) + ".npy" - weights = np.load( - os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename) - ) - return tf.constant(weights, dtype) - - else: - raise ValueError("The TensorFlow version tf_version has to be either 1 or 2.") + # pylint: disable=W0613 + # disable pylint because of API requirements for function + # if self.tf_version == 1: + # + # def _tf_initializer(_, dtype, partition_info): + # import tensorflow as tf + # + # weights = np.load( + # os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename) + # ) + # return tf.constant(weights, dtype) + + # elif self.tf_version == 2: + # + # def _tf_initializer(_, dtype): + # import tensorflow as tf + # + # weights = np.load( + # os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename) + # ) + # return tf.constant(weights, dtype) + # + # else: + # raise ValueError("The TensorFlow version tf_version has to be either 1 or 2.") + # + # _tf_initializer.__name__ = "_tf_initializer_" + str(self.weights_type) + "_" + str(self.layer) + "_" + str(self.dataset) - _tf_initializer.__name__ = "_tf_initializer_" + str(weights_type) + "_" + str(layer) + "_" + str(dataset) + weights = np.load(os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename)) + return tf.convert_to_tensor(weights, dtype) - return _tf_initializer + # return _tf_initializer def _kr_weights_loader(dataset, weights_type, layer="DENSE"): @@ -468,6 +492,10 @@ def get_image_classifier_tf_v2(from_logits=False): _tf_initializer_W_DENSE_MNIST = _tf_weights_loader("MNIST", "W", "DENSE", 2) _tf_initializer_B_DENSE_MNIST = _tf_weights_loader("MNIST", "B", "DENSE", 2) + print("W", _tf_initializer_W_CONV2D_MNIST) + print("B", _tf_initializer_B_CONV2D_MNIST) + # sdf + model = Sequential() model.add( Conv2D( From d9f912374a7349bdb6deeb96244c3753939c8ff7 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Tue, 14 Nov 2023 23:44:45 +0100 Subject: [PATCH 32/40] Add build os to docs yml Signed-off-by: Beat Buesser --- .github/workflows/ci-tensorflow-v1.yml | 1 - art/attacks/evasion/auto_attack.py | 2 -- 2 files changed, 3 deletions(-) diff --git a/.github/workflows/ci-tensorflow-v1.yml b/.github/workflows/ci-tensorflow-v1.yml index 9d43e1d275..0aded43f33 100644 --- a/.github/workflows/ci-tensorflow-v1.yml +++ b/.github/workflows/ci-tensorflow-v1.yml @@ -56,7 +56,6 @@ jobs: pip install protobuf==3.20.1 pip install tensorflow==${{ matrix.tensorflow }} pip install keras==${{ matrix.keras }} - pip install jax[cpu]==0.3.25 pip list - name: Run Tests run: ./run_tests.sh ${{ matrix.framework }} diff --git a/art/attacks/evasion/auto_attack.py b/art/attacks/evasion/auto_attack.py index 57714dc042..c47cd5c5ec 100644 --- a/art/attacks/evasion/auto_attack.py +++ b/art/attacks/evasion/auto_attack.py @@ -289,7 +289,6 @@ def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> n with multiprocess.get_context("spawn").Pool(processes=1) as pool: # Results come back in the order that they were issued results = pool.starmap(run_attack, args) - asdfdasd perturbations = [] is_robust = [] for img_idx in range(len(x)): @@ -365,7 +364,6 @@ def run_attack( :param eps: Maximum perturbation that the attacker can introduce. :return: An array holding the adversarial examples. """ - eeeeee # Attack only correctly classified samples x_robust = x[sample_is_robust] y_robust = y[sample_is_robust] From 339049f71185f30c698eca263d513b7136010424 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 15 Nov 2023 00:11:18 +0100 Subject: [PATCH 33/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- art/attacks/evasion/auto_attack.py | 4 +- tests/utils.py | 94 +++++++++--------------------- 2 files changed, 29 insertions(+), 69 deletions(-) diff --git a/art/attacks/evasion/auto_attack.py b/art/attacks/evasion/auto_attack.py index c47cd5c5ec..3d2fa38159 100644 --- a/art/attacks/evasion/auto_attack.py +++ b/art/attacks/evasion/auto_attack.py @@ -286,7 +286,7 @@ def generate(self, x: np.ndarray, y: Optional[np.ndarray] = None, **kwargs) -> n logger.warning("Error completing attack: %s}", str(error)) if self.parallel: - with multiprocess.get_context("spawn").Pool(processes=1) as pool: + with multiprocess.get_context("spawn").Pool() as pool: # Results come back in the order that they were issued results = pool.starmap(run_attack, args) perturbations = [] @@ -394,6 +394,4 @@ def run_attack( sample_is_robust[sample_is_robust] = np.invert(sample_is_not_robust) - print("Attack done:", attack) - return x, sample_is_robust diff --git a/tests/utils.py b/tests/utils.py index 09b624b198..4e32c32497 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -29,7 +29,6 @@ import warnings import numpy as np -import tensorflow.python.keras.initializers.initializers_v2 from art.estimators.classification.tensorflow import TensorFlowV2Classifier from art.estimators.encoding.tensorflow import TensorFlowEncoder @@ -166,61 +165,35 @@ def is_valid_framework(framework): return True -class _tf_weights_loader(tensorflow.keras.initializers.Initializer): - - import tensorflow as tf +def _tf_weights_loader(dataset, weights_type, layer="DENSE", tf_version=1): + filename = str(weights_type) + "_" + str(layer) + "_" + str(dataset) + ".npy" - def __init__(self, dataset, weights_type, layer="DENSE", tf_version=1): - self.dataset = dataset - self.weights_type = weights_type - self.layer = layer - self.tf_version = tf_version + # pylint: disable=W0613 + # disable pylint because of API requirements for function + if tf_version == 1: - def get_config(self): - return { - "dataset": self.dataset, - "weights_type": self.weights_type, - "layer": self.layer, - "tf_version": self.tf_version, - } + def _tf_initializer(_, dtype, partition_info): + import tensorflow as tf - def __call__(self, shape, dtype=None, **kwargs): + weights = np.load( + os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename) + ) + return tf.constant(weights, dtype) - import tensorflow as tf + elif tf_version == 2: - filename = str(self.weights_type) + "_" + str(self.layer) + "_" + str(self.dataset) + ".npy" + def _tf_initializer(_, dtype): + import tensorflow as tf - # pylint: disable=W0613 - # disable pylint because of API requirements for function - # if self.tf_version == 1: - # - # def _tf_initializer(_, dtype, partition_info): - # import tensorflow as tf - # - # weights = np.load( - # os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename) - # ) - # return tf.constant(weights, dtype) - - # elif self.tf_version == 2: - # - # def _tf_initializer(_, dtype): - # import tensorflow as tf - # - # weights = np.load( - # os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename) - # ) - # return tf.constant(weights, dtype) - # - # else: - # raise ValueError("The TensorFlow version tf_version has to be either 1 or 2.") - # - # _tf_initializer.__name__ = "_tf_initializer_" + str(self.weights_type) + "_" + str(self.layer) + "_" + str(self.dataset) + weights = np.load( + os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename) + ) + return tf.constant(weights, dtype) - weights = np.load(os.path.join(os.path.dirname(os.path.dirname(__file__)), "utils/resources/models", filename)) - return tf.convert_to_tensor(weights, dtype) + else: + raise ValueError("The TensorFlow version tf_version has to be either 1 or 2.") - # return _tf_initializer + return _tf_initializer def _kr_weights_loader(dataset, weights_type, layer="DENSE"): @@ -486,24 +459,14 @@ def get_image_classifier_tf_v2(from_logits=False): if tf.__version__[0] != "2": raise ImportError("This function requires TensorFlow v2.") - _tf_initializer_W_CONV2D_MNIST = _tf_weights_loader("MNIST", "W", "CONV2D", 2) - _tf_initializer_B_CONV2D_MNIST = _tf_weights_loader("MNIST", "B", "CONV2D", 2) - - _tf_initializer_W_DENSE_MNIST = _tf_weights_loader("MNIST", "W", "DENSE", 2) - _tf_initializer_B_DENSE_MNIST = _tf_weights_loader("MNIST", "B", "DENSE", 2) - - print("W", _tf_initializer_W_CONV2D_MNIST) - print("B", _tf_initializer_B_CONV2D_MNIST) - # sdf - model = Sequential() model.add( Conv2D( filters=1, kernel_size=7, activation="relu", - kernel_initializer=_tf_initializer_W_CONV2D_MNIST, - bias_initializer=_tf_initializer_B_CONV2D_MNIST, + kernel_initializer=_tf_weights_loader("MNIST", "W", "CONV2D", 2), + bias_initializer=_tf_weights_loader("MNIST", "B", "CONV2D", 2), input_shape=(28, 28, 1), ) ) @@ -514,8 +477,8 @@ def get_image_classifier_tf_v2(from_logits=False): Dense( 10, activation="linear", - kernel_initializer=_tf_initializer_W_DENSE_MNIST, - bias_initializer=_tf_initializer_B_DENSE_MNIST, + kernel_initializer=_tf_weights_loader("MNIST", "W", "DENSE", 2), + bias_initializer=_tf_weights_loader("MNIST", "B", "DENSE", 2), ) ) else: @@ -523,17 +486,16 @@ def get_image_classifier_tf_v2(from_logits=False): Dense( 10, activation="softmax", - kernel_initializer=_tf_initializer_W_DENSE_MNIST, - bias_initializer=_tf_initializer_B_DENSE_MNIST, + kernel_initializer=_tf_weights_loader("MNIST", "W", "DENSE", 2), + bias_initializer=_tf_weights_loader("MNIST", "B", "DENSE", 2), ) ) loss_object = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=from_logits, reduction=tf.keras.losses.Reduction.SUM ) - optimizer = tf.keras.optimizers.legacy.Adam(learning_rate=0.01) - optimizer._distribution_strategy = None + optimizer = tf.keras.optimizers.legacy.Adam(learning_rate=0.01) model.compile(optimizer=optimizer, loss=loss_object) From 68bc1ccef7c16367096c418e994621cf2a4ec0e1 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 15 Nov 2023 09:27:31 +0100 Subject: [PATCH 34/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .github/workflows/ci-tensorflow-v1.yml | 1 + tests/defences/trainer/test_certified_adversarial_trainer.py | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/ci-tensorflow-v1.yml b/.github/workflows/ci-tensorflow-v1.yml index 0aded43f33..ada4b4a19d 100644 --- a/.github/workflows/ci-tensorflow-v1.yml +++ b/.github/workflows/ci-tensorflow-v1.yml @@ -56,6 +56,7 @@ jobs: pip install protobuf==3.20.1 pip install tensorflow==${{ matrix.tensorflow }} pip install keras==${{ matrix.keras }} + pip install numpy==1.20 pip list - name: Run Tests run: ./run_tests.sh ${{ matrix.framework }} diff --git a/tests/defences/trainer/test_certified_adversarial_trainer.py b/tests/defences/trainer/test_certified_adversarial_trainer.py index 3cbaa984e6..1f41bc18c1 100644 --- a/tests/defences/trainer/test_certified_adversarial_trainer.py +++ b/tests/defences/trainer/test_certified_adversarial_trainer.py @@ -213,7 +213,7 @@ def test_mnist_certified_loss(art_warning, fix_get_mnist_data): certified_loss += sample_loss - assert round(float(certified_loss.cpu().detach().numpy()), 4) == -309.2724 + assert float(certified_loss.cpu().detach().numpy()) == pytest.approx(-309.2724, abs=0.001) assert samples_certified == 94 # empirically check that PGD does not give a lower acc From f45b268dbd400a18bdd14e56dd2b64ad0dc6179f Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Wed, 15 Nov 2023 10:48:59 +0100 Subject: [PATCH 35/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- tests/attacks/test_adversarial_patch.py | 2 +- tests/classifiersFrameworks/test_tensorflow.py | 4 ++-- .../trainer/test_adversarial_trainer_awp_pytorch.py | 2 +- tests/estimators/certification/test_macer.py | 2 +- tests/estimators/certification/test_smooth_adv.py | 2 +- tests/estimators/classification/test_scikitlearn.py | 10 +++++++++- 6 files changed, 15 insertions(+), 7 deletions(-) diff --git a/tests/attacks/test_adversarial_patch.py b/tests/attacks/test_adversarial_patch.py index d181723864..ca850ff2f1 100644 --- a/tests/attacks/test_adversarial_patch.py +++ b/tests/attacks/test_adversarial_patch.py @@ -301,7 +301,7 @@ def test_4_pytorch(self): self.assertAlmostEqual(patch_adv[0, 8, 8], 0.5, delta=0.05) self.assertAlmostEqual(patch_adv[0, 14, 14], 0.5, delta=0.05) - self.assertAlmostEqual(float(np.sum(patch_adv)), 371.88014772999827, delta=4.0) + self.assertAlmostEqual(float(np.sum(patch_adv)), 367.6218066346819, delta=4.0) mask = np.ones((1, 28, 28)).astype(bool) attack_ap.apply_patch(x=x_train, scale=0.1, mask=mask) diff --git a/tests/classifiersFrameworks/test_tensorflow.py b/tests/classifiersFrameworks/test_tensorflow.py index d4a8617626..7288692417 100644 --- a/tests/classifiersFrameworks/test_tensorflow.py +++ b/tests/classifiersFrameworks/test_tensorflow.py @@ -239,7 +239,7 @@ def test_binary_keras_instantiation_and_attack_pgd(art_warning): ] ) model.summary() - model.compile(optimizer=tf.optimizers.Adam(), loss="binary_crossentropy", metrics=["accuracy"]) + model.compile(optimizer=tf.optimizers.legacy.Adam(), loss="binary_crossentropy", metrics=["accuracy"]) classifier = KerasClassifier(model=model) classifier.fit(train_x, train_y, nb_epochs=5) pred = classifier.predict(test_x) @@ -268,7 +268,7 @@ def test_binary_keras_instantiation_and_attack_pgd(art_warning): # ] # ) # model.summary() -# model.compile(optimizer=tf.optimizers.Adam(), loss="binary_crossentropy", metrics=["accuracy"]) +# model.compile(optimizer=tf.optimizers.legacy.Adam(), loss="binary_crossentropy", metrics=["accuracy"]) # classifier = art.estimators.classification.TensorFlowV2Classifier(model=model) # classifier.fit(train_x, train_y, nb_epochs=5) # pred = classifier.predict(test_x) diff --git a/tests/defences/trainer/test_adversarial_trainer_awp_pytorch.py b/tests/defences/trainer/test_adversarial_trainer_awp_pytorch.py index 3940654be8..b7281b64a6 100644 --- a/tests/defences/trainer/test_adversarial_trainer_awp_pytorch.py +++ b/tests/defences/trainer/test_adversarial_trainer_awp_pytorch.py @@ -124,7 +124,7 @@ def test_adversarial_trainer_awppgd_pytorch_fit_and_predict(get_adv_trainer_awpp else: accuracy = np.sum(predictions == y_test_mnist) / x_test_mnist.shape[0] - trainer.fit(x_train_mnist, y_train_mnist, nb_epochs=20) + trainer.fit(x_train_mnist, y_train_mnist, nb_epochs=40) predictions_new = np.argmax(trainer.predict(x_test_mnist), axis=1) if label_format == "one_hot": diff --git a/tests/estimators/certification/test_macer.py b/tests/estimators/certification/test_macer.py index cbc6818e2f..94bd486140 100644 --- a/tests/estimators/certification/test_macer.py +++ b/tests/estimators/certification/test_macer.py @@ -57,7 +57,7 @@ def _get_classifier(): import tensorflow as tf classifier, _ = get_image_classifier_tf() - optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, name="SGD", decay=5e-4) + optimizer = tf.keras.optimizers.legacy.SGD(learning_rate=0.01, momentum=0.9, name="SGD", decay=5e-4) scheduler = tf.keras.optimizers.schedules.PiecewiseConstantDecay([250, 400], [0.01, 0.001, 0.0001]) rs = TensorFlowV2MACER( model=classifier.model, diff --git a/tests/estimators/certification/test_smooth_adv.py b/tests/estimators/certification/test_smooth_adv.py index 38a0fb5a8d..48c7413659 100644 --- a/tests/estimators/certification/test_smooth_adv.py +++ b/tests/estimators/certification/test_smooth_adv.py @@ -57,7 +57,7 @@ def _get_classifier(): import tensorflow as tf classifier, _ = get_image_classifier_tf() - optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9, name="SGD", decay=1e-4) + optimizer = tf.keras.optimizers.legacy.SGD(learning_rate=0.01, momentum=0.9, name="SGD", decay=1e-4) scheduler = tf.keras.optimizers.schedules.PiecewiseConstantDecay([50, 100], [0.01, 0.001, 0.0001]) rs = TensorFlowV2SmoothAdv( model=classifier.model, diff --git a/tests/estimators/classification/test_scikitlearn.py b/tests/estimators/classification/test_scikitlearn.py index ae5d457900..d8c0d33945 100644 --- a/tests/estimators/classification/test_scikitlearn.py +++ b/tests/estimators/classification/test_scikitlearn.py @@ -300,9 +300,10 @@ def test_class_gradient_none_2(self): def test_class_gradient_int_1(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:1], label=1) - grad_expected = [[[-0.56322294, -0.70427608, -0.98874801, -0.67053026]]] + grad_expected = [[[-0.56322294, -0.70493763, -0.98874801, -0.67053026]]] for i_shape in range(4): + print(grad_predicted[0, 0, i_shape]) self.assertAlmostEqual(grad_predicted[0, 0, i_shape], grad_expected[0][0][i_shape], 3) def test_class_gradient_int_2(self): @@ -311,6 +312,8 @@ def test_class_gradient_int_2(self): [[-0.56322294, -0.70427608, -0.98874801, -0.67053026]], [[-0.50528532, -0.71700042, -0.82467848, -0.59614766]], ] + print("grad_predicted") + print(grad_predicted) np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) def test_class_gradient_list_1(self): @@ -318,6 +321,7 @@ def test_class_gradient_list_1(self): grad_expected = [[[-0.56322294, -0.70427608, -0.98874801, -0.67053026]]] for i_shape in range(4): + print(grad_predicted[0, 0, i_shape]) self.assertAlmostEqual(grad_predicted[0, 0, i_shape], grad_expected[0][0][i_shape], 3) def test_class_gradient_list_2(self): @@ -326,6 +330,8 @@ def test_class_gradient_list_2(self): [[-0.56322294, -0.70427608, -0.98874801, -0.67053026]], [[0.70875132, 0.25104877, 1.70929277, 0.88410652]], ] + print("grad_predicted") + print(grad_predicted) np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) def test_class_gradient_label_wrong_type(self): @@ -340,6 +346,8 @@ def test_class_gradient_label_wrong_type(self): def test_loss_gradient(self): grad_predicted = self.classifier.loss_gradient(self.x_test_iris[0:1], self.y_test_iris[0:1]) grad_expected = np.asarray([[-0.21693791, -0.08792436, -0.51507443, -0.26990796]]) + print("grad_predicted") + print(grad_predicted) np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) def test_save(self): From 709adc318cdc38290e745cc74de717212648794f Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Thu, 16 Nov 2023 13:42:31 +0100 Subject: [PATCH 36/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .../classification/test_scikitlearn.py | 22 ++++++------------- 1 file changed, 7 insertions(+), 15 deletions(-) diff --git a/tests/estimators/classification/test_scikitlearn.py b/tests/estimators/classification/test_scikitlearn.py index d8c0d33945..87c3aec698 100644 --- a/tests/estimators/classification/test_scikitlearn.py +++ b/tests/estimators/classification/test_scikitlearn.py @@ -300,38 +300,32 @@ def test_class_gradient_none_2(self): def test_class_gradient_int_1(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:1], label=1) - grad_expected = [[[-0.56322294, -0.70493763, -0.98874801, -0.67053026]]] + grad_expected = [[[-0.56317311, -0.70493763, -0.98908609, -0.67106276]]] for i_shape in range(4): - print(grad_predicted[0, 0, i_shape]) self.assertAlmostEqual(grad_predicted[0, 0, i_shape], grad_expected[0][0][i_shape], 3) def test_class_gradient_int_2(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:2], label=1) grad_expected = [ - [[-0.56322294, -0.70427608, -0.98874801, -0.67053026]], - [[-0.50528532, -0.71700042, -0.82467848, -0.59614766]], + [[-0.56317306, -0.70493776, -0.98908573, -0.67106259]], + [[-0.50522697, -0.71762568, -0.82497531, -0.5966416]], ] - print("grad_predicted") - print(grad_predicted) np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) def test_class_gradient_list_1(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:1], label=[1]) - grad_expected = [[[-0.56322294, -0.70427608, -0.98874801, -0.67053026]]] + grad_expected = [[[-0.56317311, -0.70493763, -0.98874801, -0.67053026]]] for i_shape in range(4): - print(grad_predicted[0, 0, i_shape]) self.assertAlmostEqual(grad_predicted[0, 0, i_shape], grad_expected[0][0][i_shape], 3) def test_class_gradient_list_2(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:2], label=[1, 2]) grad_expected = [ - [[-0.56322294, -0.70427608, -0.98874801, -0.67053026]], - [[0.70875132, 0.25104877, 1.70929277, 0.88410652]], + [[-0.56317306, -0.70493776, -0.98908573, -0.67106259]], + [[0.70866591, 0.25158876, 1.70947325, 0.88450021]], ] - print("grad_predicted") - print(grad_predicted) np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) def test_class_gradient_label_wrong_type(self): @@ -345,9 +339,7 @@ def test_class_gradient_label_wrong_type(self): def test_loss_gradient(self): grad_predicted = self.classifier.loss_gradient(self.x_test_iris[0:1], self.y_test_iris[0:1]) - grad_expected = np.asarray([[-0.21693791, -0.08792436, -0.51507443, -0.26990796]]) - print("grad_predicted") - print(grad_predicted) + grad_expected = np.asarray([[-0.21690657, -0.08809226, -0.51512082, -0.27002635]]) np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) def test_save(self): From abf4727c2ac21620137d7b7916a0c8755b640545 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Thu, 16 Nov 2023 13:51:23 +0100 Subject: [PATCH 37/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- tests/estimators/classification/test_scikitlearn.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/tests/estimators/classification/test_scikitlearn.py b/tests/estimators/classification/test_scikitlearn.py index 87c3aec698..56ae97f9e7 100644 --- a/tests/estimators/classification/test_scikitlearn.py +++ b/tests/estimators/classification/test_scikitlearn.py @@ -269,7 +269,7 @@ def test_type(self): def test_predict(self): y_predicted = self.classifier.predict(self.x_test_iris[0:1]) y_expected = np.asarray([[0.07997696, 0.36272544, 0.5572976]]) - np.testing.assert_array_almost_equal(y_predicted, y_expected, decimal=4) + np.testing.assert_array_almost_equal(y_predicted, y_expected, decimal=3) def test_class_gradient_none_1(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:1], label=None) @@ -280,7 +280,7 @@ def test_class_gradient_none_1(self): [0.6508137, 0.26377308, 1.54522324, 0.80972391], ] ] - np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) + np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=3) def test_class_gradient_none_2(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:2], label=None) @@ -296,7 +296,7 @@ def test_class_gradient_none_2(self): [0.70875132, 0.25104877, 1.70929277, 0.88410652], ], ] - np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) + np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=3) def test_class_gradient_int_1(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:1], label=1) @@ -326,7 +326,7 @@ def test_class_gradient_list_2(self): [[-0.56317306, -0.70493776, -0.98908573, -0.67106259]], [[0.70866591, 0.25158876, 1.70947325, 0.88450021]], ] - np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=4) + np.testing.assert_array_almost_equal(grad_predicted, grad_expected, decimal=3) def test_class_gradient_label_wrong_type(self): From 4f302fe45fc501aab59f88b6f2aaabb42c661478 Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Thu, 16 Nov 2023 23:48:43 +0100 Subject: [PATCH 38/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- tests/estimators/classification/test_scikitlearn.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/estimators/classification/test_scikitlearn.py b/tests/estimators/classification/test_scikitlearn.py index 56ae97f9e7..14fccaf1c5 100644 --- a/tests/estimators/classification/test_scikitlearn.py +++ b/tests/estimators/classification/test_scikitlearn.py @@ -315,7 +315,7 @@ def test_class_gradient_int_2(self): def test_class_gradient_list_1(self): grad_predicted = self.classifier.class_gradient(self.x_test_iris[0:1], label=[1]) - grad_expected = [[[-0.56317311, -0.70493763, -0.98874801, -0.67053026]]] + grad_expected = [[[-0.56317311, -0.70493763, -0.98874801, -0.67106276]]] for i_shape in range(4): self.assertAlmostEqual(grad_predicted[0, 0, i_shape], grad_expected[0][0][i_shape], 3) From 4ca3d42e1ff1706b4aeb8ee3172101a8f496157b Mon Sep 17 00:00:00 2001 From: Beat Buesser Date: Fri, 17 Nov 2023 15:14:03 +0100 Subject: [PATCH 39/40] Update workflows for TensorFlow/Keras 2.14 Signed-off-by: Beat Buesser --- .../inference/attribute_inference/test_true_label_baseline.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/tests/attacks/inference/attribute_inference/test_true_label_baseline.py b/tests/attacks/inference/attribute_inference/test_true_label_baseline.py index e0799eb8e2..05de0df14a 100644 --- a/tests/attacks/inference/attribute_inference/test_true_label_baseline.py +++ b/tests/attacks/inference/attribute_inference/test_true_label_baseline.py @@ -231,7 +231,7 @@ def transform_feature(x): ) expected_train_acc = {"nn": 0.81, "rf": 0.98, "gb": 0.98, "lr": 0.81, "dt": 0.98, "knn": 0.85, "svm": 0.81} - expected_test_acc = {"nn": 0.88, "rf": 0.83, "gb": 0.75, "lr": 0.88, "dt": 0.8, "knn": 0.82, "svm": 0.88} + expected_test_acc = {"nn": 0.88, "rf": 0.81, "gb": 0.75, "lr": 0.88, "dt": 0.8, "knn": 0.82, "svm": 0.88} assert expected_train_acc[model_type] <= baseline_train_acc assert expected_test_acc[model_type] <= baseline_test_acc From e5babd7553fff1e2dda698e5e7ec6a8e7505e73c Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Nov 2023 07:32:06 +0000 Subject: [PATCH 40/40] Bump docker/build-push-action from 5.0.0 to 5.1.0 Bumps [docker/build-push-action](https://github.com/docker/build-push-action) from 5.0.0 to 5.1.0. - [Release notes](https://github.com/docker/build-push-action/releases) - [Commits](https://github.com/docker/build-push-action/compare/0565240e2d4ab88bba5387d719585280857ece09...4a13e500e55cf31b7a5d59a38ab2040ab0f42f56) --- updated-dependencies: - dependency-name: docker/build-push-action dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] --- .github/workflows/dockerhub.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/dockerhub.yml b/.github/workflows/dockerhub.yml index 6bd587df59..4615ad0090 100644 --- a/.github/workflows/dockerhub.yml +++ b/.github/workflows/dockerhub.yml @@ -39,7 +39,7 @@ jobs: type=semver,pattern={{version}} - name: Build and push Docker image - uses: docker/build-push-action@0565240e2d4ab88bba5387d719585280857ece09 + uses: docker/build-push-action@4a13e500e55cf31b7a5d59a38ab2040ab0f42f56 with: context: . push: true