diff --git a/.github/workflows/ci-icefall.yml b/.github/workflows/ci-icefall.yml new file mode 100644 index 0000000000..64c5950c8a --- /dev/null +++ b/.github/workflows/ci-icefall.yml @@ -0,0 +1,79 @@ +name: CI PyTorchIcefall +on: + # on manual trigger + workflow_dispatch: + + # on pull requests + pull_request: + paths-ignore: + - '*.md' + + # on merge queue + merge_group: + + # when pushing to main or dev branches + push: + branches: + - main + - dev* + + # scheduled CI flow daily + schedule: + - cron: '0 8 * * 0' + +jobs: + test_icefall: + name: PyTorchIcefall + runs-on: ubuntu-latest + defaults: + run: + shell: bash -l {0} + steps: + - name: Checkout Repo + uses: actions/checkout@v3 + - name: Setup Python + uses: actions/setup-python@v5 + with: + python-version: ${{ matrix.python }} + - name: Install Dependencies + run: | + apt-get update \ + && apt-get install -y \ + libgl1-mesa-glx \ + libx11-xcb1 \ + git \ + gcc \ + mono-mcs \ + libavcodec-extra \ + ffmpeg \ + curl \ + libsndfile-dev \ + libsndfile1 \ + && apt-get clean all \ + && rm -r /var/lib/apt/lists/* + pip install astropy + pip install matplotlib + pip install pandas + pip install -U scikit-learn + pip install -u scikit-image + pip install torch==2.0.1+cpu -f https://download.pytorch.org/whl/torch_stable.html + pip install torchaudio + pip install k2==1.24.3.dev20230726+cpu.torch2.0.1 -f https://k2-fsa.github.io/k2/cpu.html + pip install lhotse + git clone https://github.com/HSTEHSTEHSTE/icefall_st.git + cd icefall_st + git checkout slu + pip install -r requirements.txt + pip install pytest + pip install pytest-cov + pip install kaldiio + pip install tensorflow + - name: Test Action + run: | + cd icefall_st/egs/slu/ + export PYTHONPATH=$PYTHONPATH:$(pwd) + pytest --cov-report=xml --cov=art --cov-append -q -vv ../../../tests/estimators/speech_recognition/test_pytorch_icefall.py --framework=pytorch --durations=0 + - name: Upload coverage to Codecov + uses: codecov/codecov-action@v3 + with: + fail_ci_if_error: true diff --git a/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py b/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py index da5ec6fc29..59ddc10c0a 100644 --- a/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py +++ b/art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py @@ -57,11 +57,11 @@ class ProjectedGradientDescentPyTorch(ProjectedGradientDescentCommon): | Paper link: https://arxiv.org/abs/1706.06083 """ - _estimator_requirements = (BaseEstimator, LossGradientsMixin, ClassifierMixin) # type: ignore + _estimator_requirements = (BaseEstimator, LossGradientsMixin) # type: ignore def __init__( self, - estimator: Union["PyTorchClassifier"], + estimator: BaseEstimator, norm: Union[int, float, str] = np.inf, eps: Union[int, float, np.ndarray] = 0.3, eps_step: Union[int, float, np.ndarray] = 0.1, @@ -99,10 +99,10 @@ def __init__( ‘runs/exp1’, ‘runs/exp2’, etc. for each new experiment to compare across them. :param verbose: Show progress bars. """ - if not estimator.all_framework_preprocessing: - raise NotImplementedError( - "The framework-specific implementation only supports framework-specific preprocessing." - ) + # if not estimator.all_framework_preprocessing: + # raise NotImplementedError( + # "The framework-specific implementation only supports framework-specific preprocessing." + # ) if summary_writer and num_random_init > 1: raise ValueError("TensorBoard is not yet supported for more than 1 random restart (num_random_init>1).") diff --git a/art/estimators/speech_recognition/pytorch_icefall.py b/art/estimators/speech_recognition/pytorch_icefall.py new file mode 100644 index 0000000000..0d6638a869 --- /dev/null +++ b/art/estimators/speech_recognition/pytorch_icefall.py @@ -0,0 +1,524 @@ +# MIT License +# +# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2021 +# +# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated +# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the +# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit +# persons to whom the Software is furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the +# Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +""" +This module implements the task specific estimator for Icefall, an end-to-end speech recognition toolkit based on +k2-fsa. + +| Repository link: https://github.com/k2-fsa/icefall/tree/master +""" +import ast +from argparse import Namespace +import logging +from typing import Dict, List, Optional, Tuple, TYPE_CHECKING, Union + +import numpy as np + +from art import config +from art.estimators.pytorch import PyTorchEstimator +from art.estimators.speech_recognition.speech_recognizer import SpeechRecognizerMixin, PytorchSpeechRecognizerMixin +from art.utils import get_file + +if TYPE_CHECKING: + # pylint: disable=C0412 + import torch + # import icefall - what's the role of type checking here? + + from art.defences.preprocessor.preprocessor import Preprocessor + from art.defences.postprocessor.postprocessor import Postprocessor + from art.utils import CLIP_VALUES_TYPE, PREPROCESSING_TYPE + +logger = logging.getLogger(__name__) + + + +class PyTorchIcefall(PytorchSpeechRecognizerMixin, SpeechRecognizerMixin, PyTorchEstimator): + """ + This class implements a model-specific automatic speech recognizer using the end-to-end speech recognizer in + Icefall. + + | Repository link: https://github.com/k2-fsa/icefall/tree/master + """ + + from icefall.utils import AttributeDict + from pathlib import Path + import k2 + estimator_params = PyTorchEstimator.estimator_params + ["icefall_config_filepath"] + + + def __init__( + self, + icefall_config_filepath: Optional[str] = None, + model: Optional[str] = None, + clip_values: Optional["CLIP_VALUES_TYPE"] = None, + preprocessing_defences: Union["Preprocessor", List["Preprocessor"], None] = None, + postprocessing_defences: Union["Postprocessor", List["Postprocessor"], None] = None, + preprocessing: "PREPROCESSING_TYPE" = None, + device_type: str = "gpu", + verbose: bool = True, + ): + """ + Initialization of an instance PyTorchIcefall + + :param icefall_config_filepath: The path of the Icefall config file (yaml) + :param model: The choice of pretrained model if a pretrained model is required. + :param clip_values: Tuple of the form `(min, max)` of floats or `np.ndarray` representing the minimum and + maximum values allowed for features. If floats are provided, these will be used as the range of all + features. If arrays are provided, each value will be considered the bound for a feature, thus + the shape of clip values needs to match the total number of features. + :param preprocessing_defences: Preprocessing defence(s) to be applied by the estimator. + :param postprocessing_defences: Postprocessing defence(s) to be applied by the estimator. + :param preprocessing: Tuple of the form `(subtrahend, divisor)` of floats or `np.ndarray` of values to be + used for data preprocessing. The first value will be subtracted from the input. The input will then + be divided by the second one. + :param device_type: Type of device to be used for model and tensors, if `cpu` run on CPU, if `gpu` run on GPU + if available otherwise run on CPU. + """ + import torch + import yaml + from transducer.decode import get_id2word + + self.icefall_config_filepath = icefall_config_filepath + + # Super initialization + super().__init__( + model=None, + clip_values=clip_values, + channels_first=None, + preprocessing_defences=preprocessing_defences, + postprocessing_defences=postprocessing_defences, + preprocessing=preprocessing, + ) + self.verbose = verbose + + # Check clip values + if self.clip_values is not None: + if not np.all(self.clip_values[0] == -1): # pragma: no cover + raise ValueError("This estimator requires normalized input audios with clip_vales=(-1, 1).") + if not np.all(self.clip_values[1] == 1): # pragma: no cover + raise ValueError("This estimator requires normalized input audios with clip_vales=(-1, 1).") + + # Check postprocessing defences + if self.postprocessing_defences is not None: # pragma: no cover + raise ValueError("This estimator does not support `postprocessing_defences`.") + + # Set cpu/gpu device + self._device = torch.device("cpu") + if torch.cuda.is_available(): + self._device = torch.device("cuda", 0) + + # construct icefall args + params = self.get_params() + + + # load checkpoint# load_model_ensemble + self.transducer_model = self.get_transducer_model(params) + self.word2ids = self.get_word2id(params) + self.get_id2word = get_id2word(params) + + + if params.avg == 1: + from icefall.checkpoint import load_checkpoint + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", self.transducer_model) + else: + from icefall.checkpoint import average_checkpoints + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if start >= 0: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + self.transducer_model.load_state_dict(average_checkpoints(filenames)) + + + + self.transducer_model.to(self.device) + + + def get_params(self) -> AttributeDict: + """Return a dict containing training parameters. + + All training related parameters that are not passed from the commandline + is saved in the variable `params`. + + Commandline options are merged into `params` after they are parsed, so + you can also access them via `params`. + + Explanation of options saved in `params`: + + - lr: It specifies the initial learning rate + + - feature_dim: The model input dim. It has to match the one used + in computing features. + + - weight_decay: The weight_decay for the optimizer. + + - subsampling_factor: The subsampling factor for the model. + + - start_epoch: If it is not zero, load checkpoint `start_epoch-1` + and continue training from that checkpoint. + + - best_train_loss: Best training loss so far. It is used to select + the model that has the lowest training loss. It is + updated during the training. + + - best_valid_loss: Best validation loss so far. It is used to select + the model that has the lowest validation loss. It is + updated during the training. + + - best_train_epoch: It is the epoch that has the best training loss. + + - best_valid_epoch: It is the epoch that has the best validation loss. + + - batch_idx_train: Used to writing statistics to tensorboard. It + contains number of batches trained so far across + epochs. + + - log_interval: Print training loss if batch_idx % log_interval` is 0 + + - valid_interval: Run validation if batch_idx % valid_interval` is 0 + + - reset_interval: Reset statistics if batch_idx % reset_interval is 0 + + + """ + from icefall.utils import AttributeDict + from pathlib import Path + params = AttributeDict( + { + "lr": 1e-3, + "feature_dim": 23, + "weight_decay": 1e-6, + "start_epoch": 0, + "best_train_loss": float("inf"), + "best_valid_loss": float("inf"), + "best_train_epoch": -1, + "best_valid_epoch": -1, + "batch_idx_train": 0, + "log_interval": 100, + "reset_interval": 20, + "valid_interval": 300, + "exp_dir": Path("transducer/exp_lr1e-4"), + "lang_dir": Path("data/lm/frames"), + # encoder/decoder params + "vocab_size": 3, # blank, yes, no + "blank_id": 0, + "embedding_dim": 32, + "hidden_dim": 16, + "num_decoder_layers": 4, + "epoch": 1, + "avg": 1 + } + ) + + vocab_size = 1 + with open(Path(params.lang_dir) / 'lexicon_disambig.txt') as lexicon_file: + for line in lexicon_file: + if len(line.strip()) > 0:# and '' not in line and '' not in line and '' not in line: + vocab_size += 1 + params.vocab_size = vocab_size + + return params + + def predict(self, x: np.ndarray, batch_size: int = 1, **kwargs) -> np.ndarray: + """ + Perform prediction for a batch of inputs. + + :param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch + could have different lengths. A possible example of `x` could be: + `x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`. + :param batch_size: Batch size. + :return: Transcription as a numpy array of characters. A possible example of a transcription return + is `np.array(['SIXTY ONE', 'HELLO'])`. + """ + from transducer.beam_search import greedy_search + + assert batch_size == 1 + + x_in = np.empty(len(x), dtype=object) + x_in[:] = list(x) + assert len(x) == 1 + + # Put the model in the eval mode + self.transducer_model.eval() + + # Apply preprocessing + x_preprocessed, _ = self._apply_preprocessing(x_in, y=None, fit=False) + + # Run prediction with batch processing + decoded_output = [] + # result_output_sizes = np.zeros(x_preprocessed.shape[0], dtype=int) + num_batch = int(np.ceil(len(x_preprocessed) / float(batch_size))) + + for sample_index in range(num_batch): + wav = x_preprocessed[sample_index] # np.array, len = wav len + shape = wav.shape + + # extract features + x = self.transform_model_input(x=torch.tensor(wav)) + + print(shape) + encoder_out, encoder_out_lens = self.transducer_model.encoder(x=x, x_lens=shape) + hyp = greedy_search(model=self.transducermodel, encoder_out=encoder_out, id2word=self.get_id2word) + decoded_output.append(hyp) + + return np.concatenate(decoded_output) + + def get_transducer_model(self, params: AttributeDict): + from transducer.decoder import Decoder + from transducer.conformer import Conformer + from transducer.joiner import Joiner + from transducer.model import Transducer + encoder = Conformer( + num_features=params.feature_dim, + output_dim=params.hidden_dim, + ) + decoder = Decoder( + vocab_size=params.vocab_size, + embedding_dim=params.embedding_dim, + blank_id=params.blank_id, + num_layers=params.num_decoder_layers, + hidden_dim=params.hidden_dim, + embedding_dropout=0.4, + rnn_dropout=0.4, + ) + joiner = Joiner(input_dim=params.hidden_dim, output_dim=params.vocab_size) + transducer = Transducer(encoder=encoder, decoder=decoder, joiner=joiner) + + return transducer + + def get_word2id(self, params): + from pathlib import Path + word2id = {} + + # 0 is blank + id = 1 + with open(Path(params.lang_dir) / 'lexicon_disambig.txt') as lexicon_file: + for line in lexicon_file: + if len(line.strip()) > 0: + word2id[line.split()[0]] = id + id += 1 + + return word2id + + def loss_gradient(self, x, y: np.ndarray, **kwargs) -> np.ndarray: + import k2 + + x = torch.autograd.Variable(x, requires_grad=True) + features, _, _ = self.transform_model_input(x=x, compute_gradient=True) + x_lens = torch.tensor([features.shape[1]]).to(torch.int32).to(self.device) + y = k2.RaggedTensor(y) + loss = self.transducer_model(x=features, x_lens=x_lens, y=y) + loss.backward() + + # Get results + results = x.grad + results = self._apply_preprocessing_gradient(x, results) + return results + + def fit(self, x: np.ndarray, y: np.ndarray, batch_size: int = 128, nb_epochs: int = 10, **kwargs) -> None: + """ + Fit the estimator on the training set `(x, y)`. + + :param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch + could have different lengths. A possible example of `x` could be: + `x = np.array([np.array([0.1, 0.2, 0.1, 0.4]), np.array([0.3, 0.1])])`. + :param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different + lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. + :param batch_size: Size of batches. + :param nb_epochs: Number of epochs to use for training. + :param kwargs: Dictionary of framework-specific arguments. This parameter is not currently supported for PyTorch + and providing it takes no effect. + """ + raise NotImplementedError + + def transform_model_input( + self, + x, + y=None, + compute_gradient=False + ): + """ + Transform the user input space into the model input space. + :param x: Samples of shape (nb_samples, seq_length). Note that, it is allowable that sequences in the batch + could have different lengths. A possible example of `x` could be: + `x = np.ndarray([[0.1, 0.2, 0.1, 0.4], [0.3, 0.1]])`. + :param y: Target values of shape (nb_samples). Each sample in `y` is a string and it may possess different + lengths. A possible example of `y` could be: `y = np.array(['SIXTY ONE', 'HELLO'])`. + :param compute_gradient: Indicate whether to compute gradients for the input `x`. + :param tensor_input: Indicate whether input is tensor. + :param real_lengths: Real lengths of original sequences. + :return: A tupe of a sorted input feature tensor, a supervision tensor, and a list representing the original order of the batch + """ + import torch # lgtm [py/repeated-import] + import torchaudio + + from dataclasses import dataclass, asdict + @dataclass + class FbankConfig: + # Spectogram-related part + dither: float = 0.0 + window_type: str = "povey" + # Note that frame_length and frame_shift will be converted to milliseconds before torchaudio/Kaldi sees them + frame_length: float = 0.025 + frame_shift: float = 0.01 + remove_dc_offset: bool = True + round_to_power_of_two: bool = True + energy_floor: float = 1e-10 + min_duration: float = 0.0 + preemphasis_coefficient: float = 0.97 + raw_energy: bool = True + + # Fbank-related part + low_freq: float = 20.0 + high_freq: float = -400.0 + num_mel_bins: int = 40 + use_energy: bool = False + vtln_low: float = 100.0 + vtln_high: float = -500.0 + vtln_warp: float = 1.0 + + params = asdict(FbankConfig()) + params.update({ + "sample_frequency": 16000, + "snip_edges": False, + "num_mel_bins": 23 + }) + params['frame_shift'] *= 1000.0 + params['frame_length'] *= 1000.0 + + + feature_list = [] + num_frames = [] + supervisions = {} + + for i in range(len(x)): + isnan = torch.isnan(x[i]) + nisnan=torch.sum(isnan).item() + if nisnan > 0: + logging.info('input isnan={}/{} {}'.format(nisnan, x[i].shape, x[i][isnan], torch.max(torch.abs(x[i])))) + + + xx = x[i] + xx = xx.to(self._device) + feat_i = torchaudio.compliance.kaldi.fbank(xx.unsqueeze(0), **params) # [T, C] + feat_i = feat_i.transpose(0, 1) #[C, T] + feature_list.append(feat_i) + num_frames.append(feat_i.shape[1]) + + indices = sorted(range(len(feature_list)), + key=lambda i: feature_list[i].shape[1], reverse=True) + indices = torch.LongTensor(indices) + num_frames = torch.IntTensor([num_frames[idx] for idx in indices]) + start_frames = torch.zeros(len(x), dtype=torch.int) + + supervisions['sequence_idx'] = indices.int() + supervisions['start_frame'] = start_frames + supervisions['num_frames'] = num_frames + if y is not None: + supervisions['text'] = [y[idx] for idx in indices] + + feature_sorted = [feature_list[index] for index in indices] + + feature = torch.zeros(len(feature_sorted), feature_sorted[0].size(0), feature_sorted[0].size(1), device=self._device) + + for i in range(len(x)): + feature[i, :, :feature_sorted[i].size(1)] = feature_sorted[i] + + return feature.transpose(1, 2), supervisions, indices + + + def to_training_mode(self) -> None: + """ + Put the estimator in the training mode. + """ + self.transducer_model.train() + + @property + def sample_rate(self) -> int: + """ + Get the sampling rate. + + :return: The audio sampling rate. + """ + return self._sampling_rate + + @property + def input_shape(self) -> Tuple[int, ...]: + """ + Return the shape of one input sample. + + :return: Shape of one input sample. + """ + return self._input_shape # type: ignore + + @property + def model(self): + """ + Get current model. + + :return: Current model. + """ + return self._model + + @property + def device(self) -> "torch.device": + """ + Get current used device. + + :return: Current used device. + """ + return self._device + + def get_activations( + self, x: np.ndarray, layer: Union[int, str], batch_size: int, framework: bool = False + ) -> np.ndarray: + raise NotImplementedError + + def compute_loss(self, x: np.ndarray, y: np.ndarray, **kwargs) -> np.ndarray: + raise NotImplementedError + + def compute_loss_and_decoded_output( + self, masked_adv_input: "torch.Tensor", original_output: np.ndarray, **kwargs + ) -> Tuple["torch.Tensor", np.ndarray]: + """ + Compute loss function and decoded output. + + :param masked_adv_input: The perturbed inputs. + :param original_output: Target values of shape (nb_samples). Each sample in `original_output` is a string and + it may possess different lengths. A possible example of `original_output` could be: + `original_output = np.array(['SIXTY ONE', 'HELLO'])`. + :return: The loss and the decoded output. + """ + from transducer.beam_search import greedy_search + import k2 + + assert len(original_output[0]) == 1 + num_batch = len(original_output[0]) + decoded_output = [] + + for sample_index in range(num_batch): + features, _, _ = self.transform_model_input(x=masked_adv_input[sample_index]) + x_lens = torch.tensor([features.shape[1]]).to(torch.int32).to(self.device) + y = k2.RaggedTensor(original_output[sample_index]) + loss = self.transducer_model(x=features, x_lens=x_lens, y=y) + + encoder_out, encoder_out_lens = self.transducer_model.encoder(x=features, x_lens=masked_adv_input[sample_index].shape) + hyp = greedy_search(model=self.transducermodel, encoder_out=encoder_out, id2word=self.get_id2word) + decoded_output.append(hyp) + + return np.concatenate(decoded_output) \ No newline at end of file diff --git a/notebooks/asr_icefall_examples.ipynb b/notebooks/asr_icefall_examples.ipynb new file mode 100644 index 0000000000..5e575fdb2a --- /dev/null +++ b/notebooks/asr_icefall_examples.ipynb @@ -0,0 +1,139 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ASR Icefall Examples\n", + "\n", + "This notebook demonstrates integrating Icefall with ART's speech recognition module.\n", + "\n", + "Icefall contains speech recognition recipes for K2-FSA. Repository link: https://github.com/k2-fsa/icefall\n", + "\n", + "---\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Preliminaries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/xli257/miniconda3/envs/slu_icefall/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "import torch\n", + "import numpy as np\n", + "import IPython.display as ipd\n", + "import matplotlib.pyplot as plt\n", + "from art.attacks.evasion.imperceptible_asr.imperceptible_asr_pytorch import ImperceptibleASRPyTorch\n", + "from art import config\n", + "from art.utils import get_file\n", + "\n", + "\n", + "# Set seed\n", + "np.random.seed(1234)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Audio Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 Download Data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "config.ART_DATA_PATH = \"~/slu\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/xli257/slu/icefall_st/egs/slu\n" + ] + } + ], + "source": [ + "# We assume that the data has been downloaded to data_dir\n", + "data_dir = os.path.join(config.ART_DATA_PATH, \"fluent_speech_commands_dataset\")\n", + "current_dir = %pwd\n", + "\n", + "icefall_dir = '/home/xli257/slu/icefall_st/egs/slu/'\n", + "\n", + "%cd $icefall_dir" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2 Create Model and Data Utilities" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from art.estimators.speech_recognition.pytorch_icefall import PyTorchIcefall\n", + "\n", + "speech_recognizer = PyTorchIcefall()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/tests/estimators/speech_recognition/test_pytorch_icefall.py b/tests/estimators/speech_recognition/test_pytorch_icefall.py new file mode 100644 index 0000000000..e2d08a82bb --- /dev/null +++ b/tests/estimators/speech_recognition/test_pytorch_icefall.py @@ -0,0 +1,124 @@ +# MIT License +# +# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2021 +# +# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated +# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the +# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit +# persons to whom the Software is furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the +# Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE +# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, +# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +import logging + +import numpy as np +import pytest + +from art.config import ART_NUMPY_DTYPE +from tests.utils import ARTTestException + +logger = logging.getLogger(__name__) + + +@pytest.mark.skip_module("icefall") +@pytest.mark.skip_framework("tensorflow", "tensorflow2v1", "keras", "kerastf", "mxnet", "non_dl_frameworks") +@pytest.mark.parametrize("device_type", ["cpu"]) +def test_pytorch_icefall(art_warning, expected_values, device_type): + import torch + + from art.estimators.speech_recognition.pytorch_icefall import PyTorchIcefall + + try: + # Initialize a speech recognizer + speech_recognizer = PyTorchIcefall() + + # Load data for testing + expected_data = expected_values() + + x1 = expected_data["x1"] + x2 = expected_data["x2"] + x3 = expected_data["x3"] + # expected_sizes = expected_data["expected_sizes"] + expected_transcriptions1 = expected_data["expected_transcriptions1"] + expected_transcriptions2 = expected_data["expected_transcriptions2"] + # expected_probs = expected_data["expected_probs"] + expected_gradients1 = expected_data["expected_gradients1"] + expected_gradients2 = expected_data["expected_gradients2"] + expected_gradients3 = expected_data["expected_gradients3"] + + # Create signal data + x = np.array( + [ + np.array(x1 * 100, dtype=ART_NUMPY_DTYPE), + np.array(x2 * 100, dtype=ART_NUMPY_DTYPE), + np.array(x3 * 100, dtype=ART_NUMPY_DTYPE), + ] + ) + + # Create labels + y = np.array(["SIX", "HI", "GOOD"]) + + # Test probability outputs + # probs, sizes = speech_recognizer.predict(x, batch_size=2,) + # + # np.testing.assert_array_almost_equal(probs[1][1], expected_probs, decimal=3) + # np.testing.assert_array_almost_equal(sizes, expected_sizes) + + # Test transcription outputs + _ = speech_recognizer.predict(x[[0]], batch_size=2) + + # Test transcription outputs + transcriptions = speech_recognizer.predict(x, batch_size=2) + + assert (expected_transcriptions1 == transcriptions).all() + + # Test transcription outputs, corner case + transcriptions = speech_recognizer.predict(np.array([x[0]]), batch_size=2) + + assert (expected_transcriptions2 == transcriptions).all() + + # Now test loss gradients + # Compute gradients + grads = speech_recognizer.loss_gradient(x, y) + + assert grads[0].shape == (1300,) + assert grads[1].shape == (1500,) + assert grads[2].shape == (1400,) + + np.testing.assert_array_almost_equal(grads[0][:20], expected_gradients1, decimal=-2) + np.testing.assert_array_almost_equal(grads[1][:20], expected_gradients2, decimal=-2) + np.testing.assert_array_almost_equal(grads[2][:20], expected_gradients3, decimal=-2) + + # Train the estimator + with pytest.raises(NotImplementedError): + speech_recognizer.fit(x=x, y=y, batch_size=2, nb_epochs=5) + + # Compute local shape + local_batch_size = len(x) + real_lengths = np.array([x_.shape[0] for x_ in x]) + local_max_length = np.max(real_lengths) + + # Reformat input + input_mask = np.zeros([local_batch_size, local_max_length], dtype=np.float64) + original_input = np.zeros([local_batch_size, local_max_length], dtype=np.float64) + + for local_batch_size_idx in range(local_batch_size): + input_mask[local_batch_size_idx, : len(x[local_batch_size_idx])] = 1 + original_input[local_batch_size_idx, : len(x[local_batch_size_idx])] = x[local_batch_size_idx] + + # compute_loss_and_decoded_output + loss, decoded_output = speech_recognizer.compute_loss_and_decoded_output( + masked_adv_input=torch.tensor(original_input), original_output=y + ) + + assert loss.detach().numpy() == pytest.approx(46.3156, abs=20.0) + assert all(decoded_output == ["EH", "EH", "EH"]) + + except ARTTestException as e: + art_warning(e)