diff --git a/art/experimental/attacks/evasion/fast_gradient.py b/art/experimental/attacks/evasion/fast_gradient.py index 496e240513..f29517f244 100644 --- a/art/experimental/attacks/evasion/fast_gradient.py +++ b/art/experimental/attacks/evasion/fast_gradient.py @@ -155,8 +155,10 @@ def _minimal_perturbation(self, x: np.ndarray, y: np.ndarray, mask: np.ndarray) :param y: Target values (class labels) one-hot-encoded of shape (nb_samples, nb_classes). :return: An array holding the adversarial examples. """ - adv_x = copy.deepcopy(x) + partial_stop_condition: Union[bool, np.ndarray, np.bool_] + current_eps: Union[int, float, np.ndarray] + adv_x = copy.deepcopy(x) # Compute perturbation with implicit batching for batch_id in range(int(np.ceil(adv_x.shape[0] / float(self.batch_size)))): batch_index_1, batch_index_2 = ( @@ -268,6 +270,10 @@ def _compute( decay: Optional[float] = None, momentum: Optional[np.ndarray] = None, ) -> np.ndarray: + + batch_eps: Union[int, float, np.ndarray] + batch_eps_step: Union[int, float, np.ndarray] + if random_init: n = x.shape[0] m = np.prod(x.shape[1:]).item()