diff --git a/.github/workflows/Build.yml b/.github/workflows/Build.yml
index 980bffc..c923cdf 100644
--- a/.github/workflows/Build.yml
+++ b/.github/workflows/Build.yml
@@ -287,13 +287,17 @@ jobs:
- name: Step 6 - Test TSSaliencyExplainer
run: python ./tests/tssaliency/test_tssaliency.py
+ # tslime deps are already satisfied.
+ - name: Step 7 - Test TSLimeExplainer
+ run: python ./tests/tslime/test_tslime.py
+
build-imd-on-py38-310:
# The type of runner that the job will run on
runs-on: "${{ matrix.os }}"
strategy:
fail-fast: false
matrix:
-# os: [ubuntu-18.04, ubuntu-latest, macos-latest, windows-latest]
+ # os: [ubuntu-18.04, ubuntu-latest, macos-latest, windows-latest]
os: [ubuntu-20.04]
python-version: ["3.10"]
diff --git a/aix360/algorithms/tslime/__init__.py b/aix360/algorithms/tslime/__init__.py
new file mode 100644
index 0000000..43fc589
--- /dev/null
+++ b/aix360/algorithms/tslime/__init__.py
@@ -0,0 +1 @@
+from .tslime import TSLimeExplainer
diff --git a/aix360/algorithms/tslime/surrogate.py b/aix360/algorithms/tslime/surrogate.py
new file mode 100644
index 0000000..239f040
--- /dev/null
+++ b/aix360/algorithms/tslime/surrogate.py
@@ -0,0 +1,50 @@
+from abc import abstractmethod
+import numpy as np
+from sklearn.linear_model import LinearRegression
+
+
+class LinearSurrogateModel:
+ """Linear Interpretable Surrogate Model Wrapper."""
+
+ def __init__(self, model):
+ self.model = model
+
+ def fit(self, *args, **kwargs):
+ self.model.fit(*args, **kwargs)
+
+ def predict(self, *args, **kwargs):
+ return self.model.predict(*args, **kwargs)
+
+ @abstractmethod
+ def get_weights(self):
+ pass
+
+
+class LinearRegressionSurrogate(LinearSurrogateModel):
+ """Linear Interpretable Surrogate Model using LinearRegression from Scikit-Learn."""
+
+ def __init__(self):
+ super(LinearRegressionSurrogate, self).__init__(LinearRegression())
+
+ def get_weights(self):
+ return self.model.coef_
+
+
+def linear_surrogate_weights(
+ x_perturbations: np.ndarray,
+ y_perturbations: np.ndarray,
+ surrogate: LinearSurrogateModel = None,
+):
+ """Function to compute weights from a linear interpretable model
+ using provided time series pertubations."""
+
+ if surrogate is None:
+ surrogate = LinearRegressionSurrogate()
+
+ surrogate.fit(
+ x_perturbations.reshape(x_perturbations.shape[0], -1),
+ y_perturbations.reshape(y_perturbations.shape[0], -1),
+ )
+
+ # retrieve weights
+ return surrogate, surrogate.get_weights()
diff --git a/aix360/algorithms/tslime/tslime.py b/aix360/algorithms/tslime/tslime.py
new file mode 100644
index 0000000..4501e8b
--- /dev/null
+++ b/aix360/algorithms/tslime/tslime.py
@@ -0,0 +1,217 @@
+import warnings
+import numpy as np
+import pandas as pd
+from typing import Union, List, Callable
+from aix360.algorithms.tslbbe import TSLocalBBExplainer
+from aix360.algorithms.tsutils.tsframe import tsFrame, to_np_array
+from aix360.algorithms.tslime.surrogate import (
+ linear_surrogate_weights,
+ LinearSurrogateModel,
+)
+from aix360.algorithms.tsutils.tsperturbers.perturbed_data_generator import (
+ PerturbedDataGenerator,
+)
+from aix360.algorithms.tsutils.tsperturbers.tsperturber import (
+ TSPerturber,
+ BlockSelector,
+)
+
+
+class TSLimeExplainer(TSLocalBBExplainer):
+ """Time Series Local Interpretable Model-agnostic Explainer (TSLime) is a model-agnostic local time series
+ explainer. LIME (Locally interpretable Model agnostic explainer) is a popular algorithm for local
+ explanation. LIME explains the model behavior by approximating the model response with linear models.
+ LIME algorithm specifically assumes tabular data format, where each row is a data point, and columns
+ are features. A generalization of LIME algorithm for image data uses super pixel based perturbation.
+ TSLIME generalizes LIME algorithm for time series context.
+
+ TSLIME uses time series perturbation methods to produce a local input perturbation, and linear model
+ surrogate which best approximates the model response. TSLime produces an interpretable explanation.
+ The explanation weights produced by the TSLime explanation indicates model local sensitivity.
+
+ References:
+ .. [##] Marco Tulio Ribeiro et al. '"Why Should I Trust You?": Explaining the Predictions of Any Classifier'
+ https://arxiv.org/abs/1602.04938
+ """
+
+ def __init__(
+ self,
+ model: Callable,
+ input_length: int,
+ n_perturbations: int = 2000,
+ relevant_history: int = None,
+ perturbers: List[Union[TSPerturber, dict]] = None,
+ local_interpretable_model: LinearSurrogateModel = None,
+ random_seed: int = None,
+ ):
+ """Initializer for TSLimeExplainer
+
+ Args:
+ model (Callable): Callable object produces a prediction as numpy array
+ for a given input as numpy array.
+ input_length (int): Input (history) length used for input model.
+ n_perturbations (int): Number of perturbed instance for TSExplanation. Defaults to 25.
+ relevant_history (int): Interested window size for explanations. The explanation is
+ computed for selected latest window of length `relevant_history`. If `input_length=20`
+ and `relevant_history=10`, explanation is computed for last 10 time points. If None,
+ relevant_history is set to input_length. Defaults to None.
+ perturbers (List[TSPerturber, dict]): data perturbation algorithm specification by TSPerturber
+ instance or dict. Allowed values for "type" key in dictionary are block-bootstrap, frequency,
+ moving-average, shift. Block-bootstrap split the time series into contiguous
+ chunks called blocks, for each block noise is estimated and noise is exchanged
+ and added to the signal between randomly selected blocks. Moving-average perturbation
+ maintains the moving mean of the time series data with the specified window length,
+ but add perturbed noise with similar distribution as the data. Frequency
+ perturber performs FFT on the noise, and removes random high frequency
+ components from the noise estimates. Number of frequencies to be removed
+ is specified by the truncate_frequencies argument. Shift perturber adds
+ random upward or downward shift in the data value over time continuous
+ blocks. If not provided default perturber is block-bootstrap. Defaults to None.
+ local_interpretable_model (LinearSurrogateModel): Local interpretable model, a surrogate that
+ is to be trained on the given input time series neighborhood. This model is used to provide
+ local weights for each time point in the selected timeseries. If None, sklearn's Linear Regression
+ model, aix360.algorithms.tslime.surrogate.LinearRegressionSurrogate is used. Defaults to None.
+ random_seed (int): random seed to get consistent results. Refer to numpy random state.
+ Defaults to None.
+ """
+ self.model = model
+
+ if perturbers is None:
+ perturbers = [
+ dict(type="block-bootstrap"),
+ ]
+
+ block_selector = BlockSelector(start=-input_length, end=None)
+ perturber = PerturbedDataGenerator(
+ perturber_engines=perturbers,
+ block_selector=block_selector,
+ )
+ self._parameters = dict()
+
+ # Input Specification
+ self.input_length = input_length
+
+ # Surrogate training params
+ self.local_interpretable_model = local_interpretable_model
+ self.n_perturbations = n_perturbations
+ self.perturber = perturber
+
+ # Explanation params
+ if relevant_history is None:
+ relevant_history = input_length
+
+ self.relevant_history = relevant_history
+ self.random_seed = random_seed
+
+ def get_params(self):
+ return self._parameters.copy()
+
+ def set_params(self, *argv, **kwargs):
+ self._parameters.update(kwargs)
+ return self
+
+ def _ts_perturb(self, x):
+ # create perturbations
+ x_perturbations = None
+ y_perturbations = None
+
+ x_perturbations, _ = self.perturber.fit_transform(
+ x, None, n=self.n_perturbations
+ )
+
+ x_perturbations = np.asarray(x_perturbations).astype("float")
+ return x_perturbations
+
+ def _batch_predict(self, x_perturbations):
+ f_predict_samples = None
+
+ try:
+ f_predict_samples = self.model(x_perturbations)
+ except Exception as ex:
+ warnings.warn(
+ "Batch scoring failed with error: {}. Scoring sequentially...".format(
+ ex
+ )
+ )
+ f_predict_samples = [
+ self.model(x_perturbations[i]) for i in range(x_perturbations.shape[0])
+ ]
+ f_predict_samples = np.array(f_predict_samples)
+
+ return f_predict_samples
+
+ def explain_instance(self, ts: tsFrame, **explain_params):
+ """Explain the prediction made by the time series model at a certain point in time
+ (**local explanation**).
+
+ Args
+ ts (tsFrame): Input time series signal in ``tsFrame`` format. This can
+ be generated using :py:mod:`aix360.algorithms.tsframe.tsFrame`.
+ A ``tsFrame`` is a pandas ``DataFrame`` indexed by ``Timestamp`` objects
+ (that is ``DatetimeIndex``). Each column corresponds to an input feature.
+ explain_params: Arbitrary explainer parameters.
+
+ Returns:
+ explanation (Union[List[Dict], Dict]): Dictionary with keys: input_data, history_weights,
+ model_prediction, surrogate_prediction, x_perturbations, y_perturbations.
+ """
+ return super(TSLimeExplainer, self).explain_instance(
+ ts=ts, ts_related=None, **explain_params
+ )
+
+ def _explain_instance(
+ self,
+ ts: tsFrame,
+ **explain_params,
+ ):
+ # for consistent results. Is it possible here?
+ np.random.seed(self.random_seed)
+
+ ### input validation
+ if ts.shape[0] < self.input_length:
+ raise ValueError(
+ "Error: expecting input length {} but found {}.".format(
+ self.input_length, ts.shape[0]
+ )
+ )
+ xc = ts[-self.input_length :]
+ xc = to_np_array(xc)
+
+ ### generate time series perturbations
+ x_perturbations = self._ts_perturb(x=xc)
+
+ ### generate y
+ y_perturbations = self._batch_predict(x_perturbations)
+ if y_perturbations is None:
+ raise Exception(
+ "Model prediction could not be computed for gradient samples."
+ )
+
+ y_perturbations = np.asarray(y_perturbations).astype("float")
+
+ ### select k time points - relevant_history
+ x_perturbations = x_perturbations[
+ :, -self.relevant_history :
+ ] # consider only k time points
+
+ xc_relevant = xc[-self.relevant_history :, :].reshape(1, -1)
+
+ ### compute weights using a linear model
+ surrogate, history_weights = linear_surrogate_weights(
+ surrogate=self.local_interpretable_model,
+ x_perturbations=x_perturbations,
+ y_perturbations=y_perturbations,
+ )
+
+ model_prediction = self._batch_predict(xc)
+
+ surrogate_prediction = surrogate.predict(xc_relevant)
+ explanation = {
+ "input_data": ts,
+ "model_prediction": model_prediction,
+ "surrogate_prediction": surrogate_prediction,
+ "history_weights": history_weights.reshape(self.relevant_history, -1),
+ "x_perturbations": x_perturbations,
+ "y_perturbations": y_perturbations,
+ }
+ return explanation
diff --git a/aix360/algorithms/tssaliency/tssaliency.py b/aix360/algorithms/tssaliency/tssaliency.py
index 40ba80b..1ed4d86 100644
--- a/aix360/algorithms/tssaliency/tssaliency.py
+++ b/aix360/algorithms/tssaliency/tssaliency.py
@@ -115,7 +115,7 @@ def explain_instance(self, ts: tsFrame, **explain_params):
def _explain_instance(
self,
- ts: Union["tsFrame", np.ndarray],
+ ts: tsFrame,
**explain_params,
):
# fix seed for consistent results
diff --git a/aix360/algorithms/tsutils/tsperturbers/block_bootstrap_perturber.py b/aix360/algorithms/tsutils/tsperturbers/block_bootstrap_perturber.py
index a9e1144..092ad74 100644
--- a/aix360/algorithms/tsutils/tsperturbers/block_bootstrap_perturber.py
+++ b/aix360/algorithms/tsutils/tsperturbers/block_bootstrap_perturber.py
@@ -68,7 +68,7 @@ def _transform(
block_swap = self._parameters.get("block_swap")
x_res = [self._residual.copy() for _ in range(n_perturbations)]
- margin = self._residual.shape[0] - block_length
+ margin = self._residual.shape[0] - block_length + 1
for _ in range(block_swap):
if block_selector is None:
from_point = np.random.randint(
diff --git a/aix360/algorithms/tsutils/tsperturbers/perturber_utils.py b/aix360/algorithms/tsutils/tsperturbers/perturber_utils.py
index 8b470b5..c22ee0f 100644
--- a/aix360/algorithms/tsutils/tsperturbers/perturber_utils.py
+++ b/aix360/algorithms/tsutils/tsperturbers/perturber_utils.py
@@ -25,11 +25,11 @@ def ts_rolling_mean(
if isinstance(ts, np.ndarray):
if len(ts.shape) == 1:
ts = ts.reshape(-1, 1)
- ts = ts.astype("float32")
+ ts = ts.astype("float")
n_obs, n_vars = ts.shape
den = np.convolve(
- np.ones(n_obs), np.ones(window_size, dtype="float32"), "same"
- ).astype("float32")
+ np.ones(n_obs), np.ones(window_size, dtype="float"), "same"
+ ).astype("float")
df = np.asarray(
[
np.convolve(ts[:, i], np.ones(window_size), "same") / den
@@ -51,8 +51,8 @@ def ts_split_mean_residual(
format.
Args:
- ts (Union[tsFrame, numpy ndarray]): input time series as dataframe or numpy array
- window_size (int): numer of observation for averaging.
+ ts (Union[tsFrame, numpy ndarray]): input time series as tsFrame or numpy array
+ window_size (int): number of observations for averaging.
Returns:
tuple (Union[Tuple[numpy ndarray, numpy ndarray], Tuple[tsFrame, tsFrame]]): depending
diff --git a/aix360/datasets/sunspots_dataset.py b/aix360/datasets/sunspots_dataset.py
index 47e2b27..24d4470 100644
--- a/aix360/datasets/sunspots_dataset.py
+++ b/aix360/datasets/sunspots_dataset.py
@@ -14,10 +14,12 @@ class SunspotDataset:
References:
.. [#1] Andrews, D. F. and Herzberg, A. M., "Data: A Collection of Problems from
- Many Fields for the Student and Research Worker,"
- New York: Springer-Verlag, 1985.
+ Many Fields for the Student and Research Worker,"
+ New York: Springer-Verlag, 1985.
.. [#2] https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/sunspots.html
.. [#3] https://r-data.pmagunia.com/dataset/r-dataset-package-datasets-sunspots
+ .. [#4] Avishek Pal, PKS Prakash, "Practical Time Series Analysis"
+ https://github.com/PacktPublishing/Practical-Time-Series-Analysis/
"""
@@ -30,16 +32,17 @@ def __init__(self):
self.data_file = os.path.realpath(
os.path.join(self.data_folder, "sunspots.csv")
)
- sunspots_url = (
- "https://r-data.pmagunia.com/system/files/datasets/dataset-61024.csv"
- )
+ sunspots_url = "https://raw.githubusercontent.com/PacktPublishing/Practical-Time-Series-Analysis/master/Data%20Files/monthly-sunspot-number-zurich-17.csv"
if not os.path.exists(self.data_file):
response = requests.get(sunspots_url)
- data = pd.read_csv(StringIO(response.text))
- data["time"] = pd.to_datetime(
- data["time"].apply(self._convert_to_date), format="%Y-%m"
+ data = pd.read_csv(
+ StringIO(response.text),
+ skiprows=0,
+ nrows=2820,
)
+ data.columns = ["time", "sunspots"]
+ data["time"] = pd.to_datetime(data["time"], format="%Y-%m")
data.to_csv(self.data_file, index=False)
diff --git a/docs/tslbbe.rst b/docs/tslbbe.rst
index c0915d3..23fb4c5 100644
--- a/docs/tslbbe.rst
+++ b/docs/tslbbe.rst
@@ -12,3 +12,9 @@ Time Series Saliency (TSSaliency) Explainer
.. autoclass:: aix360.algorithms.tssaliency.tssaliency.TSSaliencyExplainer
:members:
+
+Time Series Local Interpretable Model-agnostic Explainer (TSLime)
+-------------------------------------------------------------------------
+
+.. autoclass:: aix360.algorithms.tslime.tslime.TSLimeExplainer
+ :members:
diff --git a/examples/README.md b/examples/README.md
index d811b85..f7b5352 100644
--- a/examples/README.md
+++ b/examples/README.md
@@ -39,3 +39,7 @@ the user through the various steps of the notebook.
- [TSSaliencyExplainer using FordA dataset](./tssaliency/tssaliency_univariate_demo.ipynb)[[on nbviewer](https://nbviewer.org/github/Trusted-AI/AIX360/blob/master/examples/tssaliency/tssaliency_univariate_demo.ipynb)]
- [TSSaliencyExplainer using Climate dataset](./tssaliency/tssaliency_multivariate_demo.ipynb)[[on nbviewer](https://nbviewer.org/github/Trusted-AI/AIX360/blob/master/examples/tssaliency/tssaliency_multivariate_demo.ipynb)]
+
+- [TSLimeExplainer using FordA dataset](./tslime/tslime_univariate_demo.ipynb)[[on nbviewer](https://nbviewer.org/github/Trusted-AI/AIX360/blob/master/examples/tslime/tslime_univariate_demo.ipynb)]
+
+- [TSLimeExplainer using Climate dataset](./tslime/tslime_multivariate_demo.ipynb)[[on nbviewer](https://nbviewer.org/github/Trusted-AI/AIX360/blob/master/examples/tslime/tslime_multivariate_demo.ipynb)]
diff --git a/examples/tsice/tsice_demo.ipynb b/examples/tsice/tsice_demo.ipynb
index 9a198af..3485801 100644
--- a/examples/tsice/tsice_demo.ipynb
+++ b/examples/tsice/tsice_demo.ipynb
@@ -1,6 +1,7 @@
{
"cells": [
{
+ "attachments": {},
"cell_type": "markdown",
"id": "e8fe6486",
"metadata": {},
@@ -11,6 +12,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "e5ce6a26-07c8-4de2-897f-b81dc25a7ee5",
"metadata": {},
@@ -30,6 +32,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "3f02eae5-f871-457a-9750-526581319e8b",
"metadata": {},
@@ -66,6 +69,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "8c197693",
"metadata": {},
@@ -73,7 +77,7 @@
"\n",
"### Load Sunspot Dataset\n",
"- This example notebook uses sunspot dataset, a univariate dataset.\n",
- "- The `sunspots` dataset loads the monthly **sunspots** (`df`) recorded between the year 1749 to 1983. For more information on sunspots, you can refer to [R-sunspots](https://r-data.pmagunia.com/dataset/r-dataset-package-datasets-sunspots) and [other articles](https://en.wikipedia.org/wiki/Sunspot).\n",
+ "- The `sunspots` dataset loads the monthly **sunspots** (`df`) recorded between the year 1749 to 1983. For more information on sunspots, you can refer to [Avishek Pal, PKS Prakash, \"Practical Time Series Analysis\"](https://github.com/PacktPublishing/Practical-Time-Series-Analysis/), [R-sunspots](https://r-data.pmagunia.com/dataset/r-dataset-package-datasets-sunspots) and [other articles](https://en.wikipedia.org/wiki/Sunspot).\n",
"- TSICE expects the input time series in `tsFrame` data format. `aix360` exposes `tsFrame` utility that converts a regular time series to `DateTimeIndex` indexed `pd.DataFrame`.\n",
"- Split the univariate time series into sequential train and test subsets using `sklearn.model_selection.train_test_split` without shuffle."
]
@@ -154,6 +158,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "42904a77",
"metadata": {},
@@ -199,6 +204,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "c13f4180",
"metadata": {},
@@ -256,6 +262,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "2dec0adf-97c8-4dee-ba59-3b78999eb8c0",
"metadata": {},
@@ -282,6 +289,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "0d1310d4-830e-49a2-8bd7-2283d75b6479",
"metadata": {},
@@ -310,6 +318,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "f6a5c4cb-02c6-469d-8137-e921a49d0d54",
"metadata": {},
@@ -345,6 +354,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "2c1f6cc6",
"metadata": {},
@@ -391,6 +401,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "d305b238",
"metadata": {},
@@ -416,6 +427,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "e85da965-0438-42e6-a466-88fbd08aa0af",
"metadata": {},
@@ -451,6 +463,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "4e7d0465-eac4-4cc3-b60b-31dbc73e0353",
"metadata": {},
@@ -489,6 +502,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "b829a75b-dffb-4759-8ce9-334380707f83",
"metadata": {},
@@ -497,6 +511,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "3ed6b790-0fd3-4186-8c12-bcf1e14521b4",
"metadata": {},
@@ -542,6 +557,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "c33ac779-b97a-4f26-955f-d24577f2f459",
"metadata": {},
@@ -565,6 +581,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "5f738f01-85b2-4b1d-a66f-45ec66746198",
"metadata": {},
@@ -600,6 +617,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "844c5792-8130-4828-9330-9c3372ceb20e",
"metadata": {},
@@ -634,6 +652,7 @@
]
},
{
+ "attachments": {},
"cell_type": "markdown",
"id": "0852152e-8c82-4af5-8a6e-416c279697f4",
"metadata": {},
diff --git a/examples/tslime/tslime_multivariate_demo.ipynb b/examples/tslime/tslime_multivariate_demo.ipynb
new file mode 100644
index 0000000..7d1930f
--- /dev/null
+++ b/examples/tslime/tslime_multivariate_demo.ipynb
@@ -0,0 +1,658 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "48f88759-48eb-4f4f-a896-3b60aa00e003",
+ "metadata": {},
+ "source": [
+ "# TSLimeExplainer For Multivariate\n",
+ "\n",
+ "Advanced time series models are complex and often hard to interpret. Time Series Local Interpretable Model-agnostic Explainer (TSLime) is a model-agnostic local time series explainer. It explains a time series model behavior using an approximate linear model as surrogate. TSLime approximates model response by evaluating the model over time series samples generated by applying time series perturbation techniques. The explanation produced by TSLime is the weights of the linear model over different time point observations. The relative signed value of the explanation is indicative of model sensitivity at temporal resolution. TSLime uses the recent time context length for the local surrogate model fitting.\n",
+ "\n",
+ "TSLime supports univariate and multi-variate use cases related to forecasting, time series classification, regression and anomaly detection. This notebook demonstrates usage of TSLimeExplainer for Multi-variate data using [Jena Climate dataset](https://www.bgc-jena.mpg.de/wetter/) recorded by Max Planck Institute for Biogeochemistry."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "45c39595-265b-4480-b6c1-20339113ed33",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Notebook Workflow\n",
+ "- [Imports](#imports)\n",
+ "- [Load Dataset](#load_dataset)\n",
+ "- [Train Forecaster](#train_forecaster)\n",
+ "- [Initialize TSLimeExplainer](#initialize_tslime)\n",
+ "- [Compute Explanation](#compute_explanation)\n",
+ "- [Plot Explanation](#plot_explanation)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "21e3e84e-ece2-43bb-a11c-9d7dff21bc13",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Imports\n",
+ "\n",
+ "The example model is a pre-trained keras model and hosted on huggingface hub. So, this notebook requires to install tensorflow 2.4+ and huggingface_hub packages."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "95272a35-1111-4140-8a07-c0f15e78145d",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "# to suppress unrelated tensorflow warnings while importing aix360.datasets\n",
+ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\"\n",
+ "\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "from tensorflow import keras\n",
+ "from huggingface_hub import from_pretrained_keras\n",
+ "from aix360.datasets import ClimateDataset\n",
+ "from aix360.algorithms.tsutils.tsframe import tsFrame\n",
+ "from aix360.algorithms.tslime.tslime import TSLimeExplainer\n",
+ "from aix360.algorithms.tsutils.model_wrappers import Tensor_Based_Forecaster\n",
+ "from huggingface_hub.utils import logging as h_logging\n",
+ "\n",
+ "# huggingface hub warnings\n",
+ "h_logging.set_verbosity_error()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6a33c82c-5947-4ae2-9a80-87a27032db1d",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Load Dataset\n",
+ "\n",
+ "The dataset is weather readings recorded at the Weather Station at the Max Planck Institute for Biogeochemistry in Jena, Germany from 2009 to 2016. It can be obtained from [Max Planck Institute for Biogeochemistry](https://www.bgc-jena.mpg.de/wetter/), [Keras examples](https://github.com/keras-team/keras-io/blob/master/examples/timeseries/timeseries_weather_forecasting.py) or [Kaggle](https://www.kaggle.com/stytch16/jena-climate-2009-2016).\n",
+ "\n",
+ "As described in the prior links, the dataset consists of 14 variables (temperature, pressure etc.) measured every 10 minutes. The data is aggregated for an hour for analysis. The pre-trained model used in this notebook, is trained on selected (7) features with 120 hours as past window and forecasts temperature after 12 hours in Celcius. More details on dataset are available in [Keras examples](https://github.com/keras-team/keras-io/blob/master/examples/timeseries/timeseries_weather_forecasting.py)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "de16300d-2ea7-4bbf-94c4-ac9c36a36d7a",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "datasets = ClimateDataset().load_data(return_train=False, test_start=100551)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "fccb240b-802a-4e2b-88b2-cd7ee0902eac",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df = datasets[\"df\"]\n",
+ "selected_feature_columns = datasets[\"selected_feature_columns\"]\n",
+ "selected_feature_names = datasets[\"selected_feature_names\"]\n",
+ "sequence_length = datasets[\"sequence_length\"]\n",
+ "x_test = datasets[\"x_test\"]\n",
+ "y_test = datasets[\"y_test\"]\n",
+ "timestamps = datasets[\"timestamps\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "c396925b-3aa9-4641-8945-02bce075f3bb",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABcYAAAU3CAYAAAB0OrYEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wT5R8H8E+S7k0phbKRKeAPBJSpbBAEQUFkyBDZQ3CAIiJDEXGCMkUZDgRBpiDIlqkMAUE2paV77zbz+f3RJrlL7pJLmtX2+369+noll+funqQZd9/7Pt9HxhhjIIQQQgghhBBCCCGEEEIqCLm7O0AIIYQQQgghhBBCCCGEuBIFxgkhhBBCCCGEEEIIIYRUKBQYJ4QQQgghhBBCCCGEEFKhUGCcEEIIIYQQQgghhBBCSIVCgXFCCCGEEEIIIYQQQgghFQoFxgkhhBBCCCGEEEIIIYRUKBQYJ4QQQgghhBBCCCGEEFKhUGCcEEIIIYQQQgghhBBCSIVCgXFCCCGEEEIIIYQQQgghFQoFxgkhhBBCyqHjx49DJpNhwYIFvOVdunSBTCZzT6cIIYQQQgghxENQYJwQQggh5ZZMJitXQeC///4br776Kho3bozg4GD4+vqiTp06GDx4MH755RdotVp3d9EuYkF8Z1iwYIHhfSGTySCXyxESEoI6deqgb9++WLp0KeLj4x22v7p166Ju3boO254z2dvX06dPY/bs2XjiiSdQpUoV+Pr6ol69ehg3bhzu3r0rul5hYSHmz5+Pxo0bw8/PD5GRkRgyZAhu3Lghuk5GRgZmzpyJunXrwtfXF9WrV8fYsWMRFxcn2J4xhnXr1qFt27YICgpCYGAg2rRpgzVr1kCn00l+jg8ePIBMJsOYMWMkr2MvV72ehw4dwptvvonu3bujcuXKkMlk6NSpk6Q+bt++Hb1790ZERAT8/PxQu3ZtDBgwAOfOnbPrORNCCCGEuIOXuztACCGEEEIsU6vVeO2117BmzRooFAp07twZzz77LHx9fREXF4ejR4/i119/xaBBg7B9+3aL2/r+++9RUFDgop57rs6dO6NLly4AgPz8fCQmJuL06dP4/fffMX/+fCxYsADvvPOOeztZRgwaNAipqano0KEDRowYAS8vL5w9exbfffcdtmzZgkOHDqF9+/a8dZRKJXr27InTp0+jTZs2mDFjBh4+fIht27Zh3759OHr0KNq2bctbJz09HR06dMDt27fRrVs3DB06FDdv3sSGDRuwb98+nD17Fo888ghvnZdffhmbN29GZGQkhg0bhoCAABw6dAiTJ0/GmTNn8P333zv99bGVq17PlStXYvfu3fDz80ODBg2QkZFhtW8ajQajR4/G5s2b0bBhQ7z00ksIDQ1FUlISzp49i4sXL6Jdu3YOfT0IIYQQQpyGEUIIIYSUUwBYeTjcGT9+PAPAHnvsMXbz5k2zxzUaDfv+++/Z4MGDDcuOHTvGALD58+e7sKf2cWVf58+fL7ovnU7Htm/fzsLDwxkAtmTJklLvr06dOqxOnTql3o4r2NvXjz/+mMXHx5stX7x4MQPAmjdvbvbYRx99xACwwYMHM61Wa1i+a9cuBoA1bdqUt5wxxiZMmMAAsDfeeIO3fPny5QwA6927N2/5jh07GABWr149lpqaaliuVCpZv379GAD266+/SnqO0dHRDAAbPXq0pPal4arX88yZM+zatWtMo9EYnl/Hjh0t9u3dd99lANjcuXPNtscYYyqVSurTJIQQQghxu7J/pkgIIYQQIsJSYPzcuXNs0KBBrGrVqszb25vVrFmTTZgwQTAg1blzZwaAqdVqtnjxYtagQQPm4+PDatasyWbPns2USqXZOjt37mQjRoxgDRs2ZAEBASwgIIC1atWKLV++XDCgJObUqVMMAAsPD2cJCQkW2xYVFRluiwWb9c+Fi9v2/PnzrHfv3iwkJISFhYWxF154gcXGxjLGGLt37x576aWXWEREBPPz82NdunRhly9fNuvHrVu32Ntvv81at27NIiIimI+PD6tduzYbP348e/jwIa/t6NGjDf8n079jx47x2m7evJl16dKFhYaGMl9fX9akSRP2wQcf8J63NZYC43pHjx5lAJi/vz/vNVcqlezrr79mffr0YbVr12Y+Pj6sUqVKrHv37mz//v2Cr6nQHze4auv7JCkpib355pusUaNGLCAggIWGhrJGjRqx0aNHs3v37pm1P3DgAOvTpw+rXLky8/HxYY888gh76623WGZmps19tZVGo2H+/v4MAEtLSzMs1+l0rHbt2gwAu3//vtl6Tz31FAPAjh49aliWm5vL/P39WWBgIMvJyeG112q1rE6dOgwA7zUYOXIkA8BWrFhhto9//vmHAWBdu3a1+jz07xmhvw0bNvD6sXr1atamTRsWGBjIAgICWJs2bdiqVats+syLceTraUpKYDwxMZH5+Piwdu3ale6JEEIIIYR4CCqlQgghhJAKZ/369ZgwYQJ8fX3x3HPPoVatWrhz5w6+/fZb7N27F+fOnUPt2rXN1hs+fDhOnjyJPn36ICQkBPv378cnn3yClJQUbNiwgdf2nXfegVwuR9u2bVGjRg1kZ2fj6NGjmDFjBs6fP48ffvhBUl+/+eYbAMCECRMQFRVlsa2vr6/EV0DY+fPnsXTpUnTu3Bnjx4/Hv//+ix07duDatWvYvXs3OnXqhCZNmmDUqFGIiYnBjh070LNnT9y/fx9BQUGG7ezYsQNr1qxB165d0aFDB/j4+OD69euG1/fChQuoUaMGAGDgwIEAgE2bNvHKmwDg1bseO3YsNmzYgJo1a2LQoEEICwvDuXPnMG/ePBw5cgSHDh2Cl5djDm27du2KTp064dSpU9ixYwemTp0KoLi+9YwZM9ChQwf07NkTVapUQWJiIvbu3Yu+ffti3bp1GDdunKHv8+fPx7JlywAAM2fONGy/ZcuWhtu2vE8KCgrQsWNH3Lt3Dz179kT//v3BGENMTAx2796NwYMH80qJLFy4EAsWLEB4eDj69euHyMhIXL16FZ999hn279+Ps2fPIiQkRHJfbSWTyQz/E4VCYVh+7949xMbGolGjRqhXr57Zen369MHJkydx9OhRdO3aFQBw7tw5FBYWolevXggODua1l8vl6N27N7755hscO3bM8BokJSUBgFl5Fe6ykydPQqVSwcfHR/R5dOnSBVlZWVi+fDlatGhheM8C/Ndn5MiR2Lx5M2rVqoVx48ZBJpNh586dmDJlCk6dOoWffvrJ0stllSNfT3ts374dKpUKQ4cORWFhIfbt24e7d+8iODgYnTp1QosWLezeNiGEEEKIW7g7Mk8IIYQQ4iwQyBi/desW8/b2ZvXr12dxcXG8xw4fPszkcjkbOHAgb7k+y7pVq1YsPT3dsDwvL4/Vr1+fyeVylpiYyFvn7t27Zv3RarVs1KhRDAA7d+6cpOfwyCOPMADs0KFDktrr2ZMxDoD9+OOPvMfGjh3LALBKlSqxDz/8kPfYokWLGAC2bNky3vK4uDjBLO6DBw8yuVzOJk2aJKmvehs2bGAA2PPPP88KCgp4j+mzeU37IEZKxjhjjL333nsMABs1apRhWVFRkVnGO2OMZWVlsWbNmrFKlSqZ9c9aeRJb3id79uxhANjMmTPN1lEqlbxMan3We/v27XnZ4YwZX0/T7Ti67MuWLVsYALMM499++40BYP369RNcb9u2bQwAGzJkiGHZihUrGAA2bdo0wXU+/fRTBoDNnj3bsGzYsGEMAFu5cqVZe33GOAB248YNq8/FWimVzZs3MwDs8ccfZ7m5uYbleXl5rHXr1gwA++mnn6zuxxJHvp6mpGSM69+TH330kSFDnfs3aNAglp+fb9+TI4QQQghxA7nzQu6EEEIIIZ5n9erVUKvVWL58uSFrWa979+547rnnsHfvXuTm5pqtu3TpUoSHhxvuBwYGYsSIEdDpdLhw4QKvbf369c3Wl8vlmDFjBgDg4MGDkvqbmJgIAKhZs6ak9qXRqVMnjBgxgrds9OjRAIDQ0FCzyShHjRoFALh8+TJveY0aNQSz13v16oVmzZpJfu56y5cvh5eXF9avXw9/f3/eY/PmzUPlypVLnY1rSv/eSE1NNSzz9fUV/D+EhoZi7NixyMzMxPnz523ajz3vE9PXAAB8fHx4mdRfffUVAGDdunUICwvjtR0zZgxatmzp8NeMKzo6GtOnT4eXlxe++OIL3mPZ2dkAil83IfrlWVlZpVrn2WefBQB88cUXvIkl1Wo15s+fb7ifmZkp5SlZtH79egDAxx9/zBs9ERgYiKVLlwIAvv32W7u37+jX0x4pKSkAij9zdevWxaVLl5CXl4dz586hTZs2+PXXXzFlypRS7YMQQgghxJWolAohhBBCKpSzZ88CAE6cOCEYxExJSYFWq8Xt27fRunVr3mNt2rQxa1+rVi0A5sG19PR0fPrpp9i/fz/u37+P/Px83uPx8fGleh7OIPT8qlevDqC4ZAS3fANgDB7HxcXxljPG8NNPP2Hjxo24cuUKMjMzodVqDY9bKlthqqCgAFeuXEFERISh1IcpX19f3LhxQ/I2pWCMASguX8F1/fp1fPrpp/jzzz+RmJiIoqIi3uO2/l9teZ907twZNWrUwMcff4xLly6hb9++6Nixo+D/5uzZs/D29sa2bduwbds2s/2qVCqkpqYiPT0dlStXtqnP1qSkpKBPnz5ITU3FypUr0b59e4duX6qhQ4fihx9+wMGDB9G0aVMMGDAAfn5+OHz4MBITE1G7dm3ExsZCLi99rtClS5cgl8t5pYD0OnfuDIVCgX/++ceubXvK66nT6QAA4eHh2Lt3L0JCQgAAbdu2xZ49e9CoUSP88MMPWLx4sdlFR0IIIYQQT0SBcUIIIYRUKOnp6QCATz/91GK7vLw8s2WmmbcADDV/uYHfrKwsPPHEE4iOjsaTTz6JUaNGITw8HF5eXoZaxUqlUlJ/o6KicP/+fcTHx6NJkyaS1rGXUMap/vlZekytVvOWv/HGG1i2bBmioqLQu3dv1KhRw5DlvHHjRsTExEjuU2ZmJhhjSE1NxcKFCyWvV1oJCQkAgCpVqhiWnTt3Dt26dYNGozGMLggJCYFcLsfly5exe/duyf9XwPb3SUhICM6dO4f58+djz549hmzyiIgITJkyBe+99x68vb0BFL/PNRqN1dcsLy/PoYHxlJQUdOvWDbdu3cLy5csFM4j17yV9prMp/XLu582edRQKBfbu3YsvvvgCP/74IzZt2gQ/Pz906dIFv/76KwYPHgwAiIyMtO1Jiuw/PDxc8KKPl5cXIiIiDBnXtnDW62kP/frdu3c3BMX1oqKi0LZtWxw5coQ3hwAhhBBCiCejwDghhBBCKhRuEMk0uOMo3377LaKjozF//nwsWLCA99jZs2exfPlyydvq1KkT7t+/jyNHjqB79+4O7qnjpaSk4KuvvkLz5s1x5swZs4kSf/75Z5u2p/9/Pf7447h06ZLD+mnNsWPHABRnw+p9+OGHKCwsxLFjx8wyg5csWYLdu3fbtA973ic1a9bEd999B8YY/vvvPxw9ehQrV67EokWLoNPp8MEHHwAoft10Oh2vhIizJSYmonv37rh58yZWrlwpWlajcePGAIDbt28LPn7nzh0AQKNGjUq1DgB4e3vj7bffxttvv81bXlRUhDt37iAiIkJwwkpbhYaGIiMjA2q12nBxQk+j0SAtLc3m7xtnvp720O9HLMBeqVIlAEBhYWGp9kMIIYQQ4ipUY5wQQgghFUq7du0AACdPnnTaPu7evQsAGDRokNljJ06csGlbEyZMAAB88803SE5OttjWlmxlZ7l//z50Oh169eplFhSPi4vD/fv3zdbRlwHhZt3rBQUFoVmzZrh+/brLgrxHjx7F6dOn4e/vj+eff96w/O7duwgPDxcslyH2f1UoFILPS789wL73iUwmQ7NmzTB9+nQcOnQIALBr1y7D4+3atUNmZiauX79ucTtS+2pNXFwcOnfujJs3b2LNmjUWa03Xr18ftWvXxu3btxEdHW32+O+//w4A6Natm2FZu3bt4O/vj9OnT5vV/9fpdPjjjz8AAF27dpXU3y1btkClUmHYsGGS2lt6jwLFF250Oh3+/PNPs8f+/PNPaLVatGrVStK+AOe/nvbo0aMHAODatWuCj+vfa4640EAIIYQQ4goUGCeEEEJIhTJt2jR4e3vj9ddfF8ywVKlUpQ6a161bFwBw/Phx3vJ//vkHS5YssWlbHTt2xPjx45Geno5nnnnGkP3JpdPp8PPPP2PkyJH2dtlh9M/91KlTvCBiXl4exo8fD41GY7aOvpRHbGys4DbfeOMNqFQqjB07VnACwczMTIdkkzPGsGPHDrz44osAgIULF6JatWqGx+vWrYuMjAxcvXqVt953330nOqFo5cqVkZqaKphFa+v75Pr164IXR/TLAgICDMtef/11AMD48eMNZWG48vPzce7cOcl9tSQmJgZPP/007t27h/Xr1xsu5oiRyWSYNGkSAGD27NmG2tUAsHv3bpw8eRJNmzZF586dDcuDgoIwcuRI5Ofnm2XXr1ixAg8ePEDv3r3xyCOP8B7Lyckx2//ly5cxa9YsVKpUyWxCWTGVKlWCTCYTfY+OHTsWADBnzhwUFBQYlhcUFBj28eqrr0ralyteT3s89dRTaNmyJU6dOoWdO3fyHlu3bh1u3LiBBg0aCM5VQAghhBDiiaiUCiGEEEIqlCZNmmD9+vUYO3YsmjVrhmeeeQaNGjWCWq1GbGwsTp48iSpVquDmzZt272PUqFH49NNPMXPmTBw7dgwNGzbEnTt38Ntvv+GFF17A1q1bbdreypUroVAosGbNGjz66KPo0qULWrRoAV9fX8THx+Po0aOIi4sz1Ex2p2rVqmHo0KHYsmULWrZsiV69eiE7OxuHDh2Cn58fWrZsicuXL/PWady4MWrUqIEtW7bA29sbderUgUwmw8iRI1GnTh2MHTsWFy9exKpVq1C/fn307t0btWvXRkZGBqKjo/Hnn3/ilVdewZo1ayT38/jx44YAa2FhIRISEnD69GlER0fD19cXS5cuxaxZs3jrzJw5EwcPHkSnTp0wZMgQhIaG4sKFCzh16hQGDx6M7du3m+2ne/fuOH/+PJ555hk8/fTT8PX1RYsWLdC/f3+b3yeHDh3CrFmz0L59ezRq1AiRkZGIi4vD7t27IZfLef3t3r07Pv74Y8yZMwcNGzZE3759Ua9ePeTl5SEmJgYnTpxAp06dcODAAUl9taRLly548OABWrdujQcPHpgFrgFgzJgxhgsBQPHFjt9++w3bt29H27Zt0b17d8TGxmLbtm0ICAjA+vXrzSbF/Oijj3D8+HF88cUXuHz5Mp588kncuHEDu3fvRmRkJFauXGm23549e8Lf3x/NmzdHcHAwbty4gX379sHf3x979+41TC5rTVBQENq2bYuTJ09ixIgRaNSoERQKBZ577jn873//w/Dhw7F792788ssvaNasGQYOHAiZTIZdu3YhOjoaL730EkaMGCFpX656PU+dOoVvv/0WgHFOhTt37mDMmDGGNhs3bjTclslk2LRpEzp37oxBgwahf//+aNSoEa5fv47ff/8dgYGB2LRpk9lEsIQQQgghHosRQgghhJRDGo2GAWDe3t6Cj1+9epWNHj2a1a5dm/n4+LBKlSqxZs2asQkTJrAjR47w2nbu3JmJHTZt2LCBAWAbNmzgLb9+/Trr378/q1KlCgsICGCtWrVi69atY9HR0QwAGz16tM3P6dy5c2zs2LGsYcOGLDAwkPn4+LCaNWuygQMHsq1btzKtVmtoe+zYMQaAzZ8/3+pzEWvLGLPaXwCsc+fOvGX5+fns3XffZfXr12e+vr6sZs2abMqUKSwtLU30tfz7779Zt27dWEhICJPJZAwAO3bsGK/N3r172bPPPsuqVKnCvL29WdWqVdkTTzzB5s6dy27cuCH6unHNnz+fATD8yWQyFhQUxGrXrs369OnDPv74YxYXFye6/t69e1nbtm1ZUFAQCw0NZT179mQnTpwQfR/k5eWxSZMmsRo1ajCFQmH2WtryPvnvv//Y66+/zlq3bs0iIiKYj48Pq1OnDhs0aBA7ffq0YH9PnjzJXnzxRRYVFcW8vb1ZREQEa9GiBXv99dfZ+fPnbeqrGO7rKfZn+r9krPh9Mm/ePNagQQPm4+PDIiIi2ODBg9n169dF95Wens5ee+01Vrt2bebt7c2qVavGXnnlFfbw4UPB9p988glr1aoVCw0NZT4+PqxevXpsypQpou0tuXPnDuvXrx8LDw83vEe5/2+tVstWrlzJWrduzfz9/Zm/vz9r1aoVW7FiBe+zaY2rXk/9e9bSn5D79++z0aNHs6ioKObl5cWqVavGRowYwW7evCn5ORJCCCGEeAIZY4w5JeJOCCGEEOJGiYmJqF69OmrUqIG4uDh3d4cQQgghhBBCiAehGuOEEEIIKZf0NXDbt2/v5p4QQgghhBBCCPE0VGOcEEIIIeXK+++/j9u3b2Pbtm3w8vLCm2++6e4uEUIIIYQQQgjxMFRKhRBCCCHlikwmQ3BwMNq0aYN58+aha9eu7u4SIYQQQgghhBAPQxnjhBBCCClX6Jo/IYQQQgghhBBrqMY4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEIIIYQQQgghhBBCKhQKjBNCCCGEEEIIIYQQQgipUCgwTgghhBBCCCGEEEIIIaRCocA4IYQQQgghhBBCCCGEkAqFAuOEEEI8Ql5eHiIjI/HTTz85bJsbN26ETCbDhQsXHLZNS9q1a4fZs2e7ZF+EEEIIIYR4gr///hs+Pj6IiYmx2rZu3boYM2aM8zslUXp6OgIDA7F//353d4UQ4gYUGCeEVAj6AKn+z8/PD40aNcK0adOQnJzs7u4RAMuXL0dwcDCGDh3q7q7Y7e2338bKlSuRlJTk7q4QQgghhNiNe9xs6e/48ePu7qrbrFq1Chs3bnR3N+x2/Phxyf9na+bOnYthw4ahTp06Lui5dJcvX8bLL7+MWrVqwdfXF+Hh4ejRowc2bNgArVYLAKhcuTLGjRuHefPmubm3hBB38HJ3BwghxJUWLVqEevXqoaioCKdOncLq1auxf/9+XLt2DQEBAe7uXoWlVquxfPlyvP7661AoFO7ujt0GDBiAkJAQrFq1CosWLXJ3dwghhBBC7PLDDz/w7n///fc4dOiQ2fJHH33Uld3yKKtWrUJERIRHZT/b4tFHHzX7f86ZMwdBQUGYO3eu5O1cvnwZhw8fxpkzZxzdxVL59ttvMWnSJFStWhUjR45Ew4YNkZubiyNHjuDVV19FYmIi3n33XQDApEmT8NVXX+Ho0aPo1q2bm3tOCHElCowTQiqUPn36oE2bNgCAcePGoXLlyvjiiy+we/duDBs2THCd/Px8BAYGurKbpcIYQ1FREfz9/d3dFcl+++03pKamYsiQIe7uil0KCgoQEBAAuVyOwYMH4/vvv8fChQslZdgQQgghhHial19+mXf/3LlzOHTokNny8sJTjp9d2Y+qVaua/T8//vhjRERE2PR/3rBhA2rXro127do5uot2O3fuHCZNmoT27dtj//79CA4ONjw2c+ZMXLhwAdeuXTMse/TRR9G8eXNs3LiRAuOEVDBUSoUQUqHpD3yio6MBAGPGjEFQUBDu3buHvn37Ijg4GCNGjAAA6HQ6LFu2DM2aNYOfnx+qVq2KiRMnIjMzk7fNCxcuoHfv3oiIiIC/vz/q1auHsWPH8tps2bIFrVu3RnBwMEJCQvDYY49h+fLlhscXLFggGFTVl4R58OCBYVndunXRr18/HDx4EG3atIG/vz/Wrl0LAMjKysLMmTMNwwcbNGiApUuXQqfTlf7F4+jSpQuaN2+OixcvokOHDobnvWbNGknr79q1C3Xr1kX9+vV5y/X/j9jYWPTr1w9BQUGoUaMGVq5cCQD4999/0a1bNwQGBqJOnTrYvHmz4PYLCgowceJEVK5cGSEhIRg1apTZ/2337t149tlnUb16dfj6+qJ+/fr44IMPDMMshZ7r008/jYCAAEO2CQD07NkTMTExuHz5sqTnTgghhBBSFkk9NtYfqx4/ftxwrPrYY48ZyrDs2LEDjz32GPz8/NC6dWv8888/vPX1x4P3799H7969ERgYiOrVq2PRokVgjJWqT0LHzxs2bEC3bt0QGRkJX19fNG3aFKtXrzZb//r16zhx4oSh3EiXLl0AlL3j+NLatWsXunXrZvacGWP48MMPUbNmTQQEBKBr1664fv264DakPtf09HSMHDkSISEhCAsLw+jRo3HlyhXIZDJeWRt9gspPP/3EC4rrtWnTxizTv2fPnti7d6/Ze4oQUr5RxjghpEK7d+8egOLacnoajQa9e/dGp06d8NlnnxlKrEycOBEbN27EK6+8gtdeew3R0dFYsWIF/vnnH5w+fRre3t5ISUlBr169UKVKFbzzzjsICwvDgwcPsGPHDsP2Dx06hGHDhqF79+5YunQpAODGjRs4ffo0ZsyYYdfzuHXrFoYNG4aJEydi/PjxaNy4MQoKCtC5c2fEx8dj4sSJqF27Ns6cOYM5c+YgMTERy5Yts/NVE5aZmYm+fftiyJAhGDZsGH755RdMnjwZPj4+ZhcGTJ05cwatWrUSfEyr1aJPnz54+umn8cknn+Cnn37CtGnTEBgYiLlz52LEiBF44YUXsGbNGowaNQrt27dHvXr1eNuYNm0awsLCsGDBAty6dQurV69GTEyMobYiUHyyEhQUhDfeeANBQUE4evQo3n//feTk5ODTTz/lbS89PR19+vTB0KFD8fLLL6Nq1aqGx1q3bg0AOH36NB5//HGbX0dCCCGEkLJAyrGx3t27dzF8+HBMnDgRL7/8Mj777DP0798fa9aswbvvvospU6YAAJYsWYIhQ4bg1q1bkMuNeXxarRbPPPMM2rVrh08++QQHDhzA/PnzodFoeOXrbOmT0PEzAKxevRrNmjXDc889By8vL+zduxdTpkyBTqfD1KlTAQDLli3D9OnTeWVHuMeDtvCE43h7xcfHIzY2VvA4/v3338eHH36Ivn37om/fvrh06RJ69eoFlUrFayf1uep0OvTv3x9///03Jk+ejCZNmmD37t0YPXq02faOHDmCp59+GrVr15b8XFq3bo0vv/wS169fR/PmzW1/MQghZRMjhJAKYMOGDQwAO3z4MEtNTWUPHz5kW7ZsYZUrV2b+/v4sLi6OMcbY6NGjGQD2zjvv8NY/efIkA8B++ukn3vIDBw7wlu/cuZMBYOfPnxfty4wZM1hISAjTaDSibebPn8+EvqL1zyM6OtqwrE6dOgwAO3DgAK/tBx98wAIDA9nt27d5y9955x2mUChYbGys6P5t1blzZwaAff7554ZlSqWStWzZkkVGRjKVSiW6rlqtZjKZjL355ptmj+n/Hx999JFhWWZmJvP392cymYxt2bLFsPzmzZsMAJs/f75hmf71at26Na8Pn3zyCQPAdu/ebVhWUFBgtv+JEyeygIAAVlRUZPZc16xZI/qcfHx82OTJk0UfJ4QQQggpS6ZOnco7NpV6bMyY8Vj1zJkzhmUHDx5kAJi/vz+LiYkxLF+7di0DwI4dO2ZYpj8enD59umGZTqdjzz77LPPx8WGpqal298n0+Jkx4WPC3r17s0ceeYS3rFmzZqxz585mbcvacTyX2HMSc/jwYQaA7d27l7c8JSWF+fj4sGeffZbpdDrD8nfffZcBYKNHjzYsk/pcf/31VwaALVu2zNBGq9Wybt26MQBsw4YNjDHGrly5wgCwGTNmSH4ejDF25swZBoBt3brVpvUIIWUblVIhhFQoPXr0QJUqVVCrVi0MHToUQUFB2LlzJ2rUqMFrN3nyZN79bdu2ITQ0FD179kRaWprhr3Xr1ggKCsKxY8cAAGFhYQCKa2ar1WrBPoSFhSE/Px+HDh1y2POqV68eevfubdbnp556CpUqVeL1uUePHtBqtfjzzz8dtn8A8PLywsSJEw33fXx8MHHiRKSkpODixYui62VkZIAxhkqVKom2GTdunOF2WFgYGjdujMDAQF5N8saNGyMsLAz37983W3/ChAm8DKHJkyfDy8sL+/fvNyzj1nLMzc1FWloannrqKRQUFODmzZu87fn6+uKVV14R7a/+NSeEEEIIKY+kHhvrNW3aFO3btzfcb9u2LYDisobcrF79cqHjuWnTphluy2QyTJs2DSqVCocPH7arT0LHzwD/mDA7OxtpaWno3Lkz7t+/j+zsbMmvkVSecBxvr/T0dAAwO44/fPgwVCoVpk+fziuxMnPmTLNtSH2uBw4cgLe3N8aPH29YVy6XG7L49XJycgBAsISKJfrnQMfwhFQsVEqFEFKhrFy5Eo0aNYKXlxeqVq2Kxo0b84ZpAsUB3po1a/KW3blzB9nZ2YiMjBTcbkpKCgCgc+fOGDRoEBYuXIgvv/wSXbp0wcCBAzF8+HD4+voCAKZMmYJffvkFffr0QY0aNdCrVy8MGTIEzzzzjN3Py7R0iL7PV69eRZUqVSz2WUh2djYKCwsN9318fBAeHm6xD9WrVzebpLRRo0YAgAcPHlidkIeJ1PPz8/Mzew6hoaGoWbOmWS3D0NBQsxqSANCwYUPe/aCgIERFRfFqPF6/fh3vvfcejh49ajig1jM9CapRowZ8fHwsPheaeJMQQggh5ZXUY2M905IWoaGhAIBatWoJLjc9npPL5XjkkUd4y7jHmfb0Sej4GSguhzd//nycPXsWBQUFvMeys7MNfXQUTziOLy3T4/iYmBgA5sfgVapUMQuiS32uMTExiIqKMpS51GvQoAHvfkhICIDiRBd7ngMdwxNSsVBgnBBSoTz55JNo06aNxTa+vr5mwXKdTofIyEj89NNPguvoD+RkMhm2b9+Oc+fOYe/evTh48CDGjh2Lzz//HOfOnUNQUBAiIyNx+fJlHDx4EL///jt+//13bNiwAaNGjcKmTZsM2xFiOhGkntDM9TqdDj179sTs2bMF19GfTAiZMWOGoS9AccBfP0GSo4WHh0MmkwkGtAFAoVDYtFwswG5JVlYWOnfujJCQECxatAj169eHn58fLl26hLffftts4h+h19t0exERETb3gxBCCCGkLJB6bKzniuM5W/skdDx37949dO/eHU2aNMEXX3yBWrVqwcfHB/v378eXX34paeLLinQcr5+nSew4XorSPFchDRo0gJeXF/7991+b1tM/BzqGJ6RiocA4IYRIUL9+fRw+fBgdO3a0GhQFgHbt2qFdu3ZYvHgxNm/ejBEjRmDLli2GkiA+Pj7o378/+vfvD51OhylTpmDt2rWYN28eGjRoYMikyMrKMpRnAYzZF1L7nJeXhx49etj2ZAHMnj0bL7/8suG+pTInegkJCcjPz+dljd++fRsAULduXdH1vLy8UL9+fURHR9vcT6nu3LmDrl27Gu7n5eUhMTERffv2BQAcP34c6enp2LFjB55++mlDO3v6FB8fD5VKhUcffbT0HSeEEEII8UC2HhuXlk6nw/3793lBUtPjTEf0ae/evVAqldizZw8vy920DAsgHgAvi8fx9mrSpAkA82PmOnXqACg+Budm+qemppoF0aU+1zp16uDYsWMoKCjgZY3fvXuX1y4gIADdunXD0aNH8fDhQ7NRCWL0z4GO4QmpWKjGOCGESDBkyBBotVp88MEHZo9pNBpkZWUBKM40MM1wadmyJQBAqVQCMNbi05PL5fjf//7Ha1O/fn0A4NUPzM/P52V/SOnz2bNncfDgQbPHsrKyoNFoRNdt2rQpevToYfhr3bq11f1pNBqsXbvWcF+lUmHt2rWoUqWK1fXbt2+PCxcuWN2Hvb755htezffVq1dDo9GgT58+AIzZStz/nUqlwqpVq2zel76eeocOHUrTZUIIIYQQjyX12NiRVqxYYbjNGMOKFSvg7e2N7t27O6xPQseE2dnZ2LBhg1nbwMBAwW2WxeN4e9WoUQO1atUyO47v0aMHvL298fXXX/Ney2XLlpltQ+pz7d27N9RqNdatW2d4XKfTYeXKlWbrzZ8/H4wxjBw5Enl5eWaPX7x40ez/cfHiRYSGhqJZs2aWnzQhpFyhjHFCCJGgc+fOmDhxIpYsWYLLly+jV69e8Pb2xp07d7Bt2zYsX74cgwcPxqZNm7Bq1So8//zzqF+/PnJzc7Fu3TqEhIQYspPHjRuHjIwMdOvWDTVr1kRMTAy+/vprtGzZ0pCh0KtXL9SuXRuvvvoqZs2aBYVCgfXr16NKlSqIjY2V1OdZs2Zhz5496NevH8aMGYPWrVsjPz8f//77L7Zv344HDx44dKhg9erVsXTpUjx48ACNGjXC1q1bcfnyZXzzzTe8iS+FDBgwAD/88ANu375t83BJKVQqFbp3744hQ4bg1q1bWLVqFTp16oTnnnsOQHEQu1KlShg9ejRee+01yGQy/PDDD3YN4z106BBq166Nxx9/3NFPgxBCCCHEI0g9NnYUPz8/HDhwAKNHj0bbtm3x+++/Y9++fXj33XcNJVIc0adevXoZRnZOnDgReXl5WLduHSIjI5GYmMhr27p1a6xevRoffvghGjRogMjISHTr1q1MHseXxoABA7Bz507eHDtVqlTBW2+9hSVLlqBfv37o27cv/vnnH/z+++9m/Zb6XAcOHIgnn3wSb775Ju7evYsmTZpgz549yMjIAMDP4O/QoQNWrlyJKVOmoEmTJhg5ciQaNmyI3NxcHD9+HHv27MGHH37I68ehQ4fQv39/qjFOSEXDCCGkAtiwYQMDwM6fP2+x3ejRo1lgYKDo49988w1r3bo18/f3Z8HBweyxxx5js2fPZgkJCYwxxi5dusSGDRvGateuzXx9fVlkZCTr168fu3DhgmEb27dvZ7169WKRkZHMx8eH1a5dm02cOJElJiby9nXx4kXWtm1bQ5svvvjC8Dyio6MN7erUqcOeffZZwf7m5uayOXPmsAYNGjAfHx8WERHBOnTowD777DOmUqmsvWySde7cmTVr1oxduHCBtW/fnvn5+bE6deqwFStWSFpfqVSyiIgI9sEHH/CWi/0/9PszZfpa6F+vEydOsAkTJrBKlSqxoKAgNmLECJaens5b9/Tp06xdu3bM39+fVa9enc2ePZsdPHiQAWDHjh2zum/GGNNqtSwqKoq99957kp43IYQQQkhZMHXqVCYUPrB2bMyY+LEqADZ16lTesujoaAaAffrpp4Zl+uPBe/fusV69erGAgABWtWpVNn/+fKbVah3aJ8YY27NnD/vf//7H/Pz8WN26ddnSpUvZ+vXrzY7Bk5KS2LPPPsuCg4MZANa5c2fDY2XpOJ6rWbNmvOchxaVLlxgAdvLkSd5yrVbLFi5cyKKiopi/vz/r0qULu3btGqtTpw4bPXo0r63U55qamsqGDx/OgoODWWhoKBszZgw7ffo0A8C2bNli1reLFy+y4cOHs+rVqzNvb29WqVIl1r17d7Zp0ybee+fGjRsMADt8+LBNz50QUvbJGLMjHY4QQgjh6NKlC9LS0nDt2jW7t/HBBx9gw4YNuHPnjuhETJ5u165dGD58OO7du4eoqCh3d4cQQgghpMwbM2YMtm/fLlgSg3iG7t27o3r16vjhhx9cvu9du3bh+eefx6lTp9CxY0e7tjFz5kz8+eefuHjxImWME1LBUI1xQgghHuH1119HXl4etmzZ4u6u2G3p0qWYNm0aBcUJIYQQQkiF8dFHH2Hr1q02TTBqj8LCQt59rVaLr7/+GiEhIWjVqpVd20xPT8e3336LDz/8kILihFRAVGOcEEKIRwgKCkJKSoq7u1EqZ8+edXcXCCGEEEIIcam2bdtCpVI5fT/Tp09HYWEh2rdvD6VSiR07duDMmTP46KOP4O/vb9c2K1euTKMRCKnAKDBOCCGEEEIIIYQQQjxat27d8Pnnn+O3335DUVERGjRogK+//hrTpk1zd9cIIWUU1RgnhBBCCCGEEEIIIYQQUqFQjXFCCCGEEEIIIYQQQgghFQoFxgkhhBBCCCGEEEIIIYRUKFRjHIBOp0NCQgKCg4NpFmJCCCGEEGIVYwy5ubmoXr065HLKNbEHHYMTQgghhBBbOPoYnALjABISElCrVi13d4MQQgghhJQxDx8+RM2aNd3djTKJjsEJIYQQQog9HHUMToFxAMHBwQCKX9SQkBA394YQQgghhHi6nJwc1KpVy3AcSWxHx+CEEEIIIcQWjj4Gp8A4YBi6GRISQgflhBBCCCFEMioBYj86BieEEEIIIfZw1DE4FUQkhBBCCCGEEEIIIYQQUqFQYJwQQgghhBBCCCGEEEJIhUKBcUIIIYQQQgghhBBCCCEVCgXGCSGEEEIIIYQQQgghhFQoFBgnhBBCCCFlkjY1GRlvT4D6/m13d4UQQgghhNgofcNupH3zq7u7QSowL3d3gBBCCCGEEHsktK4GAMj/eR1qxTI394YQQgghhEilKyxC7NiFAICQ3u3hU6e6m3tEKiLKGCeEEEKIx9EVFaLwj93Q5eW6uyuEEEIIIYQQB9Mp1YbbyUs3mT2ufJAAdWqmK7tEKiAKjBNCCCHE42TNn4G0cQORPm2ou7tCCCGEEEIIcSKdUsW7r0nLxH/1+uFaZHc39YhUFBQYJ2UW0+nAtFp3d4OUU4V/7EH25++DMRqaT4g75P+8DgBQdHS/m3tCCCGEEALce24mHgx/193dIKRCKLx+391dIBUEBcZJmcQYQ3K/J5DU8zEKjjuY+s4NqP674u5uuF3auAHIWf4Big7tdXdXCCGEiPH2dncPCCGEVAAFV24jZ++fyPz5AFTxKe7ujsdQxSbibu8pyDl4xt1dIWURJwlNJpPxHjK5S4jTUGCclEmsIB/qa5eguXsD2sQ4d3en3GAaDZK6N0XyMy0rdF1fbpa4JvGhG3tCCKkomE4H5T9/QVdU6O6ulCnyoBB3d4EQ4gaMMeSfvw5NVsU9XiWulXvonOE2U2vc2BPPEjvuA+T+cQ73npnm7q6Qso4i4cRNPC4wvmTJEjzxxBMIDg5GZGQkBg4ciFu3bllcZ+PGjZDJZLw/Pz8/F/WYuAW3vIVO575+lDMsP89wW5eb7caeuFfuqqXGOzQigRDiAnnfr0LKgHZIG9PP3V0pM2jEGCEVV87+U7j95EjcbDbY3V0hpEJTJ6S6uwuEEFIqHhcYP3HiBKZOnYpz587h0KFDUKvV6NWrF/Lz8y2uFxISgsTERMNfTEyMi3pM3ELDuUqvULivH+UMUxYZbsv8/N3YE/fRZmUge+kc4wIdP/CiiY+t0Nn0hBDLCo/9DuWV8zavl/fjGgCA8sxRm9fVZqRVuPkQspctQvz/wqHLTHd3VwghbpD16xEAFJQjxNmYVovooe8g+dNNVtsmLlzrgh6R8qTgr38Nt1WxibjR/EWkr98FANCkZrmnUx5GnZCKe8/NtKlcUeF/93H/hTdRePW2E3tWfnhcYPzAgQMYM2YMmjVrhhYtWmDjxo2IjY3FxYsXLa4nk8lQrVo1w1/VqlVd1GPiDkxLgXFHYYyh8NjvJQHfHMNybXKCG3vlPuqb//IXcMuqxMUgsX0dJDweCcYYdLk5IIQQPfWt60gb3Rcp/Z+0/QKa1r5h2UXnTiChZRVkvDbCrvXLqpwv5oPRdzAhFRfn+Czjx30o/I8maSNOVkHLPOTsP4WsrX8gYfZyq22TFlTMwDhjDJq0THd3o0zKO3HJcDv3j3Moun4Psa8uAgAkffit4Dq6gopVdvDhlCXI2funTeWK7nabiOydx3CzxVAn9qz88LjAuKns7OJyDuHh4Rbb5eXloU6dOqhVqxYGDBiA69evi7ZVKpXIycnh/ZEyRkN13Ryl6NjvSBvdF4nt6yB1eA93d8clUkb0QtaHbwk/qFLx7nKH6ivPnShepixCxpuvIL5ZKJSX/3ZaP4nnYlot8rdtgubBPXd3pcxhRUXIfP81FJ06YtN6hccPQBMbbbZcefEsMhfM9IiRHAW/bTXc1ibYNj+B5p7lsnFicld8VLzv3T/zliv/+QvKi2ft2iYhhHg6bY5xNHHMyHlUUoW4VgUapaXNq1hBSHvETfsY/1bpjqxdx0TbJC3+1pAJTYwsjXgUquWfe/wCrgR2RPw7XzmzWx4le++fNq+jSaYRlbbw6MC4TqfDzJkz0bFjRzRv3ly0XePGjbF+/Xrs3r0bP/74I3Q6HTp06IC4OOFJGZcsWYLQ0FDDX61atZz1FIiT8DLGK9CBiaNpU5ORNuZZ431OIKfo8F53dEkSptMhsVtTpM942eyx/F9/QOEfu0XXLTz8G5QnDyH3m8/BTILgJVvn3+XUsNflGwNvBduLhxPmrlxiW+dJmVewbzvim4Yg480xSHy6Qam3p753C1mLZ0GbluKA3nm+nG8+Q97Gr226EJf77TKkjeqDxE6PmD2W8nwH5K1fjuwv5juym3bRxBnLuKW/Ntymdb0aPGrXPoXqbDOlEikD2iHl+Q7QceaOKGuYTgf17f/AGIP69n9IHfkMlJfOWV+RkHKMMQZtXoG7u+F22TtsLztFxOkKCpG+fhfUFEwhxGZpq7YBABLnrhR8vPDaXSS+t8qQCU04LMRydAXGMq/3B70FdWIq4t/8AgCQsnSjs3vmOWhOPafz6MD41KlTce3aNWzZssViu/bt22PUqFFo2bIlOnfujB07dqBKlSpYu1Z4KM+cOXOQnZ1t+Hv40LasLuIBNBQYd4SE1tVEHzMrKeJBCvf/Cs3dGyjY+RMvKKSJj0XG66OQNm4gmFIpuK7mwR3DbW6g28DLm3+f8/5iOVnmfTm4C9qsDNueACmzmE6H9MkvghU6LiiR1LUJctd+how3xzhsm55MeUY8m4aHM2Q5a9HrVptr7t6wt0sO49O8leG25r5tNf3kQcGS2mkz0vjfbzrzwLia81p48ne5NVkLZiKpRzPkfLEAaeMGoOjEQaQMbI/sLxe6u2uEuM29PtNwNbgTlNHx7u4KKUfi3/wSsa8uwp2nXnV3VzyCrrAIMa8uRNbu44ZlsgpaSsUqOhc3EnmPFP5718UdKR9UnN+57B1HETtxsRt7Q8ozjw2MT5s2Db/99huOHTuGmjVr2rSut7c3Hn/8cdy9K/wF5Ovri5CQEN4fKVsoY9z5Ap7z3HpU8tBKhttMbcz61ty7aVyuUQuuq4isbritE8jQ1aWbTOLEjFdo5ZUiBLeZveQdyx32UKyoyHojwqNycGkK7uiGilL2QvLkkraegHrACavXI40Mt8M/W2/Tuqr/Lltto0mMQ0LLKkjsxskuF8gY13Eu4skkBtzdJffbL1F4dL/gY3kbvwYA5CxfBE28MRs/58sFrugaIR4p92Dxb0XGxj1u7gkpT7J2HQcAKO/EurcjHiJl+c/IWL8b0QPfgE4lcE5Rgc4/6YJA6VXU2uuSiHyWhCZ7VT9Mhiq6Ys6DRpzL4wLjjDFMmzYNO3fuxNGjR1GvXj2bt6HVavHvv/8iKirKCT0kHoEyxp1P5nFfDwYy/wDDbZaTbVweHGpsJDLkSBYaZrgtDwkzezx96ku8+3k/rUXa+OfBioogj4gU3Kbmvn21gd1JdfUi4hr5I+Pdye7uSpmhTU5EyqBODt1m2riBhtt04mGC83oEDhtvuC1UOqT4AQ/4LVBzyzPZ+P8ULO3EV3TsdwCA9qGx1rpQbUZFBGcCcg8efqn8+xSyFr3BK+klRmY6mocQQghxEnW8MXkmc8tBAJZrIRNiieixKxElONmrTAZtJs0PSBzP4yJfU6dOxY8//ojNmzcjODgYSUlJSEpKQmGhcdKHUaNGYc6cOYb7ixYtwh9//IH79+/j0qVLePnllxETE4Nx48a54ynYTJefh6LTR8FsnFCSMVZhv2SlZIxrHj6A6to/LuqRZ9JlZSL7iwVQR9+x3tgU86xgCtPpUHTuRHGWs9z41cXNGOdmgOeu+QTJ/Z+ELjuLv50i43cJ06ihvv0fNInC8xEAgDY+FoUHdyHvx9WQV6os2Eb5l+UJMfJ+WIPcb5dZbONqqS/3AgDk/7jGzT0pO9R3/nP4NhU1ahvvUGCcj/N6eDdoYlyuFh4N4sjyNvbizlugK8y30JJPJ9J35d+noE1ONG5fbT14btbOg48TNHEPzJbl7/wJ6TNGms8BIbd+yEpBC0IIIbbKP38d0S/OhvI+53yAW0qxsGKPsLT221r0333efW2u9OOfckfkWJ6SX4olLvoG0S+9DcZN2qBjN+IBPC4wvnr1amRnZ6NLly6Iiooy/G3dutXQJjY2FomJxhPFzMxMjB8/Ho8++ij69u2LnJwcnDlzBk2bNnXHU7BZ2phnkTqsO3JWfSx5ncI/diOujhxx9bygflABa1ZxT/RFvkwTO9ZDct9W0CRU3BryWR+/g5xlC5Hc6382r8tszDJkSiWKTh52WnmOzHnTkDqkC9ImDeaPGOC8FzIXvGa4nfP1YqiunEfuN5/xN6Q09k8bH4ukHs2Q2Nb6BLza5ATI5Aqb+83UamTOnYysRa9Dm5Jk8/rOonNSXXTGGHR5ArXbyyimUiFlaDc8rC1Dwe7Nwm1EArVSeNs54WJ5oXlwT/xB7kkE57Y2I1WgsfULVK6gTUs23M5Zzp9gSZebg4e1Zch4e4LZetkfzzFbVvjHbqQMfgppU4YYljGJn60yExiPNq/DnjHjZRTs/BF536/iPyDlpLIUn0VCypwKHGjJ3HbI3V0g5cjtJ0cia/thRA+aZbkh95yTgnmisjl12SuaomvGuIyusAhJi79F4b936MJ9iaT5a5D1yyHkHTtvWKbJoAxwV0j68Fskf/6Du7vhsTwuMM4YE/wbM2aMoc3x48exceNGw/0vv/wSMTExUCqVSEpKwr59+/D444+7vvN2YFqt4WQ+f8u3ktfjDr/P/vQ9R3fL89lQSkVz96bFx8sz1aXiOpRMKTFY7eNjvG1jYDxz4UykjuiJjFljbVpPqvwfVgMAio7u49UP596W+QearWeaicl9LdS3r0vePysqtKskAbd/ag8quaKo/Yjktqr/riBnzaeSAsApg59GfNMQqK5cKE33JNEVFth8AcdWBb/9YpgsMn+rcM1o7igEm9lZHoIplUgd1Qf5v5btA5zUUc+IP8gL+hhvJ7arLZph7W7ZH8023NaaXJTNmF08ii3/53Vm6+Vt+Mpsmf53XnX+lHH7X86X1hFOtjXzsNE/XF4WLgwVnTIJfEkIAorNLUFIuVSBAy0Phrzt7i6QckAZHY+cP4zzuyjvcn63uZ8vgd+fopsPnNgzz2Ua4BUK+MaMnOeq7ni0pEXrkPjeKtz830tAxf26FqQrMh6nZqzfbaElcQRVfAoS561CwltfQpOW6e7ueCSPC4xXNIUHdxlua+NixBta4iEngkyrdXqQyrgv6YFxTw4KOJ1CPMNZJxDM823ZltPAttdNX5KjYPfPNq1nF86FEaZSGm9zJpwTIxbEtFaWSJsYB2bPUQ2nr/JAz5kEz7+b9Zq+esnPtET2R7ORt2mF1bb6IF7qK9K3bw9NfCziGwcirq7tWfy2kFKeI/m5J5Fv5/ue5XGyJAROvJhWi4w5k5C//Xve8uxP56Lo+AFkvD7Krv16Co3AiCdWVARNXIzJ68H/7GkfPhDcnq0lyRwt4MUxhtvBU/iT8hb+/qvhtt2ZQxLqkANlJ2Pc0u93kemEnFKyYyW+PoSQsstV5xoVjSYty91dcAhtTh5udxiDlC9+tNr2v0f6417vqZK3rXpgnPQvbdU2u/pXFnHLgHAzogHY9PpVNAUXHF+CsbzQ5dmX4ML9DJY3TKfD3d5TEDtpseV2Wi3udBmPmFfmI/7t5UhabD25VldgTAxM3/RbqftaHlFg3M20KYnWG1nh7kCAvg9J3Zsi5YWOVk/4tanJ0GaklW6H3MCotWClyQG0rrAAyc93QPaXC0vXh7LAwgSaOV99aLaMF0yx4cTD1cPDeBdGlMbAuGB5ENPMBpGsZ/2kdmIK/9gt+prII8Un+uVlMHIz8iXQpiYj8/3XoLp1zab1JLFw0USM6vplyW259d6dIbF9HeO+spx45VtCXWPNvVvImD7crs3zyn8IfI4KD+5C/k9rkfHGaN5yszITLqDLzoL6vnnpC0dL6PQIEjvU5X22zX7nRIKkOV8ucF7HJPCu18hw26yeJOf7I7FjPWhLWc7I0veuJtZY7zN1eA/zxxMeInlAO7sv6DiDI4JdlDFOyru0tdsNt5lGi4zNv0MV79zfW0+T8/tpd3ehfPKA80lHSF3+M/LPXkX8m184fNtpK38x3qmgIzaYiv87m3vonJt64vm4x2meEK/xJEkffmfXeuV54s2Cv/5F7h/nkL72V8vtzl9H3omLyNi4FymfbELie6sq7LyDjkSBcTdiSiUKfv3eekNrPOCDoLl3C5r7t6G6dM7igRUrKkJC62pIaFmlVB9gWzLGNXdv8O4XbP8eqotn3R5AcQlOUE9XWABdTrbhvuqS+YEML/taJ+3/w4qK7KphXiqc4Hbme1MMZRWEssFNs5zzNn9jvMMJXKWN7Y+C/ZZ/iMQC4woLgXHe58HGwE/GG6ORt/FrJPdrY9N6kkgI+JpS37zq0C5oEuPMJke1h67IiWU13FzDVZctHPQPGDjCxT0BEtrWRFKXxlDfuWG9MYc2PdW2iypCF4wlnlDkfG05y8LZeGWeLJSw0sbFIG/TStHHJZUisvCaZM42Tj4uNOoha+FMqP75y+4LOg7D/f22+j+WUEpF4uSkhJRVDyd9ZLid8tkPiBkxFzebv+jGHjlf0e0Y3qSI2pwKPLEfsYqbGVka6qR04x2hY8GSZRk/7sOtJ0dCFZds3qacUMVyjssq8NwGpaGONc4zpc3NR+rXWyrcRU0udQV+7mKYWtq5DtPSqClnoMC4G+V+8xlUV85bb1hCNDvMxlIhTK1G/rZNYA4ccswNAPCC1ia0qcYfhaIjpRjGYUONcUWNOiZLysYVfqZWlzoTm5uxGN88DPHNw6ArKD6hUJ45KrhPA4lB3MI/dkPtjIxmC7iT76munBfMfjfQaHgZxRpuXXGT4H/6pMGWdyzy/1BfuyS6ii7XeDHC1otYyotnSm4oLTe0A3ciUanvM7UNwU1rtKnJSGxbC/GPVSr9xiz0X3nxLNS3SzGU0Y4LCI4kE6lB7t20hUv7kb9rM1jJd0f+VtuyPBIej0Ryn8ehvHDG7v2b/q5IvXAnpPCP3Uib9KJzRhpwRzNZqz1v4Ts2ZfBTVndl6bfWGu4FKV1uDrI/n1+6zwmHNiNNeg14bjaVlf+pWQa+EJp8k1Qg+sxNbVb5mfDalDavADcaP4//6j9nSKiR9F1QouhmNFJXbCnVJNmeruhmNP5rOADpG/fYvY1yNTEg5+2RvfcEbjQdhIJL0i7oc8s7SA3cxYych4Lz1xE/8zObulmWJLxtPg+KrXKPnUfSkvVUCglA3LSliHvtE9zp5Jx5ucoEusBiP4Hv67yT/1hchV+dshx93zsQBcbdqOjscUntdFmZeFhbhrg6chQe2mvewMZgW1x9H2S8OQZxDXxtWs8S3gm6Wo2sxbOQ8e5k84acvuZ+t8zu/Sn/4WQ7C3y4uQd4ZjVsFV7GdkWOySpwNFZUhMSnGyB1aLdSbUeXn2e8U3JSIFTT14D7f5T4vpI8sWcpeTd5zLjPPP4wKtVVy9mV2csXGW6HTJ9r3I6NF4ek1Js2JfP1M65vYyCLm8HvcNxSKhZOGHOdVLJD9e9Fx21MpP+axDikPN8BST2amT1WeOx3JHZtAmXJyAnuaAo9XX6eTSfgWYtnQ/nXScntTQlmu3p5mS8D7JoItjQyXjNmqOd+87mxG1mZUP51UtJJdcoLHZE+bZjZck1inEBrE6bfRxY+u2lTXjIEQbK/WIDkge15gdq0cQNRuH874v8Xbn2/NuJ+xotOH7HSWPw1k/S9WopAD/fCaNaHbyFn+SLBz4mttGkpSGhZBYntahd38cFdFJVMXlt05hgKjx/gr8B9Daz95kiZfJMyxgkpVzTJxqxdTXrx7/SDYXMkr3/j0UGIm/4JUpZtdnjfPEXsq4ugvPsQsa8ssGt9ptXi9pMjHdspD3H/uddRdCMa9/vPtH1l7s+ThFEK2lwayWDJ3W4TkfjuCmT9auXYqALI3lc8H1N5rpdtjTYjG5oM83MvYp+46Z9Ibquj7ypBFBh3I+Wpw7z7AYPMJ1HTFRUi4ckahvtprz4HAPBu/rhhmUfUFOIEaXR5Ochd+xnyf1xjHvDg1Fj269IHQHFJGeWFM5JrbzHGkPPZPO4Ci/3J/thkArSDO42rFhVCExuNxG6PIm/zOsPy3PVfIaFDXWge3JPUJ0A4sGYv5aWz0MbHQinx4okYTax5/9V3xLMCuRk1liYt1aanIvP96VD9d8VlgQiveg0Nt3M38sujKE8eQtZHb4uum8e9CMMJrtgaeNZ//kzJgixMqsn5fLKcbORt+U56jX0nTiQn4wTGxV4H1c1/kfWe9Ul1GGNQ3bhqW/08B2YKiL0HNZx62KaB27TRfaG5dwupo55BwcFdiG8ehuzP3zc8nrNiCeIfDS6uLS9R7tpPkfLi0zb23ohxL2SV4GaM877ruZm2bvwNiP9fOFJefBoFnMlBC08cxMPaMjysLTPL0ivYs8VsGzopnweTbGLVjSuiTQt/+wUFvxXXAc1ZthCqS+eQv3W99X04AuczoLl3i/eQbweTC52lnBja0hwlQaOlT4aV//M6640kUpZMvqvLLA5mJT3dEKlDu6Hwjz1IHdoNaaP6QJtSPHJMm5kOTTxn0nFr3x9SAuNUY5yQcoXpjL916eul/x6byj/j2FJwnkRXJHwMxxhDzqFzUCekCj6uV3TzgdkkgQX/3CxXWeTanHxo0mwbJVZw0ZhlnvDWl8jef4rfwHQOIypvIInqfry7u+B+lDUPALjZYqi7u1B+WPm+zj9v/I5PWuS44/7yhALjHkTmXRwA0WamGzLwsuZNExmOzTlBLMWQcofhnNCqb3AOPhkD02iQ9+Pa4knbOAEcn5ZPAgAy3noFKS90RDYn2C12MKbLyiyelI1LqK3ZwYpxv9xJFplahYw5E6G5exOZ70wwLM9aMAPauBhkzJko2A9TOSuWIL55GPJ3/iSpvTUyH2M2v6Ws5rTJQ5DyUlfRYWm+rTuYLdNE3xHfMTeoYCHYlvnOBORtXIHkZ1q6LDDODbpqORPL6eWu+QT+/YZY3w7ntbIUGPd5vK3kvsmDQ8Uf5Owv450JyJw9Dmmv9JO8bWvyt21EwpM1kb/dxvkKOCVCxP6HulTzeolC77Xc1Z8guXcLZLw93q79l5ZYMEzmbbwQp7lzAw9ry5Dc/0n+ujnZSB//PAAgZ/kHhuXZn7wLoHjyS7fi/p/ERixwPqvKf/5C6ph+UN+96bQu+Qh8r2S8OcZwO23kM4bb+ds3Wd2eLiMNuoJ85Kz4SLTfphddMt8aC12eePkA04l4Cw/sQGL3ZlCe50/apvpXvAySGE18rOiEuNyMce/mrQy3Cw7sNCtfxb0Ya41QzfGiY/tFfyst1S83JQsMktzWKpHgdtq4AYbb+b9sgPLCGSS0iOBd5LZaHkfKd0Y5LpdASEUU8/J7xjsa+8938v/61wG98VCcn4HCf43H+Dl7/8S9XlNwrUZvaPOtlPYycavVcFyWt0bCu187qpdupcsrwL9Vutv2PjA5D7KWkZl35G97ulb2UAkM6UTL4BqXi13YqgjU5bguv8tZCYzHDH/XRR0puygw7kG0ScVXUBOfaoCUF59G4cFd4llu3B8lCz9QmrgYKC+etbhf1c1/kTl/hvQsVn1/szIMGeHcwFo+Z0LRolOHkbvmE2S+OwlJXRrzS0mUHHAU7P4ZQHG2JQBkLXkHiU/WhFYgKJe35Vto42P5C61kjANAUs/HBLNZmUYNXZr4l7LS2lD4EvogWsaMlyW1t4qb1SxSfoMxhsJ926A8exyaksnw9FmaQHH2t1DGuTYh1myZYZsa/v8n4cmayPzgTbN2RZwAj5pbs9uZJGQCysTKTnBx3xsWAuOWsjHNWAjYcDPvtQ+ji3f7z1/St222PeP7XXXrGjLefAXapHhkvDHa4nr5u39GYtcmUN8S+H+JXXwR+G4RKvGQs2whAKBg20aLfdDTFRXyJr/N32X7EGdF1erGOyLBMFlAoOF26su9AMCmeR08Avc9LXIBjHthIGVAOxQd3Ye0Cc87rUs+j7WW3phbskeEvFJl5HwxH9mfzEVSt0eFGwlcqItvGiI6SiF33ee8+8ozx6C58x9ShnblLc/56gPYKrF9HST3fEzwN0qb8NBwm/seTZ/wgllbXWqS8OdRQMHv5hMDZy16AwltoqAWyJ5X1KonabsA4N2kdJMncy88c4PbYiMZmEqJnJVLzB9wQCmVouO/W21DSFmifJCAtG93Iu/MFUQPnuXu7rhcwd8OmsOmgmTz3vzfS4bbOX8Yz/+uBnWEOol/npdz6BwKr1korwggeckGx3bQFSz8VtxuZ/lY2RLVff4o6JzfTyPujc9FWpdf3DrsltxqOwrp63c5tzNlFedc7op/e/7kpuUIYww6lXMTFmwdCVJeFf1nnjRIbEOBcQ9SdPwA8nf+BJaTVXz/6H5pK8rkohNdJXaoi5TnO1g8+U59qSvyNnyFjFmv2tTfhP9VRmLbWtBlZ0HHmQyxcO9Ww23NvVvI/sRY05mXTSaSHZa7eim0yQmiZSvMSAiMa+7eEM6UVqstZjzLIyKl9cFGTKmENt3y0EYDseHl3MxnpoPqP2NwRPXvJWSZlJDRy99iYeI8ToAt891J0CbFI2/dF8jbvA6Z7083ZAuzXGON7/wfVkt5FqUmZeKkAikBVokZ45BbD+gZ21r4KnXgcLns5R8goXU1aGKLA+y2lNrJmD4cmnu3kDa1+KSJF8wS+wwInVwIBNEtld0RkrvyY6guGecJ4NavtkabkYbMBTMhCzVO2ilaPoHTf14gvSzhlkzhvl+5/xuB7wiNEzPGxUqA6N+XPBImjs1a9DqvbrnwLoV/L8QuMmnjYgSXm15EKTKteW0Fb/4KgZErBTt+MN6RMJpLa+HCLI/Id4wuNRlMIHM+oO8gadsFUJoJqTPnTUNcPS9jJj538lGR7xXfNh0AocccUBIocPgE642IQy1ZsgRPPPEEgoODERkZiYEDB+LWrVvWVyRmsvedxM3Hh/Gyfv+r/xwejv8Adzq+QrV5JZT2SF25FcmfCYygK89ZrhKyUgHgNmeiv6Ib93Gv1xTcfMz6SMuyRl+L3hVSv3TMSOGyRGrJmIK/ryH21eI5ntSJxnNejygB6wCquGT8I2uFO10tHHeIfO9os/mlE9PW7RRsV9Y9eHE2rgR0MLso50i6woqXcZ9z4IzoYxmbf0fBpRs2jxIiFBj3OFkfGrNzCwUyxAw4X7TK00cQ3zgQ+ZxsTaZSQX3bWEuo8MhvxlVD+GUf9LVA1dfFZ7PVFeSj6NwJw48Zt5yC8q8TghOqAYAPZyg5AH69ZdMfRpP7qsvmQ9JkAtmHTOCkXihQx6tlqm+nVlkMIOnSpM1IbqukHs2Q8HgkNJzsQh5uxrhY0JIbcNXpoLpmLAmgib6DvHVfiO5fX+PVlFiAUV86pWDvVvE+O5ujSrZw3hvMQtDOq2YdG7Zp4WTNgQeAOZ+/D11aCrJLMrSFPg/WaPQZ/pz3j360CpfywhlePX49ofeIDLadcApluEqagBFAQssqyFu/3Pg8ANGMd22q8X1e5jLF9bjvLZH/tzPqKls6cZFHVC1uY3LRR/nXn2ZtpYy8UJ47Yb1DYtnHpXzuTFmEzPdfK+7HlfMotHZBmhP4TXm+AzLfn464RgHI4l4A1pPw2Vdd/pt3UVOMTC6H1qQ8jCW2nHiqrIwqs0RfsiVlUKfiBZyLAfpjCzMKL8H+5XzzmeWdySwfslY99C8U4RGWt0Ec7sSJE5g6dSrOnTuHQ4cOQa1Wo1evXsjPp8mdTKniknHv2dd4mbxc9/vNQOHlW4h+4S0AJaP4qBatTeKmLUXCrGW8QByA8h0YF5H9G38ycNU943FW0Q3jhWypGcBlhY4CQg6liuefCysqhRhua3PM58YRkjDHODeUrkDC5OJlwK1WwwEAecfNS93pVZjyOiKyfj0CaLXI+GGf83ZSjuZCkCp5sXCSY96fFxEzYi5utR6BjI17XNyrso8C4x6GO9GaLlt8aIhM4AAv481XAADKS+cQ18AXST2aGR7jBr4YZ5JIXn1SCweNaa/0Q+qQLoasPm7GsDZZfEZlVsQ/2BIqpVJqEjLGASBTICPeFRN1aZLikb9tkyEIy3Q6aGKKJ8XM27RSuIQN9zmJZUpzLzIUFfIy4jUWyqUAQFL3psIPWMnKzpg+HHk2ZIjnblqJlJe6io5o0LOWDR7XPIwXdJNXqiy5D2b74maMC5QF0fPrbkMdcAsBG1uzqSUpeQ4yvwCTfTEoL/9t9fUGwHv/pLzQETlr+UGplBc6Is9kklMAwu8RWwP0Au0T29aCRizL14qUwU8hveT7T0/17yWkjepj1/ZKK3/nT0hoXweqaxYuNubngRUJv/9UVy4YJ6nkfpdxvxe4y4VGlZSUYNEV5CPzvakoOn3UvI2ItPHPI66el3iJG40a2pQk5Hy9mLdYef6kWdOiU4ck79cisexrBwSN8jYW11BN6f8k0sY8C02M+HBE0++MvI0rwIoKkbviI6iuX+Z9b0gJTmcvnYPkZ1pa76Rcgcx3J1tvp+eAsiSmMuZMwsPaMmjFAt7gP+fEtrVEGjFAoESYpYu5ipp1rPaZOzcHcZ0DBw5gzJgxaNasGVq0aIGNGzciNjYWFy9edHfXPM7DiYuRs/8U7vW2PDmuNisXBZdv4bL3kxbbVTS2TAapKyjifweX07g4YwyFl4VHaKhjhZNgTMWMnGe9Eamw4qYtFX2Mqa1Mmq1vZ21y7TJIk0olPBxB6sWViqC0Mf7Ca/cMty19bokwCox7Gik1kgHRE0TVrWtIGdjevLl/gEBr8E6etfGxghm0upxsQ8mG/M3fFO+Hk/Fp6eQ/wyRYxS+lYhLQ8HXgSa3AN4tQAF9903wSFl12luG2d+Pm5ttJS4Hm4QMAgPLy38ixUgIguc/jyHhzDHJWfYzc9V8hrq4xKJi7eikSWlYxX4k7HF0keM8NuKYMbI9cTs3Wgp0/WuyTLjtTMDgp5UKBmpOZbk3WvGlQnj2OlAHtRNsUnT6KuIZ+yN24ApqHD8xOfDTxsbyLOYCFSQilkFBCpNJn620KsshKWUpF+fcpJA96Cqrrl0XbqB8Y60BqE0uy9k2+L/I2rUTKc22ROqIX1HduCH6eFdWLg1WmpSmyF0urXWrLZKtigV+xAHhih7rm//+Eh9BxLsSJKdi2EWrOxaHkAdInT3W0jBkvQxsfi/TXhgs+risqRPyjwYhvFSn4vZfc/wmkTxtWPD8E9/tVp4M2Iw25m1ZCyylfJfi5LfkOyV25BHnfr0LqsO6S+6+fcFRf4sb0f8LUaqQM74Gcz9/nLfeq29B8Y1ayfKUS+53RxD1wyPa5Qf60KUMM3/Fm/bBwMS3nqw8h8/XjNC4pPeWIE0KFAqrLNsxNYPL5ZhoNHtaWIa55cQkiWVCwpM0wxoq/l4uKkP/TWgBAQgsLWdkSL3iL/T/1c2SYbTYuBjprow8sTFRNXCc7u/j3Ojw8XPBxpVKJnJwc3l9FoY6XNgpRk5aFW48Lj8Ss0HQ6qKRO1iaTIe9E+b84k71T+kVvMco7lpNpSMWmSRa+GM4Yq5DZukJMR1ASExYSG3TKUo78lHhxpiLIPWz/HGaEAuOehxNEkFepZqGd8BeMWAAyd/VSPKwtMw9ImZycZswy1p9jWi008bFIeLKGYZkm5h50BflIHdLF2BVvH/F+muDWZDWrGSsQxNNKKWUi9KMsctKtvn+bdz9junngKu/HNZxNM95t9d2bSGhVFYkd60GblYGU59oi+8O3LHZPV1JLvOjPg8haMEO0nX7iTG1KEtT3jOVdJJVSMaG+cdVin8RXtPzj5PN4W8jDhE92LW5W4AKEXvprwwGdDlnvT0dix3qIq2PytSTQJ1ZUimGSUibfZIw3esMasfrHAKwGitR3biBl8FNQnT9lmCASADLfn85rp7pgrCemPHu8JOOY/zpkfzS7pO1pJHVvihSBYKg8OBRFp48KZmcypRJJfR5HxpxJov0VDMKKfB/lfiucAepdTyCAqt8+56KHNjkRie1qI6FNlGh7Lu5r5NPiCUnrOJPY+1RT8j3E8nIh8/UXXV8TfYf/3tLpkNSlMbLmTUPuio84DcUPCtUmcyvYknFnYPIeZmoVv5RNCaFJOVUXTtu+Pwl90JMHhQguD5lhWwZc9qfvGW6r/72I1JG9BdtZCowXHduPwv3bjQv0fXZAYFymUNh0kYEbeFZE1UR2yZwT+jlMZH7i7zuurA/eRGLHeshZ+RFvufLy34Jzl0gahaXTQnX+lKT928Li9zBxCZ1Oh5kzZ6Jjx45o3tw8sQAorkkeGhpq+KtVS2RkQTmjik10aokHu77byxrGkH/GeukpQ3MnT/rmCZR3bStvqMmwr/42YwwFl29BWxbKrlSEz4ILmX63yGTFgeA7T72KW0+MlLaRcl7KiC4ulUIpP6+ajPJ5cV1XUIj7z7+JdBtKomTvPObEHpV/FBj3NJwsYLHgEVOrRSccYwWWazomdqhrsjv+iSR38sK08c8jsX0ds22mT36Rvw0bypGkT+FM8iIhs0z5N39ovuCBP2NmNbPjH6tk3g7gTfgnhvd8OPvLXfsZkro9arivuWfj5FIWy20Y95PQJgqZ73Am8hALVpfy6rQtFzT0vGrVg9/Tvaw3tKUf1ia5tKOOtiXckQNik2+yokLAW3pg3OJ72cr/iVvWRseZkNW0jImugD/ULP7RYGS+PZ63zDQQq7pwuvhiC/cCk1yO1OE9BPtSeOQ3qK9fNmSGCrIhK1N954bZMqZWQ2ehVrKSEzDTl8+ROkIg480xhtuKqjXEG7oKYyg8uh8Fe7byl3PnECgJVALmJYLyf/2ePzEpY4KvHdOooSvINxshkLV4Nm+ER/6vPyCujhx5P1r4/3L5FH9HmE1kKfKdZHEy21Iq3LdNeLnIXBy67KxSZWprTC6i6lkKjJt+/gxzcgiUDbGZTG7bnALcUUdardmIKakX/vK+/RIAkLP8A97ylOfaIqknP/DJGIPqkvV65U4bUl1OJvQqy6ZOnYpr165hy5Ytom3mzJmD7Oxsw9/Dh26at8SFlHdjcb3OsxaDmLrC0tXdvdlyqKRJyssypmPQpGVJapu55SAKLpofg1QUYhdK7nYXT3ywJGf/Kdx6fBhuthhamm65hsQ4W8EV4d/5PBsuvkiRvmE3bj81FmoPL72hepiE64/0F568loNptMjYuAf5py9D9UC8nCoPNzBeHi9cOPg5aXPzK8bFTqDUr50iJNBBHfEsqSt/QfauY4h9ZYG7u1JhUGDcjULnmNf+4Z5YyyOFsyTTBbKc7WbhILro8F7h5cd+593PmjfNvn1rtVZrsCpMXwOBL8/M96YioU0UCvb+YnWXkgIUnB9vzZ3/oImNRs7qTwzZuIZtWbkIYcpS5qTWwsSDooGYUgbG7cm6lleOhMzfwT9AImVIMuZOQeqoPg4PjHMDaWKBvPxtG23LGLcQ6LG1xnjqmH7QcgLkBhYCctakz3jZeEcuFz8IkXBwYsuFMF1ucWZSwb7tSB35DLQZaUgZ2g1Ff/4hvhL3eXL+91JrZOtyspE5fwY/c9eEyw42NRqkjXkW6dOG8ietFdm/LjMdSb3+Z7ivPH2E97jYeyn7k7mIbxKEuIZ+vOW5az+FhlOCJ+P1UQCAzHclnhirVEibOhQFf+ziLc7fIXzS5MzAuH7ODf9nnkelj4yjegy12E3kbfwaKS92dtj+mUqFwiP7bLogqr8wVWRtQk8p5HLbvgt5Iw20ZgEzS7859tKlp8KrTgPrDZ0UwHbFnCFE3LRp0/Dbb7/h2LFjqFmzpmg7X19fhISE8P7Ku5xD1oc3J32wrlT7KLp6B3l/Si91VyYxhripH0tqmjh3JRLfW2W4LzQ3U3l1t880XJabj+ACIFqP3BLGGO73Kx7xqrrv+N8Oh5N4jJe+Rvg48U7HVwSX2yt27ELkn7qMpPelz9HkbDmH/0LCeyt55+EJc1dCFR2PhFnLLK6b8M7XiH11kU37Y0VU6swSVmQ8fk5cuBZXQ57Cv5UcdwzrdiXfv844/5IH+FlvVAZp0jlzApbzi96eQmJBa+IMfp17I3vJ27xlulRj7TyvmnUF17MU8LGVUPZh4eHf4Nf9WYftQwzTaa0OMZdy8q4POGd9/DYC+g+x3FhCppppvejkfm0EXyepQ9GlsJQ1nbvhK4R/tt7soN4pkzpakbfhKyj/OmHXukynE67FLXKykl8yyWdiu9p27U+sD7z7AuV7gJKLHlLr/QPiEwMCUP9nW+ZJ0dF9yBIozyNlIj8xvLrHlsox2BsYF/lcqa4Uz8auH2WS/fEcqyUUeBcZOIHA1GHdUXmFeBaiXlLfVtBySjYJsvBaZi15Bz7NW1ndjxTcQDHLN2b8W7roYqnsUMH2TYLLHfmbYLbtvVtRuJef8S7z8RVMyLKUTe0oPq07SA4Qqy6esd5IorgG9s+BkT71pVLvX+btI6mUivreLXjXb8z/vtBoBCe7dDidTlKpLYdk0Jfwad3B8H+WB4c6bLtEOsYYpk+fjp07d+L48eOoV6+eu7vkeST8tnJPgu2V/9c1BHd33/wazqaKsTLPgCWW5oIpY9SpmUj7egvCxw4QfDz3gITfPhviUwV/X+Pdzz97BYHtW0jfgKdy8cUSbY5tCVXOdK9n8WTevo/UQOWxAwFYqNVs8v2Ve8j66Guu/L/+RdY2zkTsFegilVTaXOPI2KQFxaM6tdnG8wbVwyQU/H0doc93tTyvlYfLECoLUlEy40sh44d97u5ChVB2P1nlgbWTezt/OGwJ2CZ2esRsWdrY/sjfut6ufdtEq4Wu0PJBQvYn70rfnoQvVtW/1ifiYSalIsTKPqQM6iStXxJw67ibKti2EWmv9Dd/wE0Tfdga6NVLnyYykZTA+9wZV5QLj+6H2mRyS7EM1/Ala23KGLcUaDUtd8Lbv0hAueBX84xc70bNrPdD5DtFHhLG3avN6/OoVNCmpyJr8Syo7xbXwherg+/7xFO8+/lbvrW6eUU142fBNMiWPs36EF6rQXFYqNuP4vkYHBHIBEwuInAvtNhSpocj+5O5peyRY/h1Ei7Fk7/lW7smIFLUqiu5rUyhcHmAQ8u5YO02Xl6SSqlkLZxZPIE052KdLivDMKEq4LxJopKfbw/V1QvWGzowYzzsHWP2qHf9xg7bLpFu6tSp+PHHH7F582YEBwcjKSkJSUlJKCx0Xj3tMkfKMY0DjntSvvip1NtwNdXDJNzrPwO5R6xn1Wf+6IDRN+VAzIi5SPpgHe50fAUpn1oue+EIpgHdlC83i7T0DB5bgsJD+sXNPlVGSyiFUspu3243unQbILheuy+iB88qMwFSTVombrY0nrPpk/vS1giUP/SQz4WnYQXGZKPEBd+4sScVBwXG3chqbWU7s6p82z5t13pcmbPHlXobVum0KNi20XBXUd18AiZNzD3+glJ+eeZvtvzFoomNtlj/2F2Kju4DY4wfSPXwHxLT4Evhb78gd/1XUN0yZp5kvj8d2njzCUs0d2+aLbOFV13z4fxpY541K7sglr3s2/YpyGwIXtqbAZn/s/DQaaGJIyWVqRALOHFrWluq1y0hYMY0amS+MwG5az9Dct9WFtfzqtcQWls/T9z3uJNqEWtu/+eU7ZrhDn3jXgDykFrIutwc5Kz9zHxSZivEhvSx/Dz7npst68gVLss2ylm1FEylQkJrCxNhO5lMf1FLo5F04aro+AHEP1bJcvkWJw3J1D58gIIdP1htl/2pAy/w+PigVixDrVjP/j0sz1avXo3s7Gx06dIFUVFRhr+tW7daX5kYqBMESqhVALFjFyLnt5O422Oyc3fk4cfMtsg9UjwaT52QKrnmOpcmMwcZ3/9m9/552b9lmYVDiYfTzcudSpEmUp4FAHQFzh9VJ0XSR8bkN6bWWL+Q4OjPTjn6LBoIPKesndJKQALipZ6U9x4iZZnxgqf+s+/pkj5aj0KRGv6mHkosj1XRFP5nTPRSP0yy0NJ+pRmNXh5RYNydrJzk2j1BlYNrMjsL02qh45QX8Huqp2hb5V8nkfHWWOgy0y1ssPQ/tImdHoEsMKjU23GGhBYRiHvEG7rsLOgKC5D8nOcOl01oVxuFv5lPlpe1YAZSS+r+auJizCaY1ONOSGkPbl1lLik1aL30mdkOyhgXo8vNQdGJg4KPqa6cN1uWPuEFm/dh2FeG8YTbYo1kCZ+hvO9XQVky+a+1OvWKyCibRzZw/0eOLLnAldzf/MKDM3Az03WpyYbRKLnffO6S/VuTuWAGshfPQsqQ4s8k02iQ/sYY6yuKfI78+w6267OgTYqX3lihgExCSRFHyP74HeRv/c4l+xLj3/M5AMWfBVtG6+hrsgux9rkq+H0HlBccV4bGlNjEpvawmmBAnI4xJvg3ZswYd3fN46nikhE381MU3YlFzj7LZcak0GbnIW3tdmgySl+WxVVUca4ZkaOOT7HeyIOo4lPEL5aUctTPv1W6I3uPfWURywJrddQfvDy3pJ34b1HaCvsu7D2c/JHoY9m7j9u1TUfjZh2nLN2I6OffBCAenC04f90l/QKA9I17cL3usyi8Jnwe56mKbkSbLYt+wbwspq3+azAA8a97xjmDJYwx5J25Am1OcVzHtKa8NitXdN3sncdKte+UZZtxvV4/qGJLUWrLA+iUKt55eJ6TL4Kkb9iNKwEdkPPHWafupyyhGuPuZG04uN1BoTJSu0urtXpwFzRqCgAg5UUJWfAOugKdu3JJqdbXxMeCFRbAu0ETh/RHT5/JnrNiMRTVakL70PxH2FNoEx6Klr3QP4+iY64fEivz9pHQpjggLrOlxrjIRSyxGuYAEN/MdfVwTSfMFSXhZKtw3zbppUC0Gts/l9zXsqxPNsIJEqcM6gSvBo8i/MtNkkrKOFvmwtehLJkEVVuSMZ75/nTROuZcyr/+FH5Aq7HvYoYNJ/ksNxsIDLZ9H3bSprkxmCKXG7+HHDl6wsLnSnXjKtInDgKAspGF7Vc+J10i5YzI72D082+i4MJ/yPxZ+CK5zTQaPJz0ETJ/PoiGx0s3mWd5VHj1Nvya1Uf+X9cQ0PpRyH2tHxO6g06pwvWazwAAWij/gtzHvvJromy9gF3GakIrbz6w+HjmT7+j6uzRyD9jX2nI8sZSwF6dKn6R3W4WzgtiX1kAAIgZMx9NLpSd0lDRg2bx7ts84sCGz5iuSAm5n/3z3jhD5k/7ETNyHnwb1kbT27vMHtepio87VU7IfE794kcAwH+NnkfLItvq33uCohv3caPpYABARMmcXK4QO3YhAOD+gDfQspCC4wBljLuVtUwnezPGHTEBmrxS5VJvwyqdFuBOICnwQ+nV4FHp2/OQoVmJ7esgqduj0Dy4h5Th4lnw9vKqXR/MSm12T6e+dR2Zc6c4bftiNYtz13wiYeWSQJQNGeOspJ4vKypC5vvTUfTnH0gd3Rdp4wdK3oYnsFR7m4cTWLMU/GdaLW/SSSlyN34NbcnIEGdljLuL5u4N6FKcMxzOVnnfLYM22VhbsujMMeT/uEbSumLlppha7fQyMXk/rXXpSbpNF8gkb9R6/xXVaqD6hUTD95EjPwuWRs4k9zZOqGbps+0p5L6OmwSbkNJI37QXdzqPgyZNWiDp1pMjUXChuKyXJsWxJfzyTlifT8eTMcaQd/qyIfvQUdQpmUha+A3udHwFD4bbMIeRi3GzK3W5/OP9sp4V6SnUyc4rm5m18yg0FjJk3c6G0+WHkxa7Zf9M6d7EmNLOxWLviANrMn/Yhyv+7VFw0UUlISXK3HwAAKC8Y14elUuTmOa0PjClxHNYDxM70fgZS1ttPtqeuI7HBsZXrlyJunXrws/PD23btsXff1seTrBt2zY0adIEfn5+eOyxx7B/fxmYoMVayRMJZR+EKE8fsWs9Lv9+Q0q9DWuYSca40I+QI4dcS+brmKuwiU83gPLUYYdsiytz7uTiOrtlWFLP5k7btk/r9tCm2H/ioA+ESckuN1CroU1KQO63XyBv4wqkvtwbRcd+R9HxA3b3wx3suaiW/cV80cc0MfcEJ/i1pOjwXqRPGlyygfIVGAfgMRfwTKUO7Vb6jei0hotETiOXuzZ7zZaSShJV2XIUPq3aWWzj/VhrKCIinZMxrtHAS8JElSmDn7Laxu0oY5x4iNgx85H35yUkvi/tAqMryhPoy9qUNTEj38OdTmNxNbT0cybxMIaUz4vnQcjecRQ3WryEhLnCJf08lSbFCRm8FVDuIedllka/8BbuP/ua07bvDPnnriLzZ+M5S15JNn32Dul1sqXy9O8knVKFG48OQvRLb7tupyWHtZkS6/dL/Z1xm7I1yMStiq7ft96IuIRHBsa3bt2KN954A/Pnz8elS5fQokUL9O7dGykpwkOaz5w5g2HDhuHVV1/FP//8g4EDB2LgwIG4du2aYHuP4awa447gin3rdPwfR4FMQ+WF09K356AfWt+Wnlu7m1gn8/VHtX2X7N+APmPchsk3ASDhyRooKilNUWbZ8RnKXS0+XFBqBrIp5dnjxTfKWcY4ADBWuiwUT8Y0GqdnjMvkCutlyBwoe4njT4zkYeHwe6qX5Ub6z6I+Y9zOC+WCmy4qlFS+RmiuA2eR+doX4LZ3PUIchel0iJ3Ez/jKP3fVpJGLO4Xi4NPtdqNxu91ojw9Emcr8SWL5N1uZvA5FV+8gmTMRoccQ+H8lLliD5M+tT27sDGoPy1J3xAWflE+/d1BvhHl0mRaBoOXt9mN499WxzhvdKClr2I3fWbl/nIXydgyyfnHdJLOqh8kouHIbD4ZIO+Ys/PcuEt5b6fBRNY5iegEv7/gF98a1PJi2DM0JUt55ZGD8iy++wPjx4/HKK6+gadOmWLNmDQICArB+vfDBy/Lly/HMM89g1qxZePTRR/HBBx+gVatWWLHCs7MArE4a5cagkOryX87fiU4LVpDPu2/Kv9cAyZsr7bAnAxcGXexWxk5yXEnm4wPvRk0R8e0u+9bXZ4ybZIoGjZ5qdV3lubI9mZEjyjA5Urk8iCrPn12NptSTglkll0NWFr6jLZB5eUv+ndGmFU9Mp7l302H7T3yqPjTRdxy2PbtxRmfJguyrGy9T0FQ5xL2ydx1D+tpfectutx+DmFcXInHRN27qFaBJTkfB39dQ8Pc1aNKy3NYPANDmFyLh3a8Fh/9bqwftSGqRgJw2r8BlfbBHweVbSFr4DRLe+tJlk5Vyxb66yOX7FMMYw90u43Gn09gyd8HHY0h52ZyY8Zvx/W/WG1Ww/23O3j+huvtQcnv1wyQkL/4OCe987cRe2S9rO3/EfMFf15D4/mqn71eTmeP0fZDyy+POLlUqFS5evIgePXoYlsnlcvTo0QNnzwoXhj979iyvPQD07t1btL3HsJYxXlTooo6YU9+4ar1RKTGtFnnrlxvvCwXBbMg+1KUkFte4LW2/VJ5fo0qXVzG/+KP+lDBLeUlA269rX/t2ohAupRI87g37tleGZC2Y4e4u8Em8OFh5xc9O7ogDleODfaYsQkLras7diUyGMj9G08tLcmC8cG9xncrC33c4s0duIeP8H3XpqfZtpIxfJCFlnyZdONsrY/1uJM1343B3zm+Nu+dOTFqwBslLNuBWm5d5y3OPuCAJhyPhrS+hKzBPADCt4+1JHk79mJfdrLwX58beuJ82Ixt5f15C/pkrTq1XXNExlXtrfLtT7rELhtu6ouK5VnSFRcg/d9VxSXhC7PieLvjHcUkTpSHlIlXqSufXz05a9A00mTlIXrrRKRN9lkvuPkDwIB53RpGWlgatVouqVavylletWhVJScJv8KSkJJvaK5VK5OTk8P7cwlpgvMBzD9QcwjTordVAfYtfc9HWCcfi6pd+hnnJExC6Ue7KJe7uglt41a1vtY2spASKzNsbYQuWW2ktvr5pKRV5WLjN2yKlIyVjvNqha/Dt4ID62K7i7IxqdyjJ/M3b6ILMFVfXGHcCmZe35PkzAgYOB2DjRNQeIOC5oVbbMEfUl6DAOCHCOB8vseC9qxReER6hkv+Xa0teuvt1kKroP2PN2aytfyBzs5NKy5R1ZftQwG10EspvxIwWnz/IJdyYRJK63Jhsoy8xc6//TNxuPwaJc1fi4bSPUXD5lpt6xyeTy5G66hekLN/s7q54BNX9eMSOW4SEd77C7Y5j3d0dHsaYQxI4HY0VetZocXeqkGcUS5YsQWhoqOGvVq1abumHtVIqukLPHtpniaQMTpPSKUytNp+U0R2lFGwJjNNJucdh3M+NtQluheiH5pselMnlUFSrYX/HiO2kfP4VCsjDI5zfF0dxwcF+5B7XZuHJfBwzYbHEvQFlvU67lxcKdv5ouU3J+8S7YVMAgObuDWf3yqFkgRJKoyiVhpuKWvXs3BFFRohnS5y/2i0lH7j7LHJhuRJBnjJSqowcs2duFZ+vhik9P3nHqTjf+Xkn/3FjR8ouXaHSeiM3f2aLbkS7r1QOZ7+FJQHwvCN/AwCSP96AtJW/4Nbjwxy/XzuOZ3RKFeKmfoz4mZ9BneoZE/O6sx/5568j94/iiXXVHpYxfrfnZFwN7+qxdeGJBwbGIyIioFAokJzMr6GWnJyMatWEh2hXq1bNpvZz5sxBdna24e/hQ+k1nRzKg0uplJaUk9zCQ3t494XqmtuaMe4ItmSM13rg3InmHE1Kneyyrui4cVZ1q3X8BbCSMjUs3+SHSy53+4GiEL8e/eHbrrO7u+EUkj7/CkXZqjntgoxxr5p14VW/sdP3o2dadsiZfB5vC+/HWpstl1eq7LI+lJbp/AWCSr5rdLlls2wWy8+1qb32YbSkdoEjJsKvyzOG+zJZGfrskwopadE65LshgJe2cqvxjsa9x6pFt2OEH3D1ha1ycCEtce5Kd3fBY+SWBCuJbXT5ZSO+kPPbny7bl66wCP/IWuFKcCeX7dMhtMZzClYk4YKHE6gTU5F74Izh/rXI7m7pBwBokjM89ns+78jf0OUVIOf30+7uChHhcWcUPj4+aN26NY4cOWJYptPpcOTIEbRv315wnfbt2/PaA8ChQ4dE2/v6+iIkJIT35xbWAuNlMGO8yo9/IPzrzfCu18hqW9U//EC4YI1RtdppV4yDxgrXU5ZaYzxi035Hdscl/Do/Y71ReWJHxrgsqPj7wKteQ5MHZGACE8R6gpDX5rm7Cw7HGJM0x4A9Fz/ciWlcMIxOoUC1P/51/n5K2BsY92rUzOZ1gsdMh3e9hvB+9H/8B+wZHeJKnIkmIZdDFhJmZYXi3z1FVE2ndcmZCvZsccp2g0ZORtj7XxoXeOgJECFcphORuULykg2G25m/iGcgu4I6ViRzz8XJBvR1QVzJqfWoK4D7z73usn2lriquf63LK/DIJChRCveH8uJmfubuLhjpdJ7/Re/p/avA3P9pEvDGG29g3bp12LRpE27cuIHJkycjPz8fr7zyCgBg1KhRmDNnjqH9jBkzcODAAXz++ee4efMmFixYgAsXLmDatGnuegqSWMsaY0WWA+N+Pfo7sjuShX++UfQxv6d7InDAsOLJxRyAaTVO+4GSifVRSsa4QgH/rn0c2yFXKEuZtXYKGsP53NsRLFOeO158w/S1kssRMv09+zvmTOXwRzaujhxZC2dab2jlPR3w/AjHdMhBtInOnzhLJlc47DtYEh/XZYzry7b4mGSNS8rCdqOA/vya294NpdUMF/qdCpu/zBFdKpNkXt78Y4IK8JtGSGlps2wbwVFulcNjJeK5LivaIG3tdnd3w25xMz51dxdcRpOSIfqYq0pfRL/wls3reMKIWU2KtNIpUmrbl5aikuVkV016Fu72mebyi8XKBwku3Z89EheuRfrGPdYblmPu/zQJeOmll/DZZ5/h/fffR8uWLXH58mUcOHDAMMFmbGwsEhMTDe07dOiAzZs345tvvkGLFi2wfft27Nq1C82bNxfbhWfgBO38+79k9jBTWhkS46YDPC8pJ/QSgjKSJjPUaEpfekCkL0wkG1VK4Mq3TcdSdcltKsJJATdAZsfzZXm5guvKZHIEjZ6KakdvoPqVNPj16I/K3KHKbqRNcFM5qFIKmeGATHcr/2NFlHvmkBCjPHvM+TuRyyFz0Gc9ZPpcq23srTGuuX3deiNT+pMA0+fn7Q1ZsJtGf1lRafFqVPpgBRTVa0FRvRbkoZUgNmuY/kJOyOR3ihcIjIjwafGEs7pqN9+nepZqfR+pv6mmv+cV4TeNeLaykF3oQV3UeeBEX7fajkb8O1+5uxtGZeE95QkYgyY9y929sOjhpI/c3QW7pX4lYb6wMk6dlIaEOV9DeSdWtI1HX1iUe8AxkAd9X8m8FLwAvOlkl4nzViP3wBk8eOkdl/ZLFWOMW2bvPuHSfUtRcPE/JC1Yi9hXFri7K27lkYFxAJg2bRpiYmKgVCrx119/oW3btobHjh8/jo0bN/Lav/jii7h16xaUSiWuXbuGvn37urjHtuMGLhSVq5g3UFkOjBcdctNVHQknojKF9cC4LCDQ+r60tgfGzUqviE3gV4r65fKIqnav61Z2BhFkgUEO7ojzlDZz1LdD15INmbxWMhlkMhm8GzSBolJlVFm/BwH9h5RqX/YKGDjccFt56jC0GQJliMoCR5RBKfk/Vf3jqtlDft36etQBGwBo4s1rrcp8/Ry7EwdmkAS+PMlqG7HPnFfDpgj/8nuH9QWA6CgQmcILNa6ko+ohaSVkQt9e4sheWRQ0chLkgUGodvg6qh2+XpwFLvJdHL7sB9S4mgHftk8VLxD6X9owEsavc297umyzyJ/42TeVPltvdR3uqDfTzHhuHXEumVwBObcMjQdkS5GKjWnLQLkED/odjJ3woftKTIh876ofJiFl6UbX9oWUWvq6nfg3ohvSvvnV3V0hZVT0i7OR/PEGZO8UT1phbp6jwSLOd5quyD0T8+b9eckt+xWiMZn40/R/564LadyfnszNv7ulD5ZoMsrmfEaORmcUbqaoWh0A4NOyrdljjpp80/+Z5622CRr3OgJeGClpezKRTDceCSfuUrJcmVpte8a4SSa42KRsVjPyyyORk4LgKZavnNa4nOaM3jiFzNsYpLMna9arpD6+2aRuHpSZGDbvC8NtVlQIr+q17d6Wf68BjuiSfThBLa+GTRE62/bMGv1kuXJ/44U2RY3i16PSR2vg27qDYXm1P+/Y21OH0dy7Zb7Q0fWxS17X0gR/q2w+jMprf4VXVE1EbPiteLORUcKNBUblyMPCEXXkOgIHSftdkUwsY9zLCzIvr5JsbAmERhI5uU65PCgY8qDg4jsi3ycymQzyMM5zEAr82hAMLjpx0JYuShYyc77ZssDhEwAA3o+1RuCLY8RXLim9U3kVZ8QN52J61Kn78GogMjJNLoeiahTCv/weldds94hhxIR4OrERku6Q+eN+/BveBYXX7rq7K6QsEvjtfDhxMTJ+3IeEuSucNi8VKZ/yT1222iZtrQdfeOG839PWuKlsTxn6zGX9csjdXSAejM4o3Czq1H3UuJYleDLPlMbhhsET3rR7H1516ltvE1UT4V9uQsTGfdbbPmJ9Yk1HnawW7PwRjNmYMW5yQUGsFrsiItLufpVVZsHeEl416vDuV9173nDbp3V7yHx9EfLmIrP1FLXqImzBcsd2srR4oxVsD2bL9MExgYxxT6GoYhyx4Nuxe6n65t9nkCGQ7GoyTiDSp2kLu7JbDSWZOIHOKj8dQo3bBfCqXgt+Pfuj8qpfUO3EbXjXbYCq+y6abSNg8GjbO+9IDg7I6j/n3k1b2L0Nv07dEdDnheLb3foics9fiDryn3BjJ0yA6tu+C4JenWm23PAdZnogXrJcaNJq7ggLPbVAGZfKy3+y2CdJo5wkknrRTui3VOx7XJDEWvNiF5DFKAQuklRa+BWq/PgHqv56yuz5cTPAa91VolYsg9zP37BMfeOKcds164iPOiv5rAQOGomAvoNs6jMhFVVwr/bu7gKPNjsPsWMXujygwpTuyagkzhczch6SP1qP/JOek71KxGnSsxAzZj5yT5gfk3ualE82ubsLogr+uma4rX6Y7MaeeCad0lhKRafil1UxLbPiDtp8xyTBEsegwLibyXx9IQ8JtZoBFvZeKWb8lRC0YIxBJpMZy0hY2lxwCKqfT4CiVl37+2QLkUwX7yaPCS43DYz7PtFJsF3wpNnw7dANwVPnCD5eLgkEY8LmL4NPq3a8ZT4t2hhXKQlQhM6Yh9A5S3ntqp+ORvDY15zQUfsx7uSp9gSMxTJSnRgYDxw6zu51vWrVK3UpDu/Gwp8lW4UttLFGJ/e7SS63rUREt77w7zXAeFGR8x0q8/M3BN1kMhkC+r0I73oNAQA+j7WC3OSiGPcipFvI5Kh26Jr1dlLpXwsHHfTJZDL4tnwS8tAw4ce9zUup6LLEJzLSM/0/8Lbp44uwdz4WWKkkAG5SIkt/kUUowOtVt6HZMr/25r91+hFcQgKHvoqgMdNFH3cege8dGy48K6JqOrSdHhOYpFrm6wu/p3tC5sf/Pgp4cQyCxxdf3BcbocL9PZdZ+i6gDHFCbOZdReJIGhcqOH8die+tcnc3eO72mSa4PHvPCdxoOggF/9x0cY88X/7564gePAvKe54x140mPdvdXSASxL3+OTI27cXdLuPd3ZVyI2ub67Khi27cR/zby6FJkzbxprtkbNhtuP1wMn9Ucsqyza7riEgM4X6/Ga7rA7GKzjA8hYWTPX3wwN7JrUxrd1rsBieDyxJF1ShU3XselV0wbCe+qfmEajWuZYl+yZhmDMqDQwXbyYNDELnlCEIFhoSXV6aT08mrVEPwqzMsBiS9H2ttuK3g1Fb3hLIUQnJXcspH2BPM1mdjmn4mnRgYV1SNQvDEWXatK/PzE63HK70Djsn49apRG7ViGUJee0/aCtzXVCaXNDeBXpWN+xDx7S5DZio3i9bWCwX+3fvZ1N7RZAoFvBs3c9wG9cFjB5XjskZ16Zx9K5pmPnN/qxQK4fdlyXMr+PV7weVyvwDzdQSyEgVHPgkE+PXyt3yH3FUCgXo7Sa6xW8oa49xSQpaEWCinFTjM/MRVKDAuxrteI/g91QPVzyeg8jc7BNsoTObtkInVknfC6ARCSqUMDCN3W03vMib3wBmoHiaZLb8/4HUU3YjG/YFvuKQf6et2umQ/pZG16xhuthyK20+ORNavRxA9eLa7u0TKkMwfzEeoK++KT4BJPMuN/w1FyiebEDv+Q3d3xSLVA+Oklxnrd/Mey9px1HUdETlOyDt+wXV9IFZRYNxDWBoarUtLAQD4i5QEscrkRDJk+ly7sqSr/HQIUafuG+4rwiPcMpS5+tX04ix7scA4Jxjk17WP9ZqzNlw40Cvct824DxdNbuYIPi2e4N2XhxRfNBAKSFY9cBkhM95H6FsfGJYFDBgGv659EPr2EnjXbWBYHjp7cfFEh55GYnYhr9yOGzLGmUaD0HeXInT2YlTdex5eDZqItvUxCXQV7P4ZMm9v1IzRodqxm/DvY/tn0lGlj5R/nwQAKGo/Im0FDSejWSwQyuHfawACXxqLGtfNM4KYzjiyRObja3m/nP9l5XU7BUttWOzHsy8abvt1e9amdQU5Ogu25HVkSs8eomca/OTNtSFX2FZfW/8752vlf69vHhhs3h9vH4vrOHKSVLnUsiylrDEe9u6nktrJAsQnWJYJXDD3bdMRlT79DgAQuVv4wkjonKXwafkkgkZPBVB8AdD0uyZs0dfw6/kcgkZO4a8sFgCnjHFCbFcGgveeQnnXmPmce/Rv3B/wuuG+Lte8VFdFFf38myi8cttwv/CywPwphNig8IpnJlwRASWjNvP/kjbhvbukfvWz6GMF59zXd8YYtNm5btu/Jflnr1hvVE7RGYankHCyZ+2kXCzjlCmL4N28leF+6KwPETp7sUkj6wfNfk/1gFftelbbOZshiCshMB6xdgd823cxaxM0hjNcsrQn2ibBncoePEmHTCZD2LzPDff12fTajFSztj5NWyD0zYWQBxoDJjIfH1TZtB8hU/nZhSHT3kUVkfr0QaOmCC4HhAMujuT96P+kNRR6L7myprhGDZlMhpBp78KnRRv4thEu/xP6zsdmr7MuMx1A8f/Wu35j219TxhyWWaz/npGc+c3N8lYorF6kCnnrA4R/+h3kweajSHgll2y42OXfvZ/NFwa4Ad3KX2+2uT6zGStZsCHT59q0OX0Wvasyxu1m8rpz/w8yLy/Bz6D+IrLZxaOSdYVrd5v/vgnW1beQMQ6Il9yxJ2Be6UOJJQSEaoxLzJr2afkk5FWj4NPaen1hSxeTZP7GLHy/bn0RufMMfFu1Q9BLY1ErlsH3cfPJwwEgZPJsVN3zl/DntUTwmGmo8t1u+DzREf79hiBkxrziB8Qukjl5glRCbFYWgs5u7GPRzWjJbePfXo4CTrDV3e52n4TsPSfc3Y0yI+fgGXd3waPmAyLSKB8kIOOn/UiY87W7u0Is0OYVmNXpJhKZfC9dlrfG1bDObuqMuaytfxhua1Kz3NcRN6PAuKewJzBuso7/s4MF18td8wn8u/bhb8v0wMGNB82VPltv2wpeVgLj3FIqCgVkCoVZ2Y+glycbbkudBE2ccX2/Hv3h3/O5Um7Pcar8fMR8ISdoKQ8JK77hxAkoKn24Et7NWgo+5iMSUJHCr9uzqH7ZPKDPnUDWR6QOvSnflk+aLzR5X5T+fSLOtF4yBCacDRwxESFT3jar8xz2/pf8hjb2kxUWoOjEQZvWEWOYkE9yYJrzvSOTiwb8vB9rjRrXsiz+PxU168C3fRf49ehv28UBewJtnO9eeXAIAl4Yafs2OKwF5r0a8cus+HboZt6mfmOzZWKB8eBp79rQO+vsGaUAwHK5IrlC+DNXsk7Ac8P4q1r6P3LKCET99RBR52IhCzTPkJZ5GQPj3AuIemIli/z7DRHftwivutYnxQZERpNJ/b2WyyGTyRCx4Tfr+7EQ3OcGzRXVasJXQqDdVjK5HBGrtiK0ZJJn0f8nZYwTD8OUZSBQ4MbY/Y1Hpf8+pHyyCbdaDnVib4gz3XtGuEa7Q1k5xlXei3N+H4hD3Wg0EDEvvwflHSql4qm0eQW4GtwJ12v3RdHtGHd3p8zRpHh2Lfb073a5uwsegc4wPIQ21bymnSmzYI9JdpuiciTCvzSpuwogcPgEBE+dA7+ezwk+DvADAo7i++RTktqZlvewxpgxLvz25QWD9HVn9QFgPZPAXei7n5hvSOKQfO5BWpX1e2yq6e5sfh3NA2jcQKCs5HVxZIkAIYIBegAyf/FyAtWO30LEd3tEH5f5+UMRHoGovx4i8tdThuU+TVva3L/AF18x3ikJOjkzEG5GaxoYN57F+rR8EtXPJ6DSR6t5TaqfT0DExn0IenWG6LqSSH2fS6APNtpVB1guFw2oK6pWN5T9Ed23TIbIrceKP4M2/O9M2/o++RTkVaqKtNavZJLp7OQsVtMMfL+ne5m1CRwy1myZUGA8bN7nCJu9mFcOxhampXwA4ZEfXg0eNdwW/S0w/Q43zRgXYq2UigDuhSevqJrwql4LMpkMNf7L4X13cL/Led8JAAJeGCk4MqDy6m0ImWReW1X/+vp26iHaL7NtCc3ZIfB8mcCFMyG69OILh5ZKtRlY+B7gBsZd9vsm8v+0Vu6GEFdLWvydu7tglTxI/GJxwpyvkbT4Wxf2pmxg3FFoLuTpk9l5uoS3vrTeqJxjGg0K/rkpOLeAOinNDT2yjKk1oo/daP4iMrc4JnmH8BX8cxPJSzdKygIvLJl4WJOcjhuNn3d218qdhHdXuLsLkqliEvFw8kcouvXA3V1xOQqMewiWn2e1jWnw0qxcgVwumDXo8782kAcEosp3uxE4SDizMXDoq9I7K1HldTslBcdtDsqXnJiLBaMy50833hGpF2362oVMEihDYyHAyA36cIeZ61VeuRWhsz5E+NfmMx4HjphYHNAcbz6JT+h7n4nu01G4z11fSqU0mdtSKMLCUe2E+fBYSwF5RVRN+Pe0UFe/5P/jFVUTvk90RLVjNxG5928oqlW3uX8yK/V+Ky1ebfHx0jI9AWOc917kr6eKa/OavIcVVaPg362vwOgP502yVfO+WrgEBYonM/T5X5uSO3YEz+TiGeMyKyUubKVLTRZ9zK/XAHBHgQgyy3Qu3U+pNjkBAODzhHAJHWZy4UTz4K7hdrXjtxD56ykET5qF8C+/R5UtxslkhALjAS+OAQBErP4F1S8lQ1GrrvFBCQH+yB2nUOMm//dK6P+jiKppuO3VsKngtswy5bnvZWsZw2bf6Rb6bnrhSb+poGDIw8Il7T943OsInbUYXnX4md4Bzw4WDF6Hf/odwr/YhIjV28weEyM4Z4fQhQCpF7/0z0HKiDRLdfl9OMFoV01+KTb5prX5AwhxMW2G+ZwXnsaviXAZRNXDJCR/vAGJ760Cc+LIwbLodrvR5gudlDChTs3Ena4TkPHjPugKlU7ZB6k4Yl5ZgFuthiNZ4KJd6tdb3NAj+xVdv4cHw2yfF41Yd6vVcCS885XFOtzlXerKrS7ZT1k4TtCLe+0TpK3ZjjtPOT426OkoMO4p7CmlYnriqFAIBpa0KYlmy7j8uvWFPMg4EVmNm3nwavAoL8BiD0Wlyojc/qf1hgIn+REi9aoBTjBF5DXT3DNOAKMPGpplzJUy6y2ME8AOm/spvBo1Q6Ulaw3LAvoPQcj0uQgcMMxsSL53g0fh360vKnGXKxSIOheLkAlvlqpfkniZl1KReXmJBq8ctlvOZJ2Gfpj8H+ThEYbbolmOJev4PdWTt9i7fmP42jj6gLMzw019zW7ew1InyrOXaSkV7r5tDAqr/r1oU3v1jauS2snDI4qzRUWyqMI/+c74eZNaY5zz2bdUY9zZIxp4+5LLrc+lYPqd5aDyDmITLJtmyRb9acyekVeqDN8nOkImkyFw0Ej4dehqbCiQXcv93ygiIlHl+wOG+yHT5sK7yWMIe/8L0T7KZDLIAwJR9fd/jAuF/t/c10gkkKvNNMlc4n7mxd5DYpPjWsgk1uVkiT4m+r8zDbz7+sGrZh1EnbxrmGxSP4cBU6vMNxsUjMDBo8xKH9lMKBCj0yHq7zh4PdLI8rr615CbiS/yWTK9QM0dBcANRqvv3bTSYccQvdDhQSOyCCkrmMh3sK5IxWnjqt6UDQUX/jNb5qzgRuK8Vcg7fgExI+c5ZfukYsn8cT8AIOkjgVKlVIOdmKgIE+dqc/MFl8dNW+qS/WvSslyyH0fSpFa80UsUGPcUdmR0mQbBZTK58GRlVrMA+evIAwIRdfQ/+HXoCnnlKlb7VWoCR+O+rSTUMLUlc830dZFS+kDgtVTUqocaVzPg362vYZlXjdqIOnwNQSMmCHeTm5EICJ99KBTwql7Lep8cgJcxzgnaCGYrloJX/cYIGj3VuF/T11Oj4WWM+nXtg8qrfjE+LvKZiDodjcqrfkHgsHGO6yynbwU7f7Rp1UqfWh9GLQsMQvDkt8UbmGS02joZJBf3wpAU3o2bS2pX7dA1ABAcmgmAH7CyI3ilTU5wb5ZoSVasb6ceCJ7wluW2pln5Tqx77NO6vdmIjrC5xgtzZt8vHMETBZ6HyWvszRllJK9cBdX+uIrgca9b7xdn3gDBizcSoiwsxyTIwA3gir0XSr73Tb9PwoTKYek3a1pKS2SfXtVrw6fFE/B5opNZDXLuxQnfx9si6swDVN3zd/ECCxe2pApbJDLplEjGuFe1GvDt2N3iNmUCGeOiF7xNPrPcEmfcz5/y5CGL+3QUsUCeS0tcEVJeUNTbo2kzc4x36H9FSuSdvOTwyWhLc35BSFl1f6D5KH1CTNG3o4eQVAPUj5/p5dWgCf9xkUCCJine2s5FH9LXX5WHVrLePyt8O/WAf59BgpOacfk80QnyMAn7s6VkhJVSKkJCZy4w3A6e+BbCP9+AqjtOS+sbh2kg0btpC/PuOXF4etTpaASOnIyoU/eLF3BrjAcb6zZ7PWJehqdU+z12E5U+4NfU8mnTkXef+9pU+mgNFFWqGR8s+Z/pM/FDZs4v7mdUTQT0e9GxdZ2tBVssPO7fvZ/17et0vOAU7wIAYD6EuZSlOWwhNbtboa+7LfK5k5wlzsENfslDK4lvwwV1hWtcSEK1w9fh0+QxwfJIPCafaWfUGA+ZOR+QyRC59Ti8omoicu/fqHb8FmrFMgT0HwL/Pi8g5M1FFgOFcv8A1LyvRuTOM8a+WviukXqRxIwN5bB823cx3A42qc3Ney5i/RTJGPeqJZ7l79//Jfg80Ulw0lFeprRMhsjd5xC5/U/z19UkcOxVsw5kJXW5uWVj7OXfpY/gcqFjA32Q3vQEt9Li1Qh57T3jgpLHpRxfmH72FDXrcvbn+DlIrBK7AEcIsZ0LP0+MMagTzSdGJ9LEz1rm7i54NFZY5O4uuIQ6IRV3nh7n+Mlo6doyACDn8F9IeFckIaEMyz93Fao48XKRgsp5woEmLRN5R8/btI4qNhH/NRyAlGU/OalXxBNRYNxTSMiwNJ3gLGyOSYacXA5tmvmXISsQHj5i3LD4F6L3I41Q42Yeql81Ly9hK59mLRGxdjtkfiZBJ5OTe53AcxBkcqBvGnS1tA8pr3fwlLcR/vkGBE9+GyFvLETgi2OgqBolrW8W+skrdSDUPwcPFfeqVRfhi1cZykNo4h4Yd8vJpAx49kUEjZluccLL0jILIGmMAWF5cKhgdmTQiAmo/k8KQt9Y4LR+lSrjV8r/S6fjBbEC+r0IeUQk53GT8iQOyugInjrHav/8nu5l2wScEjLG839eJ21bjKHSx9/At30XhC1Ybr2utBPJwyrBu1FJOSErB4kh04uDj0FjppW0d1D/OBcKQt9YgFoxOsj0mewtnoA3p3RGxNpfETrD+rBrmZcX//UTeI2r7ruI8OU/wo8TtLaF4ISMIqVUAl8y1qwLnfMxIjbth2+Hrqj8zQ5p34Ni/xsL7xGZrx+q/noSYbMXmz2mqFkH/v1fQuBLYyHz9YVMLjeWBBKYVFSIwtpkrSLC3udMEiY6qaj5cq+GJXNcCExeypuvQKjsmEyG0Fkfmu/H5PXmfVfbcdGr1Nw08R0h5ZLoCAzH7+rhhA9xrXpvZP7yh+M3Xk4xjfH7LusX14zKKUsYY7jXfwZixy1C+re73N0dh2I6HRIXfYOcw3/xlqtiLZdBtVs5D4JKoUnPwr2ek5G8ZIO7u+Jwt9uPwfVafZD82fdQp2RIW0nKKJUy/L6503m8Te2zdhzB9TrPQnn3IeJft5zMScoXCox7CCkZh6a1Qbn1mIGSTECBWqemk4WZb9jyl508INAhw5cNw7FNn6vJib8m9r60DZpmbVoKANqYMe5XMqlh4ItjEDbnY8itZZBa4NO0pdU23IsXXjXqGG5XWrIWMktlAOygunTOcJtfR9YHlRZ9ZXnCy9IynWSSkyktCwiEV+1HIAsJg6J6LV6gRuHskj6leH9LyZT2bt7KbB/VDlzhNDDJiHZQIDjs7Y8slnkIfefj4os9SsuTPfEmaBQ7gOL8v4RGH/j3GYSov+OKA/EcQcPHI3LrMcgDAsVLqbh46Ke17zvvRk1R864SlfTlL+zon6JaDbNlgUNegTw8AoEjJtq8Pek7Nn+NfR5rhcDnR5Rim0KfAeH3ScDA4Qhb+BWq7rsImUwG/659ELnlKAKeeZ73GRH9XJW81majmCz8Dyxlk8tkMkSs3IJwgZJIkTtOGzdvoWSNqSo/H5HUTl6psvGOWFa2yfPy7zfE+P4UmryU9x1r3k6XkwV5pMAFXkvzHLijrrcTJxEmpKJhOuuBj5RPNzlkX+nf7gQAJM5z7qTlzqTNznXp/rJ3lG5OJ08iVgarNIqu3UXObyeR/t0uaPPNJxUvy7K2H0bS/DW413My/wErryNTq6G8H2d540LbKOelVLT5hdCkWa6NnHfctrmYHC3wqcedvo+EWcsQ/YKVspCOUAYqPxX9ZzmuVPBP8dw5+u+u6EGznN4nRwsb0tN6Izulb9iNpCUC8xWUQ+X727EskTLU2bTGuOnwdblcuByGlSGUpQ166wMUIW99IPh46LufwLtZSwSPL5lY0iQwYzrMW2qWHjPNKLMUoLSxxnjl5Y4bOuPToo1N7SO+2wPfDl0Rue1PBI2YAJ/mjv0BVd+9Ybjt2/Zph27bKk4t7YDnhsKnmfG5yby8IPP2Ro2LSYg6ec+ptWRNS5nIrI0ttNQXK0GjwOETUHnlFrPPuCKyGsLe/wJe9RqaZ3A68Ln7tBav168PzoYv+8HiNrzqNLD4OMD/fvIV2KfM2xte1WoYJiwU3IbYZ9iFpWWk0mdyAxA+0bCSha8VKHGliIhE9YtJCF+yprTd4+MGnJ1wUmRLxrhMLkfwK9Ph81grgQ1xaoz7CJfP0f9eBL74Cv8BkedV/UIi5Cb1wqXyaf44qmw7gSrbTvAmqLbGr2M3aQ25Za3EytEIBb9L+D75lNljjDtfgUDGuKJSBAJfGImAAcMQ8PzLxlVNLrz7ckZgaR4+sPAknITq7BLiOCWfp9zjFxA381PoSspRZP920tAk8b1VYA6YL4G/27L3OWZqDYpuPnB3N8qs7N3HHb5Npi2/F0pV0Ql2rXe35xT8V/855Bw4bb0xR3mdp0P/3XU1qCP+rdIdygf81zX/r3/xYNQ8qBPcX+ap4XGJo2pLKf/0ZZfsx1UaX9rslO0qb8VAm52L63Wfxf0B1udY8kRRH0613sgOmvQsxI5diMR3VyB1xRan7MOTeF60oaKSkjFueuJsGoxQKODdoAkqLV6Fymt/NS63dmBayh/J6pdTUe3EbYRya5tyhEyahWq//2OozW02aahJIJwVFojuq+ZtTqaAaXa8pedhElywluXLnZTSFRSciTe9GzVF5Jaj8G2rD3rY9v+RWxnWz83YVZiMOnA27sWM0LmfIuSNBWZtZL6+Tq9p6/d0L4R/+b1xgbVgoYX3lrX68OEfr4VX9VrQ5WSZPRY87nVEnbgNL5MSM448cJUFiAcF9bW0rQX95MEhhtu6jDThbXEC435C9ZJLXmN9GRIA5t9Nbiylwmf++oe+87GF5ubta1xMRsT3v4uvIvKaO6NeuaJqdYdvk0foM8D730oMjnBfR7G68oYyJ/xArtB7xO/pXlBEVjNbbgu/tk/DzxUXEEUusJldyOBc6Da7sCmTAdxROEL12P38IPP2RuWvNyNw0EhjW5P3o1/XPoj4dhei/ryLwgM7DMsDSjOywAaik/wSQmymTkiF6mES7nadgNTlPyP5k+Ls8Nw/zvHacUt6lFoZDcDFz/yszPbdE2TvOm64rUnLRNKH3zq2LIiTL7Y0vujamsL2XjzKO1Gc9Zy25lcrLfm0OXl27U8Kmb8f5EH2j7C2B9Pp8HDyR7ga3pUX9P6vHn/+p9vtRiPzh32IGbvApf0T4o4JUFWxibhe91lk/PCby/ftKAGPN7HeyB4yIH3jXqhjk5C954SkVbL3nMCDke9BV1Acl9LmFSDv5CXesSvTaJC9/xQS5q4Q24zH0+YaY3IJb3/lxp64BgXGPYWUL0lOsNCn5ZPmB24l2wgaORkBfV7gPGDlR7eUX9AyhQLe9RpKbq/L4tcrV1Srzp8wzMIJMS8YYhJAUp46LL6eaaDLQpav9/9sy/CWwtqkdhYn+7NwgK6oUdu8uZWJCsPe/QSK2o+IZvg7k4IzhN8rqiZkMhlqxTLUinVxVpFczn9duRm1nCCw0ONmD0msz63Ltjy0j8fHhprfVlg6ANNnicqrWA4eejcRz/I2bIvTZ8Fs35JMX3mIccJX09I6on31gJPU4EmzEDJjHqpsPSapvTwkFP5dnhF93McJ3zNivKJqImLjPsNkyg5nJZhvNrpHDOf/L/o9JvIe4Y48qhmtQeT2k6jy40Fp+3UXzm+d5NES3N9HgWOA/F/W8+4XN5MhcOg4+PcaAO9GzYybyjJ+J5mNSJPJ4N9rALzq1ofqinHSIt8nXTPKSHn2uNmygOccPAkZIRXEg5fewfXafQ33cw//BU1GNnJ+N8k2dWTQkbEyOfKj6Ea0Q445cg6dQ9ENiaUhy6kHw+cicd4q3OnqwPJwTn5PeUVKL5vmTOpE4SQUMza+Vx168ctEcPcn8L/sP522fVN5p/7B1dCnkbZmO3S5+Uj92npGq/J2bIWcgPTGYy9BFZOImFHvmz8o5SMl8j7TJEl8nzqIIjzUeiNbMdsvVtwf8Doyf9yPuz2nAADu9piEO0+PQ9pK44j0lGWbcf/Z15D8kQvKkLjgt1Zfki3vz4u40eIl5JWzEQkABcY9hpQPJDdjnKlV5lnQIpmrpie8poSG9DuTNi3FcDt40mwAQKirg7QCgZwqvxyHf9/BqPLtbofvLmLdLvj3HojIXWd5y/VBWL/O4gE0sR+jyF1nUf1sjNly/2eKL4pws9C55EHBqH7qnmiGvyOIZaiGvv0R/PsMQsT6vU7btyQWyhOEvrHIrLm1DO5asUy8RnAJL26dbitCprwjXGLFHpYm123aoviGyA+qX8/nEDjkFQRPtF6nztr3jGA/pNYRdnBgXLDGspX9yeRyhL65SHCCSnsy/H0eawOvBk7KfhDg360vfJ+wMEFxKQhmuXPeU9xgrMXtcC9QiZRSkTL5pkyhgO+TnSTt0624QW6pk43qBCbXNDSV8Sfb5gTVwz9Zh4hvd/Fe46Jzx41tLXx/BY2Zbrjt33eQaDtHUp4RqLkrVm6GEBcouHQD2ftOWm9YBjClGkmLvnF3N8qtwqu3ca/XFNxoOthqW+W9hy7okeso78QabuceKh6RoBKoha3NzbcvW1pCvfxS8YBEDADI3Hyg1NtgSvN5x5w5ArPSS70gk8tRaZiFc1oHih40C7o88VHmxEhnYaRA5mbx0a0exwmfT21eASCXvt37A98w3M4/UzxfWMFf1wAA6d/tMjyWtdWFE1A7KTDOe9+UnLPc6TweRVfv4E6nsU7ZpztRYLws8eYGxtWiGeN6wZNmw6vBowgaZbnukCbmnsO6KIVPiycMt32l1mJ1MKFAll+7zohYsw2Kao4vO+BVtz4i1u2Eb6t2vOXVDlxB2MKvEDp7sfjKIj8CptvSC31nCSp9th5Vd/8l+Lg7KSpVRsTa7fDv0c96Y2eSyfg/ItyAXECg0Aql3mXAgOEA+O9/MYqISESduI2Q6XNLvV+L2e76MkYiP6hh732G8M/WF0+MaW03JjWKpZCcSexgQjXQS8WOA7XgV2cKlyApg4RGvAQMNJbcCB4zHSFvLETk3r8tb4j7Gya15ra15Z6M+70j8flyPzOm83MAMvj35QRirLwmPo+24GxL/D0cNNI4KZgtk5A6GhOYXJwQV7nVegTu95tRLrKAC85fR+ryn52/ozKYMQ6Uvpxd4b93BZcr78biXr/XeJl21iaGK2vUyelW2xRcvoWrIU/hsry11bZMp0POgTPG+05+T3lKDe4izgUGi2zsrsyGAKAtvKpFoNKI4lEpMn/HjXq1yOR/Jem94SH/X9+G5iO+Cd8je5eZLXPG+zf34FnJ5xBMo7E4j4I759XwrhHp8G2mfmUchcFUagsty4cyeCZZPlnNYITJibPQCaLJhzrs3aWIOvqf1XrZrp6AkVuj2Fqtb4ts+XFzQt1eR/CqVRfBr0y3GHhUnjxk0zblfv4IGvIKFFWtv6ecxkMOPMTIZHL+CRvns+Pd4FGhFaxv1MqPoXeDJqh+KRmRO2ybKKfULPRdP3GuafmiyJ1nEPXnXZtKJME0w9f0IEPooMNddYSt7NervsAkxhJF7j6H6uclTKYklhFdhoTMmAffp3oaRqkAQMjM+ajyy3EEDhtnWCbz9UXozPfha+2iEDdQbKXGuOTlLuLfawAAIJATRLaKdyFA5LfQrMY452KS0MVx7oSeVg70verUF1we8voC3n3vho8idNaHCPtghcuCBkKvo1fNui7ZNyGWKO+Wrwxfrsxt4iUJKxQnfM0VXruL/xoORM6+U+Uy086AAdl7T+Bev9dEm9jy/DM27kHinK852y+bF1v0GGPFfxoNmFYr+ptadPWOczrgpPPh4K5tDM/FZRcXTPcj4b2huh+H3MNWkjRcwFkTSZYnof3M41N+zYSPW0tDER4CmUJiSFTgPaZ6mGS8wxnRUnQjurRdk44x1P9jlcM3azoRtekE3TqlCnFvfI7cI56XjGkPCox7CN+WT1pvxPkxY2oVYDp7vI0/RLKSWr/+PQfYtF5p8YbVl+YH2oZsS5m3N7wkDucvyyp/s8N6IyJYgiBy798IX/6jcLkJBwTGgeJMcGdPLKqvHR884c3ifXLqhyuq1eC1NRy8mgSK5SFh8Kpr28GHWRDO9LPNeQ0Dh74Kma8fgsZME92eD+c70UukLJDdrPyvvKrXQuQe+37kvRs3l3ZRysMvHkkR+ub/2bvv8KaqNw7g35s03XvRTctqKZS9N7L3ngKCyF6CgIAKIrJkKchSGf4YskSWsqcgspRN2XvPlgKdeX9/1KRJm6ZJmuRmvJ/n6UNzc3Jzbjm5982557znKwSu2qW2gLLE1x/OVWobtriQygjo3FKp5PaFS4zFjFT5zl0F/+W/w2f8HN1fpJr+RYfc6QDUP6saUkKpft7zamNONevDe/wcBPyyFwDg+91KuLbqAs+BY3KU9RzyGTw+MM2q95p4j54Cl6bt4f/TJgSuPwT3noPV1yJhjBndnQ805J81lJXmGAeAlBuGp5h8d/YKbnfLea6Kj+uYnypZDyLcaDkcib/nvqaJ4KT7wICErdnSF5m4TUl9tC9Gn1+nJeUzf2SVEF+mi9lHmKbmo21n51SsoPJ3ymUWrlnp+Ld8tnC9iSuSN6m7KwrvnC92NXT2zlQ3alQEDM97cffAUT2M/r4pV+/gbj8tM/fzoLp+h+ritvI37/JVL70QwSW2kNF3m32tg9Q7j9QeP523Bk/nrMK1+noMCrJg3DFuRdQ6BNLSck4r1vNCFLz/Mvx//gOubbsZoXa6E1RGsOdnxLjGvLZaeOqQJ9kSaVwMNJf/a8e4vKclMmgcvexUuiLc2mi+KOeZPxvQGJC5deuvd9Xyy3PIZwg6eAVen80AAHh9OhXOdRrDb9EGBB3KCmxUO8kpe65vLZ2Mrq26ZL4+PEprPbyzdRCqnr98v/kJoRcT4RAcluvrM148g/+SLXDr1h/u3QdqfS996fJFRKeblQqqnZe6dtDaQMe4kspo51xTguhC9W+SxyLClkbi6gaX95rqvBgvoOOoKi2pVDR1jHupjvbOY/+CIMDjo4/h/F9KM7c278Nv3mq9jsFUJF7e8F+0Hi4NW8Gpck34fDUPEjd3savFGECZnZ/3R81B+stEsWtjuSzgGudsYEdByuWc6/fo6tb7et7As857B/kiOOoRJ2RLnfB659FcChqHxEX/tICGSj5/DS9+znvNpWeLNuD5slzWv9Lzc/ZqvX6zkLVSiaW9mtfM2m6Cjz6laUjjkO193v4Tb/w3NjKHYH/l754Nq8KvTxuz1yH58q0c2/L6XvR46jIT1SaLd/v6eZaROBv/u0HS/pM6l83r62Nato5jc/NqVce4O8z+Wc52vjHmjTZLYFEd47du3ULv3r0RFRUFFxcXFC5cGBMmTEBqqva8knXq1IEgCGo//fubv0PKnCgtFVIff7Vt+k5dkgYUgEvdJmYfaac2Ak5D57Zry8667UilU925bpP8VstiSX38cmxzrpPLwibWmGdXDBKJTiMLPAaOgVON+nB+r2meZTXtz2ey8ac15UUQBMiiiirPB1L/QAT8bztcm7aDRGVkr2PZylkvyl53LecSn6mL4T1xLgJ/1b4ImXuPgQg+rJI7M9s+8xo5n3HnBlwatIDvlIUW0VGnjepNypx5nzUTIFjtaLrsVG9w5uv/SnUEtYaOcQ8NI5mtm/4d48jQkkpFENRSp6UcPWBwzRjT1/z58xEZGQlnZ2dUrlwZx4+LP13dFF4fPIX40p3xZOYK3Bs2Q+zqWJQ3R89kPci+losIvNoato5R2sOnGrcLsrwH8ySfV88vnvb0pdbyL43ZUZkH51J6pMczUOrNvDtKBEfdB0Vl/45q1vQEWjj4extlPynZUhVocnfAFNz5cCLkySlGeU9T8Omq8j3cBN9FU67nXMA1+0KsSXst/5oTPL6v2uOAjzUPyCqdcgwF//eVSepwKaZtzo3ZztWUno63Z66AiJCw/QjS7pq+w1enbiyRb7i+PX7erO/nVrWUTuUU/30RyyfmWVafc5ck+01MA9IXWROL6kWLj4+HXC7H4sWLceHCBcyZMweLFi3CuHHj8nxtnz598PDhQ+XPN998Y4Yam45T1Tpan6e0VEi8feDzzU/mqZAxqX6oNHSMS0Mzp2a59xyifTcqr/Wbaz+5ujxHTITvnP9pftICRuhYBR3/Tt5jpiJw9W4IueX/VaXh4mApi/hoplK37HXXcqGTuHvAo9cQOKiMOPf7fk2OcoIgwCFC+6hybVwatTb4teb2dovK8dv5iHHHspoXBdaF6udFceNE0bZ8Zy2D95ipBu/bIunSVrJ/FlVzjGf/IpNquV+amW1bu3YtRowYgQkTJuCff/5B6dKl0ahRIzx58kTsqhnd09krlb+/+/ey0fcffSJr/2XSjlvVdPuX69Q7edOeaO8UNjVDY7BnCzSnWtClYzy7R18u0vr8y5V/6L1PQ7lWiDXbe2mTo7NFi9f7TpiwJvkgQgynafE7S/meoVoPiQkW38zQMDsnXYeFXi1J7NVN8O/fXm2bS2whFDuW8zu9xFEG3+7NzVU19UEXAO58NAmXy3TG48lLcKOp9v4YY7GGPta3Jy6Y9f0cgtQHRxa/9Kvmgv/98Ry8dUgFpUfGBZdyMWqPc/aLW8F/mh4sqmO8cePGWLZsGRo2bIhChQqhZcuWGDlyJDZuzDtvsqurK4KCgpQ/np6eZqix6eQ50uu/KUXunXvDvcdAeH48wfSVMha1vKo5P5yKL/e5LQymaT95LTD637vpUjuL5/XxeEh9/TU+p+toVZOzkEAtN5kBnHFP5ooUIwpuHXsZdf9Gp/r5cVO/kEo8vQ3eV670bBMOUcX0q4OIKPlt1gNdO8ZtaHaHWvqU/Hz2Vf8m/40Yd23ZCWG35XDr0NPw/Voo1dzsuaF09S/CKX8fVNmBbY/cYNZj9uzZ6NOnD3r16oXY2FgsWrQIrq6uWLp0qdhVsyqeLWrBtUIs4l4eRJn0ExAcHODZsKpZ6/B633HNaQt0kHr7YdaDjAy82mCexTwLbf1W8xNGDkVdymtYnD0PGS9fG7cS+ZC9EzVs/hiEzPgYLmVjcnmFieqhR8d4xosEE9ZEd0WPqKeSKDDW+DF+bjMVFEhuWdd47w6ZqS8cC6qvqyP1Mn7asyvVLPw7lQ6cikRo3C71cM31NY6Fck85qStdOi+zty1Fip+HX5h/5rNWYtyQUlnTj9LStZT8r8x/C+yagnOM4QPOlPT4G+ZIzZL9tdnWKLN2Fv/NPCEhAb6+vnmWW7VqFfz9/VGyZEmMHTsWb9++zbVsSkoKEhMT1X6sjeqXZZ+v58NrxJei1UVvqh8qDSNxKSX5v1/yOKnoe9Kx8M7aXOlznNZ6jDbAZ/JC+ExemLXB0js+VeonK1UeHv1GwrlWQ/jOWw1pQAH99qVLu9Pxpo3/ih1w6/ShSRfac6pUM+9C+tC2IGJuLGCaudGojD6Q+AUYvh+1EeOOKptt87zmXKcxnGo20J4iRksqOYlLti9T2dqTLLpkfqrHmE5SU1Nx6tQp1K+flR9UIpGgfv36OHo0Zz5ga4jB5SmpeHP8PCiPL33Z02bkV+An3QFkjvrSdx0dY7lWrz8efG5YZ4j8XdasFVN34vn2yBpN6dW8Fopf/i1nIWNfOww4ppe/7DBuHXTk2axGnmUEqQQFRvZAzD/mnXWrV45xCxD4SXe4Vyutti23FBj5kXzxhvYC6Ro65USMj/z6tEXhnfMRnb395LYOVlSoxu12T8v/YbEj+b+5/GDUt3kXMvP3EYmrhlz+OtTBtWIJQCqFU1HNNxlMIUFlIWFKz9BSMtPVGh/iWp0+Rnlvl5JFdCuoV1+R7kWfzV+nviHbd9w3h0/rvjMrYNE9N9euXcO8efPQr18/reW6du2KlStXYv/+/Rg7dixWrFiBbt1yX1By6tSp8PLyUv6Eh4cbu+qmp+niaC1UP1QaAn/nKrX/+02/k7T3+Nn5qJSNsPTOWAti7Lu5Ek8vuHdXWdvAwjs91dJWCAK8P5uBgJU74ZZt5Lu5udRuBN8ZSyBx12E6mIE8PhwGn8kLEXTwilH2p7yZh9w7cSXe2W7wmmDWglgEiQQF/vgHgRuPQJr9OPXbUdavjta1+KYhBAcHBK7apTVFTPYR47KSZfPcr8fgzPRzvjNNv1gSY8+ePUNGRgYKFFC/oVqgQAE8epQzL6k1xOA3243Elco98GRGLmnrTEQWrHk2oELgyO5mqceTb3426HWvd/yl/D31hoacwEbkXEJ9YU3nYgVRcMUk5WO3mnmfK/VlzJGwpp6CXmjznBwL+3m1qZutEiatgprTTpXxr1AO7y5ct/iO8eh/f1HL76zp/0oQBDgWzv9oXlVqMy400KVTzpwEiQDPhlXh4Oultl2aLZ1DmbTjKHl/p8aUIYaSv32XZxnFzJfUe4+N9r6mIAvRMqDECDcYn8xakWcZ+Zu8/57GJE/V0I+lwzlR6uaC0q//RPGLG0xQK82ezMxqt7p8Bt/8dQZJh/4xynsXGNsLnk3zvsmpT5+DPmsLJh08le3F6t9xLWXNB2MxSy/amDFjciyOmf0nPl59JeH79++jcePG6NChA/r00X7XpW/fvmjUqBHi4uLw/vvv43//+x9+++03XL9+XWP5sWPHIiEhQflz9+5dox0ry5ugcqtKNZVK8LG78F+yBS7NO2Zu0HPEuENEHqlXbIBb9wHaC3DHuMXIa6SZ6IzZVnS4IKee033Vb1MTZDK4d+8PWZRxFqKSJ2kZ8fjfYpRONRvArVu2RaEt/OaJPhxLloVThWr524lqwKVh8U17pLqwKwDIX73QUjizPXmPnoywaylwLF3BlFVjzCDWEIMn/jdC7OncX8z6vs7FCmrcXuDzj+BYMBiBoz5A5BobW2vBQN7tM2coOJfIiv193m+KqF9nIGTGxyi0abbRY2KJe97pr3R1p/d/i6SZKG4XpFKEL86aeVdoyxx4Nq2ByF/EaT+K/NjxJTuoLWCXfCmPUdJG5lo575lUrmWi1fM7Z4vVFAviGXs2253e2hdbTH/2yqjvZwjBRWWkby4xrH9f9cUdBQcHyEICIAvwgVv1Mkapxxm36nmWOe1YGan3n+BCeJM8y4pJ6pn7DTcy00BIcy8kHbVumtbn3WqUUXuselNY4uKs29pfRvLm8Gk8GDsPr/efAMx8c0ri4ozCv89F4Kc9ETZvNADAQcMNdImbbtcmWWhgvmaZ2OoMXgWz9KJ98sknuHTpktafQoWy7vw/ePAAdevWRbVq1fDDDz/o/X6VK1cGkDniXBMnJyd4enqq/VgaIfsUaVuSSyoVh+AwuDRoobyTlddoiuzPU4b2i4csrpyeFbUMqscpSPO4EFjKCctS6iEmS5/VYeZ89J4DtKSLsHKyoiVyfS5oxxl4Dv0cvpMXwlM1ZQYRvEZPAYCcHeb2SnX9CQfLHlFmLtn/DvIXz3IvrHqtsIMR98wy+Pv7QyqV4vFj9VF5jx8/RlBQUI7y1hCDK1nIYIOQSQMRe3MbZIG+8OnUCL4ftDDL+2a8eYd0C8nxHPGzeqehU6EwxD3di5h/s9I4CIIA77b1UGBkDzj4ehl9uv2rdbuRsPVg3gV18GLZFpN3eql2YshCAiAIAnw6NzLpe+rrUmx7JO45Zrb3K7pf/36F7CTu4nxH15h+Itv3LVMPypE45R2bSVQ6zx2C1DvxotZNN3qdtLlcVtxZsAoSLZ3f2lCGeQZZvVy13Szvo+DZWMNAGpUY1jE8M3Yok3ESMRc2IOSbj3MUN+fn8PG0Zbj2Xj+dcowbS5E9WelZQ6cNRcDgzjnKhH47EkFf9oOTjrnoY69vyV8fjY1375gl4gsICEBMTIzWH8f/vsTdv38fderUQfny5bFs2TJIDAhKT58+DQAIDg7WXtCCCR5eeReyVnksvqmUPV9q9ink2TvO8+hId4wuiYB1BxB06KpO1bRIeXweLGbxTWtg4tG6Ev9Ak+4/38z0hT/kzDMErj8El+YdzPJ+puBQNFbr89oWWpUVjobXyEmQePuoP0EE1yZtEfLPY/hMtrDFbUSiNhKBO3YBZOYhd2mW9dlxCNey8I6lz1JhNsnR0RHly5fH3r17ldvkcjn27t2LqlXNu3CksQnSzOvk29OXRa6J+vkxcFQPk7+fPCUVZ92r45xfXWQkJhm2EyPGWR7vVcyxzcHfB4Is9446n04NETxlMLw7NDBaPW60HG60fZ12qmLU87YsPOeNKCUN/xWqA28K71qQI/WKuVxvoHk27Ktf92rcni8aOoXyzH2d2/dNIw8CcgjMTEWXHK85PYFOnXLZ6pr0p3FSOiiEL/4st7fSqT5a04aYQPrTl2Z9v9yUuLXNoNdZWvocU5J6uaPw7oXw7tgAod+OBJCZ9sMltpDGkcohUwabu4pmG8EvcXeFR73KGp9TiwWGdUXwBO0pp5Wvc3aCxMkRgiQ/HePqr3UpXczwfVkgi+pFU3SKR0REYObMmXj69CkePXqklqPw/v37iImJwfHjxwEA169fx6RJk3Dq1CncunULW7ZsQY8ePVCrVi2UKlVKrEPJN4mHBY+gyS/VD5W2xYVULqayuPII+uOfXJ8HoFNw6VylNmSROi5kYCHULgZ5dWbySG3dmahj3P+nTXBp2h5eQ78wyf6NxphtRcvfUurjB6fKNW16+pV7t/7wGj0FgVuPay0nOKtMdfvv3Cf1D7Tpv41eVG+acioVAJnT4f0Xrsu7IMDnfyaaESNG4Mcff8TPP/+MS5cuYcCAAXjz5g169cr9pqGlSvrrTNaD/85Jps6XDQAx59frXNalRGGUfnMkx3bfD1sZrT53+09W/v7uvObUlHky4jnJMUzPRcGR2akSNPZDeDTQ3MEgOiPfzHQqmnu+fk1pYNxV8rB7NqiCiB8sK2692X6Uyd8jauNMRK76WmsZQZY5W9cpOhIA4NMlc9S9/0DjDvgQHDLjwkvF22l8XmMnb/aPWLZ4PGHbn8aoGvz6tEGRAz/qlu9YS33sSYm721Hs+AqUpX/g4GNYv45jQesd5KlVtmtD0Pg+cClVDJ71KyNq7XTIAvNer8i/v+bPiSmZa8R48FdaZhLreV31bJKZdkj598rPwLjs7+0gziLhpmK+BD062L17N65du4Zr164hLEx9SoDirnZaWhouX76Mt2/fAsgcqbJnzx58++23ePPmDcLDw9GuXTt8/vnnOfZv6ZzrNkHy/sypLIKr8RZ4sTh5LL6ppHox1XgS0G/EuNVSXSRRw9/Lo/9ovF70TY6yTBwuDVvBpaHxvpyaStq5U3kXYpny+FwJDg7wHDw2z91I/QPh+fEECI6OkLi6Gat2NkTlXMcd44xZjU6dOuHp06cYP348Hj16hDJlymDHjh05FuS0ZPKUVAiOMiTtzbrBmXrzPuTJKUg6YPrrpUsJ/dbJkbjm7OgsuGQCXizdbJT6vFi+NetBhrijFqNPrhT1/a2FX6+W8KhTAe51s9aXCPv+U6Q/eQHnmKzZRiWf7EX6w6dwKWldA4WMIls8593mPRAR/Pu3z8y/qyJ4ymC8+N82FBj9AQAg+tjPeHf2qjJPdsDQLrg/fJbRquZQwE/r81dr9kZZUh8k9mrdbsj/NwkSp/9iJhN9F/ZsXA0etcsjI+lt1kYt7+U/sAOeLViPkGlDjFaHN0fPwKVccTyauNho+zQFn/ebwLl4FBzDChh0Q0+VxEQL1WYkvDbJfg0hODkieGIea6hpep2W2UKm8u5sHlkHJBKj3PAM+Pj9fO9DIXL9N3hz+F+41/1v1lV++oqyd6rb2IwGi+oY79mzJ3r27Km1TGRkpNrUr/DwcBw8aJx8b2Jz7zVU2TEucffIo7QVU+3o1TWViqaLb/bpWcWtd4aAzjSkSvH4cFhWx7it3hzIB9+5q/Bq0idwLFlW+fligEOR4mJXwS55jfhS7CpYLtWAS4eAVxoeiYy7t0xXHwukde0NPv8zEQ0ePBiDB5t/arMxpD97iXOB9eHRsArcsy0O92zxr0h/bhl5trUpvH2eyfZNcis/t9jLoBGpFEFf9FHbFDCoU45isgAfyAJ8cmzPUS6sANLuPc6znDHcaD0CUeunm76zS0NbEAQB4QvH5dgeNPZDBI39UPlY6uUB95pZ61UJEgmcSxRG8gUDZ1Rk49OpId5d1H8x0sdTlig7FrWFAQanRAKUY9FUc4w7+OWe9jXs+zEoMK43HEONl1byar0BCBrbC4+nLjPaPo0tauNMeLd5T+xq5Onx9OViVyGLFZ2fk/af1F7ASLOAtM0k9unSCE9mroBznG43NqVuLvBslJXTPT+pVF6u+F3t8bszVwzelyWyqFQqdk+1w9iWR4wbkEpFF7IiMfD9zgZHlagunqOp81/leSILyTFrQRc5t9ZdEXLyARzLZJtKa+edSPTubd6FdN6Zff8tmZGoXgMdnfIs7j3GvIs4WQJNs4YYY/nzcu0ugAivdx7Fwy/VRyNmvEhA2sOnItVMN6HfjYJn4+qmewMrv8Z7t68PwUXDwoW2xsipWXx7NDPq/rRJ2HwAL1bvMPn7GP3riZF3mHb3kfbnNaRTefTVj1kPtHxW05+9MrRacI7NnHEgyGSI/vcXFDu+AlItC0oKgmDUTnEAoHfJePLt6rwLisgYneKh32lPIST1ckfUptn5eg9tNxfkb9/la986EQRErpkKqZ+30W7qFj281Cj7sXTBXw9C5NppOi0kXGjLnBzbZPmYxXD/k9zbnakX/jUH7hi3IKp3h2x6xLgqbXmO9BwxDgBubd6HS6PW+a+XhXJtlXN1bUGlrQhOdhD4G0AQBL0Xa7V1GY9MnzOVMb2o5hiX5j2hTbDHdDQWdNORMVuhljc0+5c70mGUmMgkziZOPaXDF97kK7dzbHu1YY9R3t45nyk/HLw9UOqZCRZytDBuVeKMu0MzX29S4m+Z9f2MwpjL9aSn5/3dJK+0Rkb+rlP84gYU2bsIzsULKbe5lomGW8US+dqvoTJeWP7sHUN4d2oIILPTMnBozu/6agQhfwso5iHtiXkWLPXp1AhxT/fCo06FvAvnImBIZwCZ6UKyz/ayVRInR/h0bAgHP2+t5VyrxMGrRe0c22VhWTesjHnDOD833iwFd4xbFJXRcm7cMZ5nQGYvHZtqqWdy/r0kbu4IWL0HAav3QOLias6aWRdLGU0vMu8J30Jw90DghvwvyOPasjOk4ZFwbtDCCDVj9k5t6qBD3h3jzjUbQBZbGq7tPzBhrSyLNNBGF2JiTETmWlDLu3MjjdsD8uoIyYuJ42FtqVTSn2V2olyKbpPjuTeHT+frfUu9Powyqcey8ifng2CEfVg6p8K5L75pEDN3jD+eZoYUGUY+JpdSRY22L8qQ6/RR1pZSjTKy39jL37nBuXgheLxXKV/7sHW6prTQJmLxZwiZORzF/tLhM0Bk0s/mq7W7TLbv7LSlDNFF6HejEPd0L3za1zdSjWxIbp99lb+5VMOizAa/XXKK0fYlFu4YtyQqnZ7SECMHNxZK0JAzW2d22DGeG+ca9eBco54ZKmPFeMQ4AMCj9zCEXUw0yqwUv+9/QfCf123+hoysUDGxq2AXVKfh6TRi3NERBbb/C7/Zy01YK8vgv2wbnKrXg89ULYtO2ek5jbH8ev7DRpO/R+S66YhcPQWFtn6rtt2rTV0ETzEsN7tfv3ZwLBQGn/ebGqGGuXsy838atz+auhTnAurh6fdrTPK+UndX9ZzTxlw07D9uVUsh5uxaw/drw/LbaWWIlGt3TLp/QYeb7voImzs6/ze2FDIykP7khfYygoCkfcdzfTpp/wm1x09mrsCtbp8pX2sJCm37DsFf6b/YoqVSjHgW8rFQptTLAwU+6Q7H8KA8y5Jc947xxD3HDK6TSRmpLQqCAAf/vNdLsEeyPBbzBWDUc8LTuaaJA8yJO8YtieodHFseFab65T0fH0iti5Axlh23F5PQNIvBVgT+9hdcO/SEz+SFYlfFPqhOEdbxy6sYX9zF4FKvGQJ/2QOH0Aixq8KYTUn44zBSrt01+fs4RxeEIAjwal4LQeOzFkgstHEWpG6GjdqKWPQZYq9thtTdtDenX+88iqS/zuTY/nDc9wCAe0O+Men7KwSO6gEgK+2APnK7Vnh3agiHIP981UssZdJy7yA1lPN/I6Ado0LhFBOp9pzEw/Tpy97+exkAQGlp+d6XLEJzJ6MsJCDf+1Zw8PVCWB45oXVF6RlIvf1Qa5nU2w+1prrQ9Fl8uWr7f2+Q+/cg93yks9CXV7OaORaJtVbOcUUQPHUIQmYOR/GLG8zynhI3F537T6430P8GxMOJeeeuzjf+Tm4yhX6fC49GVRG2YKzG571b1wEASPNIxaKvJ7NWGHV/YrDdHg1rpJoyI48RmIKz8aY+WCqH8CjtBXI5qcpijJxjT3RW2PFjgZ1VOW6k8EWZ5cGpfFX4zVoGaYDhC5UwPcj17xhnjLH8uNFsqFnex6WUaWYeZe/w9W5nmtmDafefmGS/uSkw7sMc20ImD0LRw0tR8OevjPY+AYM7GRyyvjt3FcmXbxmtLvoy9uhnACi87TsEDH8fRfYugk/nRgia2D/r/WSmvy4nbstM85ew5VC+9xV9YqXG7VJfr3zv2xQoQ55np/2zxb9qT1lg4HebwOHvG/Q6e+JUrGCOba5lYyB1c0GBT7obP5VRLnUovPVbk3zPfjh+IV7vOw56l2z0fTPz8WpaA0V2zM918VuvNu+h6KGfEHvZ9DPlrA13jFsoh4hCWp93e7+fmWoiHpfmHbQXyOXi7zFoLDyHfIbArcYfScGsGHeMM2bRSGXEuC6pVBhjzNRebT6Q73349mqZ/4roKPKXKdrX7zGQuWeHSTQsCiY4OMC9ehmj5BxX7lMqNaiTKSMxCfGlOuFSTFu1NGDm5lI2BgDgVMQ4nXKO4UEIm/0JnKJCIUgkCB7fN+tJM8TNikEsGW/e5XtfskBfuJQvnmO7IDV+Wy70+9x87+Plyj/yXug2PUPjmggJWw4i4/Ubg2dTy20gP7CpOQSop+wIHP0BQo00W0AXHo2rIfbyb3CtEAvn6Jyd9Pn1aNKPuFavf94FjUHk7+Dudc03Q0Jfxh7JnZ0gCHCvWQ4Oft5wKZN1w963R3OTvq814I5xS6JyknCIymMxD2vu1NMxlYp6EK778UqcXeA16ms4la5oQOUskAWOvrZKOYJNK/4MMWaLVD+jUql49bBSlJ7/qeeMMXXJZ6/qXDZ76olcyxmpE1MTQSZD2YyTKHFvh3E75P8LRZ8uWIenC9YZb78i8OneTH2DAXF22sNnyt8pVbxzb6EtcxA4+gMU2WO6lG+KDkH3WuVM9h4KEuf/bnoYaUFcjSl0THCTx6tpDfXHrerovY+0+09wt99krWUoLV1jx/iNVsNxvdGgXL/a3B00FZfLq48K9+7QQPm7PDk1x2sKrp6iQ61tl0O2HM3Zbx6ETh8GB+/8r9eUF8X1wkclhZRToTAUPfijyd87vwr9MQ+lEv/M+YSJ+rF0PQ9GWmDb9mpdFwAQPMl8+fcL/vwV/Ad2QMyZNUadiWWtuGPckqicJARBgoA1+yDxD4SfyqJA0v/Si7g2aWf26hmL2khAnYMTTUGrnXRscmeHcWS7CHOOesYsjEoqFVvOXW8qDpFFxK4CY3Yt9lIuU5OzxRs+XZsgeNJAFNlvulyujqGBKLj0S+PtUBCQ/jIR9wZNw71B05D+IsF4+zaTwE97wqlIOAou+xKx1zaj5MNdAFQ6Yw10xrUaHn39kzGqqDfHsAIInT4MjgVDTPYexY79D0ET+yNiyXiTvYeCPClzpHiqsVL3aIglHAr4GmffWhi6oG5eKCMj1xsxb46ehTyXkfbPFqxHxqvXatui1k3P2q9Kp2/gqB4olfgnfLs0NkKNrVfUxplqj31E+ntEn1yJogd/zDGi171WeVHqow8Hf29INaxNIDiYZvCLR73KJtmvOUStm4aYc+vg37+92d5TFuSP8PljlaneCu/43mzvbYl4rrKlEgQ4V6uLkFOP1O52B+05j4wHdyErHC1i5fJHWiAYbp0/guDoCImbu+E7spOOzbTr8WJXQX88yp0xpi8Rp6PbApe6TcSuAmNMB4JUiqDPPxK7GvoRBLVR0ibPOW6CGD902lCETsvMKa+aD1jiasC6Tar1I8LDLxaY/P9U4uaSa8enKTlFhaqnVDGhV7/tBwAkHTiZr/0Eftoz8xeVryMO/t4AgIjFn+H2BxOMnlfbsWAwUm8/RNDE/pAF+eX9AgMIUink73JPe5Jh4A0rlzIq/QpEGjsz7U32mT2mSMGjC6mXh1V0gmuU/abw+03g16slBJlMpAr9xwL7KQSZDC4lxR3g4tmomqjvLzbuGLdU/93hzj4FTOLiCokVd4or+H6j2/Qfl8Zt8G7Hb/DoNzLnk3bSMS4rGouMe7fFrobNkeSxwC1jzLxUc4wz/bh26Cl2FRhjubGFcFUQ1BZfzJ6Wwehvl89R3KZE6emifAdxjApF8vlrZn9fVVIvd2QkJJls/7LQzMUnk/bnr2NccQNEtQOs2LH/AQAcI4JR1ASzNWLOrEFy/C24ViqpOYWLEbjXKodXm/YbbX+x17cg5cZ9uFUqqdzmGGm62QdWJftn3AI7Uy1d9tmfPl2bWPWobmbbeK6yJVE9AfM0cgCA38L1CD50DW6tuohdFdFkPH0kdhVskmvLLnCu1RBeY6aJXRXGGMAjxg3g1i1zoSTPAZ+KXBPGGJDLQps2MJBDEAS16e+a8hwbQ8j0oXCrWgr+AzqYZP/GcFpWSeP2xB1HNG6XvzXOKO+AoZ2Nsp/8KHp4qUn3n3r9nlH3J6isV+JUKMyo+85O6uUBt8pxJusUBwDHyGC83nnUaPtzKhQGz/qZHZWFdy1A4Mju8O/b1mj7t2ZST/VR86qdvFIz5Ba3BYrFbyN+Gg//gR3g2dhCRiTzTQ6mAfe+WhLuGM9BkErhEFk4lyft46SWdv5fsatgkwQnJwSs3AnPgdyhxJhFkPOIcX35TlmIsKvJkBWJEbsqjDEAobM/QYExvRBzdq1ymyWvaeLRsIpuuc4FmCXuLjC6J4r9tRxSd8ue1afpv/R6kyEay55xq26U9/R9X/x0WWJP9ddX0Oe9xa6CUZnyVOLZoApCZwwXPc1F6HejRH1/BYmLM1wrZ42kl/p6Kn8P+WaYGFWyKoKjTHmTyK93a4TPH8vrB1kBWUiA2FUQDbdOi6K++CZjAOBYvqrYVWCMMZMjHjFuEMHJSewqMMb+4+DtgZCpQ+ASVzRrowV3jDvHRMG9tg75awWBZ/WoEuP/lDuV9GYpnTyS/N7oUYx8t+BzibEEDhV/lnjwVwNybPNqWVv5u9THM8fzzIrYwefIUKFzPhG7CqLhK6wFIR4xzjSQ+PiLXQUD2MdofsaYEXGOccaYLbLgL+GOkcG6pX4QBFA6n6OVLPj/lGWRWMgikuELxuTr9a5l/1tfjNudWaiODlduU21LFvz/oFhklmlhYf9/fhaUvkg1/ZS94d5XS2UnaULyxU7+Rj5fzYNjuSrwm78278IsdxZ2EWSMZUM8GpExxszJf1AnncuasmPcvW4FhC8cZ7L9G50Yo+ftKI4Nnqo5LY2+nKJCETxpIMK+N3/axOCvByp/z0jKZ555xXdeIjgVCc/fvixE0Pg+Oba5160gQk00UHzWcutrsODPYoEvcv5dRWHBfyPILatuHvUtaEFS++he08gh7yJMFHbS6cvy5hBWEAU2GW+hFcYYs0g8TZ8xZoMkzpab7kjiqGM+YbkcSDfOgptORSOQcvWO2rai+3TIc25B3p29avb3VF381JbJU9MgSIz3PTjo84+Mti+93vezj+BWvQycYyJxf8TsfO3r3ZkrAIDUu4+NksYjbO7ofO8jv4InDsCjr35UPo65sMFyOv2V/eLW1zFuysVfrVXA8PfxdM4q5eO8Ujd6Nq+JxG1/mrpaFsmtWmmxqyAaHjFuqTiVSp4cy1jQ3TXGGGP5QpxKhTFmQ8Lmj4FL6WJqI0ctSYAeuXzlyamgNON0jKsuaGetbnf/wuTvEbVhBoodX4GiB39EsaPLRV8U0VwoOUXsKhiNR50KkAX5I/nyrXzth1LTAAD3Bk5V/p4fLuWL53sfxuYSW0j3G3Umpuw4zaWT2VJS9GTnGBUKSDX3IXm2qAWpt4fZ6iLWvQNBQxsKm50tb3YeHePebd8zZpXUeNSvDI/G1dQ3WtCNFlmQP0rc3S52NUTBva8Wiu/25c173DfwHPYFgnafF7sqjDHG8otHjDPGzCj19gOT7j9gYEfEnF4DWZB4a8UUj9+ocXvk2mkImfGxzvuRv03Gwy8XG6dS2aexW/B3noCPu4r23oKLE9wqloB7rfJwq1JK7TlL65grvON74+2MKF8DxASZ5U2Id6sSZ7R9WUy6ESNyr2Nhx5ShOR4Nmzcavh+2gmf2jk2RuVYsgbDvP0Wxw0sh5NIxXnjLt8h49dpsdfJuU9ds76Uq9voWRG2YobWMQ4CP1udNmTasyO6FKLL9e5ROOabyhpbTMQ4AstBAsasgCu4YZ1ZL4u4Br0++giy6hNhVYdlZ8JccxpiFkvOIccaYeTyevhwXIpuLXQ2Tc46O1LjdvW5FvUZnCo4yk00t92xe0yT7NYbQWSMQc26dxnzIJqelsyRgcEczViRvno306ygstO07uJQupvE5ffqIgr8akK/Xm0vgJ90Nfq1zySJqj42SbsRC/kgxZ9bAr187RK6aLHZVIAsPUv6unB2T7ftswODOKLhkAgQLmdkvi8iss2/PFggY1AmykABA7MUTJRKELxyHiJ9MP6tGE8ewAvBuV09rGYmLs/aUIbncGDGUattS1sFCZkdoYq8DdC3jU80yWchFijHGGDM7HjHOGDOTB2Pmil0Fq5J6836+Xh/3fH/uT1rA95+YM2tybCu8awEEiQQuJYuIMuDDqVBo7k+K+Cczxmh1r2Y1EXM6598cAFJvPcCjCYt02k+QpSw0mAfHyBCDX1tk53z1DcZYONACPnMA4FKqGCIWfZbZoSsy17LRWQ+EbP9aqJh/VqPw9nnw79dOuU3sGRMOAT7w798eUk93Ueuh4F67vMbtUb/mPqrc5/0mKDDuQ6PVIc81Eyzj42j3LK5jPDIyEoIgqP1MmzZN62uSk5MxaNAg+Pn5wd3dHe3atcPjx4/NVGPGGGOM5RfnGGeMMTPRs2Ps4Wfz8y6kher0fv9BljXaGcjsoAv5ZpjaNs8GVZS/pz9+Ye4qwbl4oVyfIxE7NvO7MGb2EdDZJWzaD/nbZJ33J/WyjA44bQwdYRwybWiOTuPXe47lUloPFtIxbm4SV+dcn1OMvgYg/qhrHTn4ecOzcXUIKvX1bl9fxBrBYtuWQ7aUZrmlOHOOKwKphxucCoVp3V/QxP46v7dbzbIAcm9/Yp7PdeGncuPFlllcxzgAfPXVV3j48KHyZ8iQIVrLDx8+HFu3bsX69etx8OBBPHjwAG3btjVTbY3ITqctMMYYYyAeMc4Ys3xSH0+xq5Bv2jqITEF1QTSHAB8ET1JZkNRCOgVcK+aempEsbUaTmH+zfKaR8O3eVOvzpGcagxyLyFpIe8ov7w4NEDj6gxzbE7YcFKE2ZmZgn4jEzUX7bp0cc32/4Al9sx4r2pAV9s1I3VxyTVNkSoqO4ogfxUmhkqv//i8DP+mmW/n//s/z6qwOHt9X6/OqwuZ9iuCvByLm7FqNz8uC/HTelxi8LDjdmTFZZMe4h4cHgoKClD9ubrlP2UpISMCSJUswe/ZsvPfeeyhfvjyWLVuGv/76C3///bcZa80YY4wxg/GIccaYlcpPDmFz8mpTF0Hj+0Dq7mq29yx6eCkEB5URmEQI+vwjlcdmq4pWHnUqwK9PG43PWVrHhVvVUnkXMhGHAr75er1/HqMPvZrV0G+H2fsubaRjPGrddLvN9Rv34gBir21GxNIJer1OFl5A6/O5LYJaVn4KDv4qCzJaeRuK/me10fcZNLE/Ys6vz/35cR+i9Jsj8GpZ2+jvnR+KDm61a5BuL8yziHNs7rN6VDl4eyDos4/gVFh9fYCojTMRPGmg5S0+m52dnIcssmN82rRp8PPzQ9myZTFjxgykp6fnWvbUqVNIS0tD/fpZ00ZiYmIQERGBo0ePmqO6jLFsLDOQs+4ghzFbx6lUGGPWQFMnqWsl61gIvtDGWQiemHPBQlNyr15G/Yt1tg4HR225tM0sfPHnCJrQF5Hrpqtt92rznkg1Uhd7dRMi138Dr1Z1RKtD8IR+Br829sZWSL08tJZRLnxoIJ/OjfL1ertg4R2/Dt4ecCocDr9erXLOCMjGVaWz20VLmp6ih5ciYvlESL3V21/A8PdzFlaMMh6ROcrYs6meN2tEpmvqHq82dXXeZ/D4vnApUVhtmyI9idTXC4KDAySu2kfsi8LAtq5LB78u+dwDPu6a63Pebd5D0OcfWWi/iQpLmzFlIuJm59dg6NChKFeuHHx9ffHXX39h7NixePjwIWbPnq2x/KNHj+Do6Ahvb2+17QUKFMCjR480viYlJQUpKSnKx4mJiUarP2OMMcYMIOeOccaY5XKvVQ6QSBC+YAwuxbZXbvfp1hTe7eqJWLP8i/5nNS6Xy/0LvK4EJ0dQSmrOJ6RSCC7OoHfJcCwYDAAosv8HvFy9HSFfD8xZXiSCICD4y5y5Y13LRGsobX5ORSLgVCRC1Dp4d2qIIkF+uFY3M5VAAdXR/1pIfTzhFJX3TRBKzxkL+HRtgpertwMACq78Gk+/Xwvfbv+lZFHpVIpY9qX4OZb1VGTPQlyrb96bVdYk7LtRCPtuFP4Vyml8vsDIHnCMCsHzJZsQ9GV/vNqwR2M59+plAABxT/fi/qdzkXrjPuRv3yFYQ65oxYKN3q3rIvbmNjiGBRrnYCxIqYRDeLVxHxJ+07Iwch5i/l2NpIOn4N3WMm4caqJIkeWow7kHyBpZLiugwyyhPDq0S9zdDlmo7bUdW2WWEeNjxozJsaBm9p/4+HgAwIgRI1CnTh2UKlUK/fv3x6xZszBv3jy1juz8mjp1Kry8vJQ/4eHheb+IMWblLPxuLGP2zk5GJDDGrFPgyO4ouv+HHIsiRq74Wm3xM2vkWjYGZVKP5Tk6My8xp3/RuF0QBJR6sR+lko5A4uwEIDN1ScQPX+Q5gthSRPz8ldneq/CuBWZ7L30JggAPlan/TkV0+x7tEpdzNK/U1yvHttQb93NsC/tupPJ3Bz8vRB/9GQGDOikqpHzOr2dLs6YJMlTAiKx8xxJP4y4eGjiye54pHix8wLheXMoUg2u54gifPxayAJ88ywsODgibNQKFfpuFIjsXQOqRlbK35MNdKPb3z3CrnDUK3SkyBIKDxY0lzTeJi5NaepHoEyt1ep3vh62Uv8uC/OHTqREEmUzLK8QRc349gr8aoFzPwqtlbQRPGYzCOzUvJB3x03jIQgJQcNmXur9JHh3jjmEFLH80uA5IbkMnDC3M0jH+ySef4NKlS1p/ChXSfAKvXLky0tPTcevWLY3PBwUFITU1Fa9evVLb/vjxYwQFBWl8zdixY5GQkKD8uXv3bn4OjzFmFezjpM6YteJUKowxSxU2bzQ8m9cSuxoG0bXjTZDJIPHIX6eitjyuEmcnSPNYHM+SuVcvbZb3KXpkGTwbVDHLexlFHr2s4QvHQRYRhPBF43I85xwTmfMF0pzdE0SAT5fGcC5ZBO7vVTK0phYj5OuBCPykO4oe/BFS97w/E4pZFrpwf68Ski/e0F7ICnvGnYtHqT2O2jAD0f+szpG3OT9kQf5qneLWzEnTZ0uVRAKpn7fyoeAk02nmk3KmhoVzKVEYQV/0UV5zBEFA0NgP4dmwqsbyfr1bo8S9HXAppcPCpYrObuvv886Vs2paIis8XxjCLLe/AgICEBAQYNBrT58+DYlEgsBAzdMQypcvD5lMhr1796Jdu8zFPC5fvow7d+6galXNDd/JyQlOTk4G1YcxpgMbuDvKGDMviWvuC20zxpiYfLo0ttqRX2HffoI7H05UG6WaG0FDpyT7j5lmBUicHc3yPsbiWr641uf9+7eHf//2Gp8TXHJ+H7/T60v1DQ4OcPDxQOTqKSCiHJ9Dt2rmuWFhTBIXZ4TOHA4ASL5yO8/y8mQN6YlyodMig1bY0SU4qX8uZCH+cC0bI1JtLF/spY241mggXu/6W3MBiQSeDdVvwPm83wSvft2rdb9uVUvBoYCfzjNFLFmRvYtwq9vnCJk2FIDua6RFLJ+I/16g8fmiB3/UeWFOSxVz+hecdqiY+cAKzxeGsKh5IUePHsWxY8dQt25deHh44OjRoxg+fDi6desGH5/MqTH3799HvXr18L///Q+VKlWCl5cXevfujREjRsDX1xeenp4YMmQIqlatiipVrOhuO2OMMWbHfGf/jOcDO8Jz6BdiV4UxxrRyKV0M785cQeHt88SuSp78erWCZ5PqcNAhZ6qDf96pCLSy0psHuhAkpj22gI+7IvXOI7hYSWdfiVvbkHr/KVziigIAHAr4If3xcwBA6JxPcH/4rDz3IXF1zrNM6cRDylQWmjquPBtUQaGt31ptR5QuHdmKv6tO+9NhQUBNCwhbvGz/9/aS3iE/st9MUHtOEEAqi3QKzk5w8PfWWDZgSGfl7xJnJ5S8t91sNwpNyeO9Soh7sCvX54MnD8LDz3KmXpE4ZaaOUT0febWsjYQtBwEA7rXKG7mm5qeWHo47xs3PyckJa9aswZdffomUlBRERUVh+PDhGDFihLJMWloaLl++jLdv3yq3zZkzBxKJBO3atUNKSgoaNWqEBQssNzdbbqSBuk+TYowxxmyJrGhxBO0+J3Y1GGMsp2ydMtGnVoFS0yBxybtjzxLIgvx1Kuf3UWvcG/qNiWtjpUzc6R82Z2TehSyIY8EQOBYMUT6OvboJZz1rQhYaCKeiui0Q6tO5ERK3HtJaRpfPmJeVpjkCdJulIfFwg/z1G532J3+X+7pshX6fi/SHz3Ksk2AVst2Yco4uqLGYLDwIaXcfmaNGFi+vEdCCICDoy37IeJ4A56IRePP8VY4yZdJP5FhDwxZzrmsiC87juqn697Xhm8L2chPKolp1uXLl8PffuUz3+E9kZCQo210LZ2dnzJ8/H/Pna06mby0ci5eC96Tv4RAi7mrjjDHGGGOMsf9k+9IrSKUQXKx/xFx2EhdneNSvjNd7jhm2AxvuHNCHc1wReDWvicdTl+V4TmMnpw383aQebihL/wAAEv44rNNrfLo0xu33PzNltSyfDiNvdUqP8p93py/n+pxX0xo678fSCCqjm2Ovbsp1dkvxS78i7d5jXIppq9xW4POPTF4/S+QUEwn8N4o5N8ET+il/19Thbe0LS+eHLFzzeoUKobNH4GrN3igwthe8WtRCwuYD8O7U0Ey1MyMeMc7E4PHBILGrwBhjjDHGmN0KGNIZT+etEbsaojC4U9zW6dF5XXj795AF+uDdmatIVOkkLv3uKOJLd0ZK9o5xG+t4cClVVKdy1pq335hkwf6Q+noh40VCrmVcykYjad8JnfbnWrGEsapmWVRGjDsVyX0QodTNBdLoSLVtgcPfN1WtLFrQ+L6gtHSdFtUEkGNUftHDS01QK+vhUbcCPJvVgEtcUTyelvMmp3uNsij97igkzplrJcS9OACpt4e5q2l6Wq5PLmWitd6Msya8wgpjzPgsMdAV+HTHGGOMMe0K716IsLmj1TdaYlzDLJYgESDIZPBoVFVtu8TZCSkaFlvMLbevtXIMK4CYs2tR4u52saticRwLh6k9FqRSlHyYe55jAHAI9NV5/571KxtUL4uXn3OwxD6/A0rdXBA2+xO4Vy+j2wuyL2xbJc74lbIiglSKwtvmImTqkFzLKDrFAcDBx9M2b/Zp6Bj369sW4Ys/y5yVYCPs8yzBGLM7Hv1GQhoSDo9BY8WuCmOMMcYsTPDkQfDu3Age71XM8ZwtftfVhVfb9/R7gSBA6uNpmspYk/8ajC75owEANpiz1yWuKBzDCuRZrtjxFYj6Le+FOq1d2PwxkLi7ovjZtTmekzjK1B4L2R5DLte4z+y53KN+nZG/Slowj7oVMn8x4GSs8+fQxjkE5LG4ssrfNuq3WXadRkUr25rgkyepl3uObRGLP4d/33ZqKY6sne1dhRljTAOpXwCCj962zTu5jDHGmJndunULkyZNwr59+/Do0SOEhISgW7du+Oyzz+Do6Ch29fQWNK537k/aaexgSMzkUqookg6eMkFtrMh/nQWUlq5beRtLpaIPt4olAFtN/6EiYGBHBAzsaNiLc1n8zqGAL1Ku3gEAFNn/AzzqZHYeFzu+AlcqdVcvbOXnsKDxfSELCYBnk+p6v5YyNN9YsDt5tAFZkJ/yd+/WdU1dG2bhIn4aj7f/xsOjUbXcC0ms+7yiijvGGWN2gzvFGWOMMeOIj4+HXC7H4sWLUaRIEZw/fx59+vTBmzdvMHPmTLGrlysypBPSXuMHfY+bKDNVhA12jOcYxautrKKzwF7bDcuXsLmj1B5TLiPGVduXolMcABx8cuY59uvd2ih1E4vE2QkBgzsb9lon3T+79kwW5I9Cv8+F1N1F7KowC+DXuzX88ijjVrkkXq78wyz1MTXuGGeMMcYYY4zppXHjxmjcuLHycaFChXD58mUsXLjQojvGc0tLwDQwoGPcvWZZvFi62TT1EZFMjzzPir+b1N1Vt/J2PGKc5eTfr73a49DpQ5GwcV+OcvoM+An4uGu+62Wt9LmpZdN0SHvh1bSGGSrCbIV///aAIMBd5cactbKdpDCMMcvBI2QYY4wxu5OQkABfXz06EEWQkfhG/xfZa1yj7zRpIvj2aG6aulgjXf9+3DHOtHAqEpFjm8TNJfeOTg3nK4mLk4aCdsKG8iDni51exlj+lbi3Q+N2wcEBAYM6waVEYTPXyPj4LMEYY4wxxhjLl2vXrmHevHno169frmVSUlKQmJio9mNuGQlJ+r/ITjvGDVlYy5YW48ouaqNuMyFIkRNax3YjC897kUrGVHk2raFfR6cd33zhVJrMmAxKx2blHEMDxa6Cydlu5MIYY4wxxhjTy5gxYyAIgtaf+Ph4tdfcv38fjRs3RocOHdCnT59c9z116lR4eXkpf8LDw019OEZht/0qGkY8a5sybev9BbqOulXkNJY4ay/v060pPJvXRNS66fmuG7MvshB//U5Mtv7hZHny7d4MAOBaIVbkmli3tLuPxK4CMwHuGGeMMcYYY4wBAD755BNcunRJ60+hQoWU5R88eIC6deuiWrVq+OGHH7Tue+zYsUhISFD+3L1719SHk4NBndx22jPuVrVUjm2Cs2PuL7D1zjcdR8NLPd3/K6+93bjXLIvCW7+DU2HruEFkbmELxopdBYvj1bI2/Pq2RdCX/fWanWHrH83sIpZ9KXYVLE7wVwMQtXEmCu9aIHZVrJrMDkZPaxLx81cAgAJjeolcE9PgxTcZY8Znp18gGWOMMWsXEBCAgIAAncrev38fdevWRfny5bFs2TJI8uiocXJygpOTdeS6jf73F1wu2yXzgZ3GNe61y+fYJnHSvWM85Jthxq6SuPRtB3babozFMTJE7CqYnUMei7y61SqHAp90z3yQW/vStN3Oesbtse3kReLkCO8274ldDetnZ58lBb8ezeHbvZnNpibiEeOMMcYYY4wxvdy/fx916tRBREQEZs6ciadPn+LRo0d49MjCpxnr+KVO4uZi4opYAU1/K5VR0CUf7ETEkvFZz2XrMJCF6HaDxVoI+i5GqvL3cy4eZeTa2BaHIP8c29IfPhWhJhZO9TPGOcZzZ2/Hy8zHjtuWrXaKA9wxzhhjjDHGGNPT7t27ce3aNezduxdhYWEIDg5W/lgyiauz/i+y4S+DWmk4bkEqVf4uCw6Ad6dGWU9m7zCw4w4EAHCJK6L8vfDO+TkLyO3776PKMSIox7bUOxZ+k80U8vrMqDzvVET3FDyyMPta4FWQcjcXMw07v6zZLE6lwhhjjDHGGNNLz5490bNnT7GroTcHfx84xxZC8sUbYlfF4mm8H5Bto+pDW+8weL3/ZJ5liv39s/J35+hIFD30ExyC/OEYnrPjl2z9D6YPuTznNnu8IZVHm3ApVVT5e/DkwaCUNPi83yTX8oKjDCVuboPUzmbAuFUvA7caZeBUNELsqjBbw+dtm8Qd44wxxhhjjDG7UXjH97gQ0VTsalgkwVEGSk3774H2VCo5ytj4iHF54ps8y7hVjlN77F6znKmqY1v0WEjSluX2kYk5swbvzl2DR8Oqym0O3h6I+Gm85hf8J3TmcJtLaaQLQSpFsT+Xil0NZots7LrGMnHHOGPM+OxxhAdjjDHGrEO2TriI5RNzFNE7n7SNEJydsjrGNXRWCtm3qT7O1mFgc/0Hxk7PYHN/IMMJDlING+3wM5hLm3ApVQwupYrpvTu/3q3yWyPGmCo+b9sk7hhnjDHGGGOM2Y3sC0i51yybo4xjoTB4taoDiYcrJE6O5qqa6CQuTpAnJmU+0NQxmX2bHY0Yp+TUfO/DuVRRJJ+9CgDwalk73/uzFZo6xm15obdc2dhnhjGbw59Rm8Qd44wxxhhjjDH7kW00eG6dcoU2zTZXjSyGxDnrJoDGfsnsfzvVh9k6DBx8PI1YM/HJk1PyvQ/Vv4lDgE++92crfN5vgqRD/6hvtMeOcWPjvyFjxsX94jaJk3kxxhhjjDHG7Ef2ziIeAaYkuDipPNBvxLjizxixZDz8+7eHZ/OaJqiheNyqlsr3PgqM6Zn/itggt2qlxa6CRZCofv4YY5ZBJWUYL5psm7hjnDHGGGOMMWY/suXJ5u+5WSQuzlkPNHSM58gxriGVit+HrRG+cFzOslbO5/38L9gqCw3MesCjebPY+d8iauNMOBUJR6HNc8SuCmMsG9+eLbIecMBgk2wrWmGMWQj7Dm4ZY4wxZrm0pcm2d5K8RoxnX5RUy+KbtkbiaIQspCp/U253KjTOTjB/NcTi3eY9xF7dDNcKsWJXhTGWTfi80VkPbPw6Z6+4Y5wxxhhjjDFmP2xsJLMxCao5xrN3giPniHFB2+KbtsYY7YZ7wzXS+Gfhv5Vh+O/GmFFJXF2yHtj6dc5OWVRUeODAAQiCoPHnxIkTub6uTp06Ocr379/fjDVnjDHGGGOMWQXuOMqV3iPGVdl6h0G2jnHXKnH670P1b8rtUEni7ppzI/99DCIr4Kv8XXCUiVgTxmyQjV/m7JUR5oMZT7Vq1fDw4UO1bV988QX27t2LChUqaH1tnz598NVXXykfu7pquLgyxhhjjDHGmAqpj6fYVbAYEmftHePJl27m/mIb7zAQsv09ih78Cc+XbMK9gVP12Iexa2UbHMODxK6CzZC4uqDErW2AgwMEqVTs6jBmU1zKxYhdBWYCFtUx7ujoiKCgrItiWloaNm/ejCFDhuQIRLJzdXVVey1jjDHGGGOM5UXq6S52FSyGkMeIcW0LapKtjxjPRuIog2/3Znp1jHPPuB74b2Uwx4IhYleBMZsSe3UTUm7ch1ulkmJXhZmARaVSyW7Lli14/vw5evXqlWfZVatWwd/fHyVLlsTYsWPx9u1bM9SQMaYRB7KMMcYYs1Qcp+Qqr1QqTsWjcmyTRQQBUilcShY2ZdUsklRTChAtHAr4ZT3gdqhVXgPjGGPMXJyKRMCzYVWxq8FMxKJGjGe3ZMkSNGrUCGFhYVrLde3aFQULFkRISAjOnj2LTz/9FJcvX8bGjRs1lk9JSUFKSorycWJiolHrzRhjjDHGGGPWRjWViiAIiL2xFS9X/oGH4xfm+poS1zaD0jMgcXE2RxUtjiBzAKWl61TWwccTRY8sg8RJxmku8qItnz1jjDFmJGbpGB8zZgymT5+utcylS5cQE5OVr+fevXvYuXMn1q1bl+f++/btq/w9Li4OwcHBqFevHq5fv47ChXOOXJg6dSomTpyoxxEwxhhjjDHGbAEPRM1d6r3Hao+dokIR9EUfOMcWgtTHA6/W78nxGkEmgyCz40X+HBwAHTvGAcC9WmkTVsaGaEnbwxhjjBmLWTrGP/nkE/Ts2VNrmUKFCqk9XrZsGfz8/NCyZUu9369y5coAgGvXrmnsGB87dixGjBihfJyYmIjw8HC934cxxhhjjDFmXSRuLmJXwWKpjmJWzRnu3a4eAGjsGLdHBcZkpfqM/GUKbrYegdBvR4pYI9sj8IhxxhhjZmCWjvGAgAAEBAToXJ6IsGzZMvTo0QMyA0YfnD59GgAQHBys8XknJyc4OTlpfI4xZgQ8FIsxxhhjFkpwsOhskqISnFS+e9nZYpq6KLJ3ERK3H0HQl/2U27xb1UHpd0fV0tAwI+AR44wxxszAIq82+/btw82bN/HRRx/leO7+/fuIiYnB8ePHAQDXr1/HpEmTcOrUKdy6dQtbtmxBjx49UKtWLZQqVcrcVWeMMcYYY4wxq+RaITbrgaaOcTsf/ODxXiWEzhgOiZOj2nbuFDc+gTvGGWOMmYFFDpdYsmQJqlWrppZzXCEtLQ2XL1/G27dvAQCOjo7Ys2cPvv32W7x58wbh4eFo164dPv/8c3NXmzHGGGOMMcasliw0MOuBxo5x89WF2Tlua4wxxszAIjvGV69enetzkZGRavnuwsPDcfDgQXNUizHGGGOMMcZslkfdClkPeMQ4Y4wxxmwcz09ijDHGGGOM2aWAIZ3FroJFkXq5Z/3u45njeSFbChHGGGOMMWtmkSPGGWPWTeDRRIwxxhizAq/3Hhe7ChZFkMkQfWIlKC0NUk/3HM8XGNMLiX8chm+P5iLUjjHGGGPMuLhjnDHGGGOMMWaXki/eELsKFkdtAc5sZAE+iL200Yy1YXZLQyYfxhhjzNg4lQpjjDHGGGOMMcYshuAkE7sKjDHG7AB3jDPGGGOMMcbskt9HbcSuAmNMA07XwxhjzBy4Y5wxxhhjjDFml5yKhItdBcZYNhFLxkPi7CR2NRhjjNkB7hhnjBkfL77JGGOMMcYYMwR/l2CMMWYm3DHOGGOMMcYYs0/c/8YYY4wxZre4Y5wxxhhjjDHGGGOMMcaYXeGOccYYY4wxxhhjjImmyL7Fyt9dShUVsSaMMcbsiYPYFWCM2SDOC8gYY4wxxhjTkUfdiih+cQNSbj6Aa/lYsavDGGPMTnDHOGOMMcYYY8w+8c18xiyGc/FCcC5eSOxqMMYYsyOcSoUxxhhjjDFmn4jErgFjjDHGGBMJd4wzxhhjjDHGGGOMMcYYsyvcMc4YMzqHQtFiV4ExxhhjLE+yYH+xq8AYY4wxxkTCOcYZY0YTuOko3qz5CV6fThW7KowxxhhjuYraMANJB0/Bp2sTsavCGGOMMcZEwiPGGWNG41SuCny/+QlSvwCxq8IYY4wxM0lJSUGZMmUgCAJOnz4tdnV04t2uHsLmjoYglYpdFcYYY4wxJhLuGGeMMcYYY4wZbPTo0QgJCRG7GowxxhhjjOmFO8YZY4wxxhhjBtm+fTt27dqFmTNnil0VxhhjjDHG9MI5xhljjDHGGGN6e/z4Mfr06YNNmzbB1dVV7OowxhhjjDGmF+4YZ4wxxhhjjOmFiNCzZ0/0798fFSpUwK1bt/J8TUpKClJSUpSPExMTTVhDxhhjjDHGtONUKowxxhhjjDEAwJgxYyAIgtaf+Ph4zJs3D69fv8bYsWN13vfUqVPh5eWl/AkPDzfhkTDGGGOMMaadQEQkdiXElpCQAG9vb9y9exeenp5iV4cxxhhjjFm4xMREhIeH49WrV/Dy8hK7Okbz9OlTPH/+XGuZQoUKoWPHjti6dSsEQVBuz8jIgFQqxfvvv4+ff/45x+uyjxhPSEhAREQEx+CMMcYYY0wnxo7BuWMcwL1793jECmOMMcYY09vdu3cRFhYmdjXM7s6dO2qpUB48eIBGjRphw4YNqFy5sk5/E47BGWOMMcaYIYwVg3OOcQAhISG4e/cuPDw81Ea9mJriLgePkmH64HbDDMHthumL2wwzhD21GyLC69evERISInZVRBEREaH22N3dHQBQuHBhnb+kcAzOrAm3G6YvbjPMENxumCHsqd0YOwbnjnEAEolE1JE+np6eNt9wmfFxu2GG4HbD9MVthhnCXtqNLaVQEQPH4Mwacbth+uI2wwzB7YYZwl7ajTFjcO4YZ4wxxhhjjOVLZGQkOEMjY4wxxhizJhKxK8AYY4wxxhhjjDHGGGOMmRN3jIvIyckJEyZMgJOTk9hVYVaE2w0zBLcbpi9uM8wQ3G6YNeB2ygzB7Ybpi9sMMwS3G2YIbjeGE4jnPDLGGGOMMcYYY4wxxhizIzxinDHGGGOMMcYYY4wxxphd4Y5xxhhjjDHGGGOMMcYYY3aFO8YZY4wxxhhjjDHGGGOM2RXuGGdmx2ntGWPmwOcaZghuN8wQ3G6YNeB2yhgzBz7XMENwu2GGMEa74Y5xZlbPnz+HIAhiV4NZmXv37kEul4tdDWZFHj16xOcapreEhARuN0xvHNswa8DtlOmL429mCI7BmSE4BmeGMFZswx3jzCz27NmDypUro2HDhhg4cCD27dsHgO8KMu0OHTqEChUqoHr16mjcuDHmz58vdpWYhdu/fz8qVqyIOnXqoFOnTli3bp3YVWJWYOfOnahevTpat26N8ePH48yZMwDAHQJMK45tmDXgdsr0xfE3MwTH4MwQHIMzQxg7tuGOcWZyBw8exEcffaRstBcvXkS7du1w+fJlvivIcnX16lV8/PHHeO+997Bs2TLExcXh448/xvz585GWliZ29ZgF+ueffzBgwAA0bNgQU6dOhUQiQffu3bF9+3YOrliutm7dip49e6Ju3bpo0qQJNm3ahPbt2yMxMRESCYdJTDOObZg14HbK9MXxNzMEx+DMEByDM0OYIrYRiIcLMBNRNK3Bgwfj0qVL2LlzJ2QyGQCgcuXK8PPzw8KFC1GwYEExq8ksjFwuh0QiwbJlyzBu3DicOXMGgYGBAIChQ4fi33//xejRo9GiRQuRa8osBRFBEARMmTIFq1atwt9//w0PDw8AQJs2bZCQkIBp06ahUqVKIteUWQpFm0lPT0enTp3g4uKClStXAgDu3r2LBg0aoGrVqliwYAFcXFxEri2zJBzbMGvA7ZTpi+NvZgiOwZm+OAZnhjJlbMO3YZjRpKSkYN++fUhMTAQACIIAQRBw+vRplC5dGjKZDKmpqQCA7777DsePH8eBAwdErDGzBMnJyVi3bh3OnTuH9PR05d3hs2fPolSpUvD09FSWHTp0KFxcXLBhwwaeAmzHkpOTsW3bNty7dw8AlHeG//nnH5QqVQoeHh7KUU0TJ07Es2fP8Mcff4hWX2YZUlJS8PfffyMjI0PZZhwcHHD27FmULl0aAJCRkYHw8HDMnDkTK1euxPHjx8WsMrMAHNswa8DtlOmL429mCI7BmSE4BmeGMGdswx3jLN9SUlIwbtw4+Pr6ok+fPqhQoQKmT5+ubKSVKlXC3r17AQCOjo4gIlSpUgWlSpXCli1b8PLlSzGrz0Qil8sxffp0+Pv748svv0T9+vXRu3dvnDt3DgBQrlw5HD9+HO/evVO+pkiRIqhevTpu3LiBo0ePilV1JpL09HRMnDgRfn5+GD58OKpUqYJRo0bh0aNHADLPNQcPHgQAyGQyEBFKlSqFChUq4O+//8bVq1fFrD4Tybt37zBy5Ej4+fmhW7duqFKlCpYtWwYg8/pVsWJFHDp0CAAglUpBRGjevDmKFi2KNWvWiFl1JiKObZg14HbK9MXxNzMEx+DMEByDM0OIEdtwxzjLtz179mDz5s3YunUrduzYgX79+mHSpElYsGABAKBKlSp49eqV8u5NSkoKgMwpEDt27OAch3YqPj4e69atw+LFi3HixAn88MMPuHDhAsaOHYuMjAw0bdoUGRkZ2LBhA4DMgAwAmjRpgvv37ysDMWY/jh8/jl9//RVr1qzBkSNHMGXKFKxevRpTpkwBEaFu3bp4+fIltm3bBiDrXNO1a1ecPHkSb968EbP6TCS//vor/vjjD+zYsQOrV69GrVq1MGDAAGzbtg1OTk6Ii4vDo0eP8M8//wCAcqTTgAEDsHHjRjGrzkTEsQ2zBtxOmb44/maG4BicGYJjcGYIUWIbYiwfMjIyaNiwYVSlShVKT09Xbh80aBBVr16djhw5Qg8fPqQGDRpQ27ZtiYhILpcTEdHt27fJ3d2djh49KkrdmbhWrlxJHh4e9Pr1a+W2devWUdGiRWnevHlERNSnTx8qXLgwvXv3Tu21Pj4+tHz5crPWl4nvm2++ocjISEpOTlZumzFjBpUpU4Y2bNhAREQtW7akChUqEFHWuSYtLY3c3Nzo999/N3+lmaiSk5Opffv2yuuPQrNmzahBgwZ048YNOnXqFFWrVo1GjBhBRFnt5sCBA1SgQAG6ePGi2evNxMWxDbMG3E6ZITj+ZobgGJzpi2NwZgixYhseMc7yRSKR4Nq1a4iNjYVUKkVGRgYAoF+/fpDJZFi9ejWCgoLQpUsX7Nq1C7t371bewdm9ezeCgoKUC7sw20cqeQkfPXqEMmXK4NmzZ8pt9evXR8OGDTFv3jwAwOeff44nT55gxowZePXqFQDgxIkT8Pb2RlBQkFnrzsR3584dlCpVCsnJycptHTp0QLFixfDTTz8BAIYPH47Tp09j+fLlkMvlAICdO3ciICCAzzV2yMnJCdeuXUPx4sUBZI0oGDduHB48eIDffvsN5cqVQ7169bBlyxb8+++/ymvUkSNHEBAQgAIFCohWfyYOjm2YNeB2ynTF8TfLL47Bmb44BmeGECu24Y5xZjBFI61duzZ27dqFtLQ0SKVSAEBcXBzKly+Pixcv4tq1a+jZsye6du2Kbt26YejQoVixYgW+/fZb1KtXD4UKFRLzMJgZqU5rKVq0KK5fv46bN28qt/n4+KBJkyZIT0/Hpk2bEBERgalTp2L58uVo0qQJ5s2bh969eyMmJga1atUS4xCYCBRf6CpUqIBDhw7h+fPnyucKFiyIWrVq4cmTJ/jrr79Qp04djBs3DmPGjEGHDh3w008/YcyYMahcuTLKlSsn1iEwEaheozZt2gQgMw8dAFSrVg3R0dE4dOgQEhMT0adPH5QoUQLNmzfHjBkzsHr1avzyyy9o2bIlfH19xToEJgKObZg14HbK9MHxNzMUx+DMEByDM0OIGdtwxzjL1bx58zB69Gjs3r0bL168AJCVZ+7XX3/FrVu3AAAtW7bE06dPsWXLFrUyDRs2RHx8PJ4/fw5BELBo0SJ88sknuHnzJqZOnYp27dph4cKF5j8wZlKzZ89Ghw4dsHDhQly8eBFA1klu8+bNyoU0WrZsCQDYsmWLWt656OhoBAcHIz4+HgAwaNAgLF26FGXKlMGvv/6Ktm3bYtu2bXBxcTHnYTETmjNnDj766COsW7cOd+7cAZCVY27t2rU4fPgwAKBz584gImzevFnt9ZUqVcKbN29w9+5dAMDEiRMxZ84cODs7Y9GiRWjXrh1Wr14NiYQvebZk4cKF+Oabb3Ds2DHlKBTFCKXNmzcrF2hp1KgRrl69iiNHjkAQBOVop/bt2+PIkSN4+/YtwsPDsXbtWrRv3x5//PEHvvjiC3To0AFff/21OAfHTIZjG2YNuJ0yfXH8zQzBMTgzBMfgzBAWHdvkNwcMsz1nz56l6Ohoio2NpVatWlFAQAC1aNFC+fzr169JEAT65JNPiIgoJSWFunXrRqVLl1bLRZeQkECCINBff/2ltv+kpCTzHAgzq7t371KtWrUoNjaWBgwYQMWLF6fQ0FC6cOGCskxsbCw1aNCAbt26RUREs2fPppCQENq7d6/avgICAuiHH34goqycURkZGWY6EmYuV69epXLlylFsbCx169aNwsPDqVy5cmp5L52cnKhjx46UkJBARESjR4+miIgIunr1qrKMXC4nR0dH2rJli9r+U1JSzHMgzKyOHj1KBQsWpOLFi1P9+vXJz8+Phg4dqnz+0qVLJAgCfffdd0REdP/+fWrYsCHVrVtXbT+XLl0iR0dHtXMUEdGLFy9MfxDM7Di2YdaA2ynTF8ffzBAcgzNDcAzODGENsQ13jDMlRQA0adIkqlmzJr1+/Zrkcjnt2bOH/Pz86LPPPqO0tDQiIlq9ejXt2bNH+dorV66Qi4sLffXVV3T37l0iIlq0aBGVK1dO+ZjZJkW72bBhAxUsWFD5//3u3TsqV64ctWnThs6ePUtERH/++Sft27dP7fUVK1akFi1a0N9//01ERAcPHqSSJUvS4cOHzXgUzJwUC2ksXLiQ4uLi6Pnz50SUGaSHhoZSr1696P79+0REtGPHDtq5c6fytcnJyRQYGEj9+vVTLsjy66+/UlxcXI7gitkeuVxOw4YNo1atWtHbt28pJSWFfvzxR/L19aUFCxYQUWYb+f777+nAgQPK1+3cuZMEQaDly5fTq1eviCjzWle9enV69eoVf/G3YYrzDcc2zJJxDM70xfE3MwTH4MxQHIMzfVlTDM4d40wZWCmUKlWKPv30U7VtixcvJnd3dzp58mSur1+4cCHFxMRQiRIlqFOnTuTm5kZffPGF6SrORJO9zRAR9evXjxo3bkzp6enKC9y+ffuoePHi9M033+Qoryhz6NAhatmyJfn4+FCjRo3I1dWVPvroI7W7g8z6XbhwgebNm6e2rUmTJtSjRw8iyrpwbt68mfz9/Wn9+vU59qEos2HDBqpRowaFhoZS69atydXVlT7++GO1lauZbdA04igsLIxmzZqlfJyWlkaff/45BQYG0pMnT3Ld14QJEyg0NJRq1qxJ3bp1Iy8vL5oxY4ZJ6s3EdenSJVq7dq3aNo5tmCXiGJzpg+NvZgiOwZkhOAZnhrDWGJyTPdmpEydOoFOnTrhz5w4EQYBcLgdl3ihBTEyMMjedIldU37594eXlhbVr1yq3KSjykPXt2xe//fYbPvjgAwQGBuLQoUP46quvzHtgzKROnjyJli1bquWXU+QvjIyMxKVLlyCVSpULtdStWxclS5bE4cOHcePGDbV9vX79GgBQs2ZNrFy5EitWrECNGjVw+PBh/Pjjj3B2djbTUTFT+vPPP1GjRg2ULFkSN27cQEpKirLNFC1aFOfPn1cr37JlS0RFRWHbtm14+fKl2nOKHHbt2rXDunXrMGnSJERHR+Pw4cOYM2eOcnEOZv3++usvdOnSBf369cMPP/ygzHv59OlTxMTEKM8nRAQHBwcMHjwY6enpWLt2rXK7guL3L774AmvWrEG1atXg5OSEffv2YeTIkWY+MmZKivNNbGwsrl69irS0NI5tmMXhGJzpi+NvZgiOwZkhOAZnhrD6GNwk3e3MYj1+/JhGjx5NQUFBJAgC9evXj4iy7gLL5XKaNGkSVaxYUZk/THG3cPLkyVSwYEFluZSUFOrduzf99NNPGkcwMNuRmJhI06dPp0KFCpFEIqE6derkuIt8+PBhcnR0VOZ8Sk5OJiKijRs3UkREhHKqJhHRuHHjqG/fvvTw4UPzHQQzq1u3blGTJk1IEAQaMWIE3b59O0eZFStWUHBwMJ05c4aIstrMkiVLyM/Pjx49eqQs26dPHxo/fjznR7Vxt2/fpq5du5Kfnx8NGDCA+vXrR4UKFaKWLVsSUea1qlevXtS6dWu6d+8eEWWNKhgwYACVKlVKuS0xMZF69uxJu3btIqKsUXJ8vbI98fHxVLt2bRIEgT7++OMc5xuObZgl4Bic6Yvjb2YIjsGZITgGZ4awlRicR4zbmadPn+L27duYNGkSpk2bhnXr1uHFixeQSqVIT0+HIAgoV64cHBwclKuXK+4AN2nSBE+fPkV8fDwEQYCjoyMePnyIpUuXKlcYZrbpzZs3SEhIwPDhw7F37178+eefOHTokFqZQoUKoWbNmsq7eIp206ZNGzx//hyPHj1SlpVKpTh27BgSExPNdxDMrJ4+fYoHDx6gb9++mDVrFiIiInDx4kW8efNGeVc4OjoaRYsWxffffw8AyhXr27Zti4SEBNy8eVO5PyLCunXr8ObNG/MfDDObP//8E48ePcLevXuxYMECLFy4EDNnzsTZs2dx6tQpSKVSVKtWDXfv3sWePXvUXluvXj28fPkSd+/ehSAIICKcPn0ac+fOBZDVvgRBMPtxMdO6d+8eLl26hMmTJ2POnDmIiIjA9evXlavYC4KA0qVLQyqVcmzDRMMxONMXx9/MEByDM0NwDM4MYTMxuFm74ZlFOHHiBBFl5v8pUaIEjRo1ioiIUlNTiYjo7du3NHDgQCpXrpzaHZ///e9/FBERQefPn1due/bsGd/5sxNXr15Vjmpq1KgRNWnSRG2xDLlcTmvXriWpVKq24Mb58+cpODiY1qxZo9yWlpbG7cYOjBs3jmrWrEljx46lKlWqUFxcHJUqVYp69+5NRJntYPr06eTv70+XLl1Svm737t0UHBys1o5SU1O5zdiBQ4cOKRd6Upxf9u7dS4ULF6ZTp04RUeYIumbNmlHr1q3V8hlOmzaNYmJiyB0zlQABAABJREFU1EbC3bx5k9uNnejSpQu1bduWvv76a6pcuTJVqFCBqlWrpsxF+ObNG45tmOg4Bmf64vibGYJjcKYvjsGZoWwhBucR43ZAkUtMcYe4QoUKAIDw8HB07NgRP//8M1JTUyGTyZCeng4XFxf06NEDjo6O6NmzJ44dO4YXL15g7969qFixIkqUKKHct5+fH9/5s1GKdqNQpEgR5d29Tz/9FDt37sSJEyeUzwuCgDZt2qBz587o3bs3Zs2ahfv37+OHH35AZGQkmjdvriwrlUq53dggRZuh//LJNW7cGG/evMHmzZvRqVMnfPvtt+jVqxfWrFmDUaNGISMjAz179kTZsmXRpUsXrF+/Hs+ePcOGDRtQsmRJ1KxZU7lvBwcHbjM2SvVcU7NmTTRs2FDtecXIkyJFigAAPDw88OGHH+LWrVsYPHgwbt26hWfPnuGff/5BzZo1ERQUpHxtZGQktxsbpWg3in87duyIY8eOYcOGDejYsSO++OILVKpUCdOmTcPcuXPh6uqKXr16wcHBgWMbZjYcgzN9cfzNDMExODMEx+DMEDYZg5u9K56ZzJMnT+jMmTP05s2bHM+9ffuWiLLyOin+PXHiBEVFRdHUqVOJKGvEClHmaJYyZcpQTEwM+fr6UlxcnHKkC7Mdr169Uq5An/3uXFJSEr169Urj6ypXrkxdunTJsT0pKYkGDx5MsbGxFBoaSsWLF6d9+/YZv+JMNHm1mRcvXigfL168mI4cOaJW5ttvv6Xw8HDl6IOHDx9S8+bNKSYmhgIDAyk2NpYOHz5s4qNg5vb8+XO6c+eO2nVGIfs1SlX37t2pR48eRJSVAzMtLY0OHDhAISEhFBcXR97e3lSuXDk6d+6cCY+AieHp06c0bNgwOnv2LBFl5WMmyhyBovp46tSpdOzYMbXXjxs3jsLDw5XnJY5tmClwDM70xfE3MwTH4MwQHIMzQ9hTDM4d4zbgyZMn1LlzZ3J1daXSpUtTlSpVaP/+/crn//nnH5JIJHTo0CEiUj/pJSYm0siRIykiIkK5LSMjQ9nI37x5QydPnqSTJ0+a52CY2dy+fZt69epFAQEBtGDBAiIitamZiYmJ5OXlRePHj9d4ody4cSM5OjrShQsXiCizXSkumEREd+/epYsXL5r4KJg56dNmVM8hCop29PbtWxIEgQ4ePKj2XHx8vHIRIGY7rly5Qu3bt6fg4GCqUqUKNW7cmK5cuaJ8Xts16smTJxQeHk6bNm3SuO9nz57R/v371RYXY7ZlyJAhJAgCtW3bloiyzjm3bt0iFxcXWr58ubLs69evc7z+ypUrJJVK1aZpvn37lmMbZhQcgzN9cfzNDMExODMEx+AsP+wpBudUKjZg+fLluHnzJg4cOIBFixbBy8sLgwYNwl9//QUAcHd3R8OGDXHu3DkA6oseeHh4oFWrVpDL5Vi8eDH++usvjBkzBk+ePAEAuLq6onz58ihfvrz5D4yZzJUrV9CjRw/cuHEDRYoUwf79+/Hu3TtIJBLlFDwPDw/069cPDg4OyinAqlq3bo2iRYti/vz5+P333/Hhhx9i9+7dyufDwsJQvHhxsx0TMy1924yCq6ur8nfFuWfNmjXw9fWFi4uL2nPR0dEoVaqUmY6ImZpcLseWLVvQrl07yGQy/Pbbbxg9ejRu3LiByZMn4/HjxwAALy+vXK9Ru3fvhpubG1q0aAEAOH78OBYuXAggc/qen58f6tSpg8qVK5v56Jg5pKam4u+//8bw4cNx4MABXL58WbmAU0BAADp27Ihnz54py7u7uyt/V5yX1q9fj+DgYLXzkouLC8c2zCg4Bmf64PibGYJjcKYvjsFZftldDC5mrzwznOJuXlpaGoWHh9OkSZOUz924cYNatGhBlSpVIqLMOzua7uAo3Llzh2rVqkWCIJAgCNS1a1flFC1mm1JTU2nEiBF09uxZ+v7776lSpUrKxXlUp8So/p5dWloaffTRR2rt5uXLl6auOjMzxbkmJSUlX23m0aNHlJ6eTtu3b6fq1avTyJEjTV95Jiq5XE5jx46l8ePHq03tXbp0KZUoUUJt0Z6kpKQcryUi+uCDD2j06NF05swZql69OgmCQJ06deLFfGyU6v+rXC6np0+fUrNmzeiPP/6g2rVrU/fu3Ykoa8SK6ihJVc+fPye5XE6///47VatWjb7++mvTV57ZDY7BmaE4/mb64BicGYpjcKYve4/BuWPciqxevZpmz55N58+fV+aCevjwIVWpUoWmTZumLCeXy2nPnj0kCILGaTGq9uzZQ9HR0eTs7ExffvklJSQkmP5AmFnt2rVLY+4wxcns7t271KJFC+rSpYvalDxtLl68SLGxseTg4EBffvklJSYmGr/iTDQbNmyghQsX0tmzZ9WCJUPbzOPHj6lDhw5UtmxZcnd3p3HjxvEXfxukeo1StJt///1XOZVX0VZ27txJPj4+aoG6Jrdu3VJ+8XdycqIBAwbkmnOVWa///e9/9Pnnn9ORI0eU/79paWlElHn9qly5MhERzZo1i7y8vJSvS0lJ0bi/+Ph46tmzJ5UtW5Y8PT3piy++yDV4Z0xXHIMzfXH8zQzBMTgzBMfgzBAcg2fhjnErcOrUKYqJiaGCBQtS1apVKTQ0lAYPHkxEmfnE6tWrR0OHDlULjl6+fEkNGjSgli1bElFWQLZ27Vq1UQXr16+nb7/9lu/82aANGzZQ8eLFSRAEmj17NhHlHEmguEh+8803VLlyZfr99981llu3bh0dOHBA+fjixYu0YsUKbjc25ueff6awsDAqWrQo1axZk0JDQ2nEiBFElHUO0bfNKF63aNEiWrRoEbcZG6TpGjVkyBC1MnK5XNlGBg4cSK1bt9a4L9Vr1D///ENNmjShWbNmcbuxQRcvXqSyZctSZGQk1a9fn4KDg5U5DBWWL19OH330ERFl5rosU6YM1atXj1q3bk1Hjx5Vllu3bh1dunSJiDJzF86YMYO+//57bjcs3zgGZ/ri+JsZgmNwZgiOwZkhOAbPiTvGLZiiMY0bN47q169P7969oxcvXtDy5cvJwcGBli1bRkREY8eOpQoVKqgtfJCWlkazZ8+mmJgYevbsGRERXb9+nfz8/Khbt25mPxZmXidOnKAaNWrQgAEDqGvXrlSjRg2N0+sUAdbFixepUaNG1Lt3b437q1WrFpUoUYJHptiwP/74gypWrEjz58+nlJQUevLkCc2dO5eCg4OVFzu5XK53m+ERcLYrr2vU//73vxxl3759S9WqVVNOAVZ148YN8vPzo65duxJR7lP0mHVTtIWZM2dSxYoVKSkpid69e0cHDhwgBwcH+vrrr5XnjQEDBtDChQuJiGj69Onk6elJEomEPv30U0pNTSUiooSEBCpevDjVq1dPnANiNoljcGYIjr+ZITgGZ/riGJwZgmPw3PHimxZMsfjBihUr0KxZMzg7O8PHxwcffPABhgwZggkTJuDZs2cYOHAgnj9/jh07duDdu3cAAAcHB6Snp8PNzU2Z/D4kJAQzZ85E9+7dRTsmZh4VKlRAx44d8dVXX6FNmzZ49eoVVqxYASBzsQwFxQIKxYsXR9WqVXHx4kX8+eefAIA7d+4oy82dOxczZ86Eh4eHGY+CmVvLli3RrVs3yGQyBAQEoHLlyggMDMTdu3cBZJ6T9G0znp6e5j8QZha6XKNu3LihVvbSpUu4desWKlasqNxPcnIyACAwMBAzZ87EBx98AABwcnIy5+EwM1G0hfXr16NmzZpwc3ODo6MjateujcmTJ+Onn37Cv//+i/T0dFy9ehWrVq2Cj48PFi1ahL59+6JQoULw8vKCTCaDXC6Hp6cnZs+ejVGjRol8ZMyWcAzODMHxNzMUx+BMHxyDM0NwDK6F2D3zLHeKaS/Vq1dXTttU5PxJTEwkJycnmjt3LhFljlgpX748LV26VPn6gQMHUtOmTXXOW8esS27TU7Jvv3fvHnXr1o3q1q2rsbyiffz777/UoEEDatu2LbVp04YkEonWBaOY9dE2pUlTvsH4+Hjy9vam27dvq23nNmNftJ1r8rpGzZ8/X+01vXv3pvbt2xMR0eXLl+nDDz+kDz/8kEem2BHF+aNly5bKaZuKXIWpqakUGRlJn376KRER9ejRg8qXL08rVqyg5ORkSklJoTFjxpBMJhOn8sxucAzOcsPxNzMEx+DMEByDM2PiGDx3PGJcZElJSbk+JwgC0tLSULFiRZw7dw6JiYlwcHBAWloaPDw80LlzZ6xatQoAMGjQIDRs2BC9e/dG9+7d0ahRI6xZswYDBgxQ3l1mtuP58+fKO37ZqW6Xy+UIDQ1F/fr18ejRI2zatAlAzlEraWlpePToEU6cOIHffvsNgiDg2LFjcHd3N+lxMPN5+fJlrm0GAJydnQFkthmFX375BaVKlUJISIjadm4z9uPkyZN4/vw5APXzBqDbNWr16tXK8o8fP8bJkydRtmxZtGvXDrGxsbh9+zZGjRrFI1NszNGjR7FgwQI8efIkx3MSiQRyuRy1a9fGiRMn8PLlSzg6OiI1NRUymQwdO3bExo0bIZfL8f333+PQoUPo1q0bnJyc4OjoiObNm2PQoEF49eqVcjQuY4bgGJzpi+NvZgiOwZkhOAZnhuAY3DAcrYlk8+bNqFq1Krp27YpRo0bh5s2bAJCjgTk7O6N06dJ48+YNfv31V7XnOnXqhPPnz+PVq1cIDQ3FlClTsG7dOoSEhKBo0aI4c+YMmjdvbrZjYqb3+++/o3z58mjVqhX69OmDEydOAMjZbhQUQViNGjUQGxuLJUuWAACkUqlaublz56Jp06Zo27Yt7t+/j19//RUVKlQw4ZEwc9m8eTNq1KiBTp064aOPPsJff/0FIPc2o7hgZmRkYM+ePWjevDkcHBxyfLmfN28etxkbN2vWLFSqVAmjR4/OtUxe16jTp08jISEBAHD69GmcPXsWX3zxBZycnHDjxg3s2bMHMTExJj0OZj7Hjx9HxYoV0ahRI1y+fBn37t3TWE4ikaB06dLw8/PDokWLAGR1CPTq1QvXrl3D/fv34eHhAVdXVwBZ56zq1atjzpw58Pb21trRwFhuOAZn+uL4mxmCY3BmKI7Bmb44Bs8nsYaq27MZM2ZQVFQUTZgwgVasWEFlypShGjVqUHx8PBFlTXFQTJ25f/8+derUierWraucIkNENHfuXIqOjqbr16+b/yCY2e3fv59CQ0Ppiy++oJUrV1KZMmUoOjqazpw5Q0Tap+gRES1cuJCio6Pp0KFDlJ6eTvv27VM+9+zZM55+Z2Pu3r1LXbt2pcjISBo/fjwtX76cSpcuTdWrV6cbN24QkfY2Ex8fTyEhIWrnl3Pnzil/5zZjuxTtomPHjtSiRQvy9/enJ0+eEBGppQXQ9Rp19epVIspsP3PmzKE3b96Y61CYGSUlJVHLli1p6NChygUHNaWRULSbly9f0vDhw6lgwYJq08g3btxIoaGhdPLkSfNUnNkVjsGZvjj+ZvriGJwZimNwZgiOwfOPO8bNRNEInzx5QsWKFaMlS5Yon7tw4QLFxcVRmzZtcn391q1bqVChQjRgwAC6ceMGpaSkUNeuXal79+4mrzszP03BUvv27dXayK1bt6hRo0ZUo0YNnfYVHx9PDRo0oMKFC1NAQAAFBwfTixcvcn0/Zl2y/x/u2LGD2rRpQ0eOHFFuO3LkCFWvXp1WrVqV5/4+/fRT6tSpExFlBlfBwcEUHByco9OAWTdN/4+KbbVr16affvqJqlatSsOHDyciUgu6VfE1yr5oajfr16+n2NhY5Wr2v//+Ox05ckR5ndEUoJ87d45iYmKobdu2dOTIEUpJSaGPPvqIWrVqZdL6M/vCMTjTFcffzBAcgzNDcAzODMExuGlwx7gJJSUl0dGjR5UJ7YkyRx2UKFGCdu3apdz26tUrioqKIkEQ6O+//yairAav+u+2bdsoJCSEYmNjKTAwkKKjo3OUZ9Yv+wIsihNZ/fr1qW/fvmrPHT9+nKRSKW3dulXrPu/du0fDhw8nQRCoRIkSal8KmfV7+/at8nfVRXlOnDhBRFnnh4cPH5KHhwft379f6/6eP39ORYoUocKFCyuD8UWLFpmm8kw0mhZ7Ujh+/Di999579PbtWxo/fjz5+/srn1O93uh6jWK2I3u7UbSBMWPGUP369enGjRsUGRlJcXFxVKRIEYqNjVWOrNTk2LFjVL58eSpSpAgFBQVR4cKF6cCBA2r7ZkxfHIMzfXH8zQzBMTgzBMfgzBAcg5sOd4ybwOvXr2nw4MHk6upK0dHRVK1aNfrxxx+JiOj69etUrFgxmjRpEiUlJRER0e7du6l169ZUsmRJ5d3h9PR0tX0qGubjx49p69attHv3bjMeETOHZ8+e0ccff0xeXl60fPlyIspqB2/fvqW+fftS8+bNlVPnFG2iefPm1LhxYyLSfDeQiGjixIlUtmxZ2rhxo6kPg5nR8+fP6ZNPPiFBEGjmzJlElLmidHaKtnLy5EkqWrQoXblyRet+b9y4QSEhIVS+fHn67bffjF5vJi5t5xqFY8eOUe3atSktLY0uXLhA0dHRNGHCBFq1ahX9+++/OfbJ1yjbl1e7Wbp0KRUrVow6depEU6ZModevX9PRo0epadOmVLFiReVUYFWKdvPmzRs6ePCgMhhnzFAcgzN9cfzNDMExODMEx+DMEByDm55AZGPLiVqAlStX4uuvv8aSJUvg6OiIn376CcuXL8fOnTtRp04dfP311/jhhx9QuHBhPHv2DNevX8fUqVPx5s0bLFmyBOfPn4eLi4vYh8HMKD4+HiNGjMDz588hkUjg5eWFHTt2AMhcDEEikWD69OnYsmULJkyYgIYNGyq3r1+/Hh988AEePHgAb29vtf0qyrx7947blI25ffs2PvvsM9y6dQuOjo548OAB4uPjNZYlIgiCgGnTpmHfvn3YtWuXsm1okpCQgJcvXyIyMtKER8DEoO1co2rUqFGQSqWYNm0arl27ho4dO+L06dMoXbo01q5di6JFi9reoissV9rajeL8sn79enz++ed4+fIlDhw4gNjYWADAnTt3EBkZiX379qFOnTo59q14PWPGwDE40wfH38wQHIMzQ3AMzgzBMbh5aD4jM70pVnIFgPnz56N+/fqoXr06KlasiEWLFqFVq1YYPnw4EhIS8Omnn+LXX39FpUqV8MEHH+D69esYNmwYXFxcEBYWprYvZtsyMjIAAAULFkTBggXx3XffoW/fvrh9+za2bNkCAEhPTwcAtGnTBhkZGfj999+RlpamDKgCAgIQERGBS5cu5di/ogwH5bZDcX4ICgpCwYIFMWXKFHz++edISEjA8uXLAWS1GQXFBW/JkiVo27YtAKgF5NnPOV5eXhyQ2xhdzjUZGRmgzJlkSE1NRXp6Ojp27IjixYuDiODv74/evXujWLFiyv0x26bPNapGjRooXLgwkpKSULRoUQBAWloaIiIiEBMTg+PHjwPIWtlegQNyll8cgzN9cfzNDMExODMEx+DMEByDm5n5B6nbji1bttCUKVPon3/+UZs6ValSpRyLJNy6dYskEgmtWLFC43S79PR0atmyJTVs2NA8lWeiya3dKKZo3rx5k9q2bUstWrRQPqeY6jJhwgSqUKECrVmzRvnc4sWLKSwsTOMUGWYbNm3aRJ9++int2bNHOf2biJS/JyQkUO/evSkuLi7XfezYsYPCw8OVi3Ds2rWLunfvnuv0X2b9DDnXKNStW5cEQaC2bdvS0aNH6fnz5zR06FCKiIgwW/2ZOPJzjVq1ahW5u7vTxIkTlc+dPHmSihUrRnv27DHTETB7wDE40xfH38wQHIMzQ3AMzgzBMbh4uGPcAFevXqXq1atTgQIFqHr16hQYGEjdu3en1NRUSktLoyFDhlCtWrWUAbni31atWimDbtVcUElJSTR//nwqVaoUL5Jgw3JrN8nJyTnKzp8/n6Kjo5W5nhRl7t69S4MGDSKZTEbjx4+nBQsWUGxsLI0ePdruFkiwB/fu3aMGDRpQYGAgNWjQgPz9/alhw4Z069atHGW3b99Ovr6+tGXLFiLKuXL5559/Tt26daNNmzZRyZIlycXFhYYMGUJpaWncdmxMfs41ikVdrl27Rv/++69a29i2bRsVKVKELly4YJ4DYWaVn3ajWOAwMTGRpk+fTjKZjLp06UJz5syhihUrUtu2bZVBPWP5wTE40xfH38wQHIMzQ3AMzgzBMbj4uGNcD4qT09y5c6ls2bKUkJBAr1+/pv3795OzszNNmTKF5HI5LV26VG2hFUVj3bJlCzk6OipXr3706BFNmjSJwsLCqECBAvTDDz+Ic2DMpPJqN1OnTlWOOlAsonD+/Hlq0qQJde3aVeM+J0yYQG3atKGYmBiaOnWqeQ6EmY2izaxYsYJiYmLo0aNHlJGRQZcvX6awsDAaMGAAPX/+nIiy2syjR4+oQ4cOVK1atRz7e/PmDRUoUIAEQSB/f3+1O8nMdpjiXKO63+wroTPbYIp289NPP1GfPn2ocuXKfI1iRsExONMXx9/MEByDM0NwDM4MwTG45eCO8Txkn+KUnJxMjRs3pr59+5JcLlc25rFjx1K5cuXo0KFD9PDhQ2rSpAm1a9dO7bV//PEHFSxYkE6dOqXc9+7du2ndunXmORhmNvq0m4oVK9Iff/yh9jq5XE4zZ86k6OhoOn36NBFljmxSxRdI26K6srRcLqe0tDTq168fNWvWTG0q1bx586hSpUr0448/EpF6W/v111/J09OTjhw5QkRE9+/fp/T0dLp37x4NGTKEfvnlFzMdDTMXc5xrmO0xR7vhUXAsvzgGZ/ri+JsZgmNwZgiOwZkhOAa3TLz4Zi7u3buH4cOHo3fv3pg3bx5evXoFAHByckJKSgqSk5MhCAJSUlIAAIMHD4YgCNi8eTOCgoLQuXNnnDhxAgsXLlTu89ixYwgJCUFcXByAzIU36tevjw4dOpj9+JhpGNJuiAj79u1DcnIyJBIJ5HI5BEHAe++9h4iICEyaNAkffvghypUrh6dPnyrfy9nZWYxDZEZ27949DBo0CJ06dcKXX36JO3fuQBAEODg4ICEhAUQEBwcH5QIcXbp0QUhICHbu3ImkpCRlmwGAKlWqoFatWhg9ejT69OmDsmXL4vz58wgNDcXcuXPRuXNnMQ+VGZE5zzXMdpiz3fCCPsxQHIMzfXH8zQzBMTgzBMfgzBAcg1s27hjPJiEhAWPHjkVcXBzu3r0LJycnTJw4Ed27d1c23hYtWmDr1q0AMoOjjIwMhISEoHr16vj777/x5MkTdOjQAQMHDsSwYcPQtGlTdOjQAd999x26desGmUwm4hEyU8hPu6lWrRqOHTuGx48fA8haqfzly5e4dOkSNm7ciFu3bmHZsmUICAgQ5fiY8SUlJWHixIkoW7YsHj9+jJiYGCxZsgTdunXDhQsXAADt27fHvn378PTpU0ilUsjlcvj5+aF69ep48OABzp8/DyDr4nflyhVcv34df/31F65fv45Vq1ahdOnSoh0jMz4+1zBDcLth1oBjcKYvPrcxQ3AMzgzB5xtmCG43VkK8weqW6bfffqNq1arR9u3bldsuXbpEgiDQmTNniIjo77//poCAAFqwYAERZU2pO3HiBMlkMrpz547ytdu3b6dx48ZRnz596Ny5c2Y8EmZOxm433333HTk5OVHr1q3p8uXLZjwSZi779++nhg0b0vr165Xbnj59Sm5ubsrFex48eEDh4eE0fvx4IspazOfatWvk5uZGR48eVb72l19+IT8/P2rWrBm3GRvG5xpmCG43zBpwDM70xec2ZgiOwZkh+HzDDMHtxjpwx/h/FHl4bty4Qd9++60yn1haWhq9fv2awsLClLnBXr16RYMHD6bQ0FC1nGR//vkneXl50cmTJ81/AEwUpmo3N2/e5BxjNkrRZu7cuUOLFy9WrjatWCCsUKFC9N133xFRZi6x6dOnk5eXF127dk25j5s3b5KzszPt2bNHue3Bgwf07Nkzcx0GMzM+1zBDcLth1oBjcKYvPrcxQ3AMzgzB5xtmCG431oU7xrVQJLg/deoUhYSE0L1795TP3bhxgwoUKEA9e/ZULrIxYMAAat68ORFxwnt7xu2G6Uvx/3716lUKDw9X3j0mIkpNTaXixYtTixYtaNOmTZSWlkajRo2i9957j968eSNWlZmJ6XIu4HMNMwS3G2YNuJ0yfXGbYYbgGJxlxzE4MxVuN5aLc4zngoiUOXx2796NokWLIjAwULn4RlRUFFauXIn4+Hi8//77iIqKwpYtW9C/f38AnPDeXnG7YUBmO9i6dStu3bql/L/XVlbx/37y5En4+fkhMjISAJCRkQGZTIYVK1bAwcEBgwYNQrFixbBixQoMHDgQrq6upj4UZkZEhL/++gupqal5ngv4XMMUiAgbNmzAkSNH8Pr16zzLcrthlo7bKdMXtxmmwDE4MwTH4MwQHIPbEPP3xZvf27dv6csvvyRBEGjZsmVElHW3RpuMjAzKyMigSpUq0eTJkzWWef36NW3fvl2Zj4zZDm43TF8ZGRk0Z84ccnd3p6ioKIqIiKBevXrRgwcPiCj3O72K7U2aNKHBgwdrLJOenk5//fUX7dy50zSVZ6JJTk6mL774gry8vCg2NpYqVapEU6ZMyfN1fK6xbykpKTRx4kRlu4mIiKAmTZrQjRs3tL6O2w0zJ46lmL64zTBDcAzODMExODMEx+C2x+Y7xu/cuUN9+/alSpUqUdmyZSkuLk6n1ykukkePHiU/Pz96+fIlERHdu3eP1qxZQ48ePTJVlZkF4HbDDHHu3DkqU6YMrVy5kp4+fUqbN2+msLAw+vDDD+n169dElDMwVzy+ePEi+fr6Ki+o9+7do8WLF1N8fLx5D4KZ3YIFC6hcuXJ04MABunr1Ki1evJgEQaAFCxYo89Flx+catmLFCoqLi6O9e/fSmzdv6PDhw+Tp6ak1kOZ2w8yJYymmL24zzFAcgzNDcAzODMExuO2x+VQqrq6uCA4OxsSJE7FgwQJcvnwZW7duBZA5nSE3iqkK27ZtQ+vWrfHixQu8//77CA8Px9q1a+Hk5GSW+jNxcLthhjh58iTu37+PRo0awd/fHy1btsTnn3+Oc+fOYdmyZQAAuVwOIKsdKdrMvn37UKdOHbx79w7du3dHeHg4Nm/eDC8vL3EOhpnFq1ev8N1336FDhw6oXbs2ChYsiL59+6JRo0aYOXMm/vzzTwBZ7UaBzzX27e3bt1ixYgXKlSuHWrVqwdXVFdWrV4e/vz9kMlmur+N2w8yJYymmL24zzFAcgzN9cQzODMExuI0Ss1fe2A4cOECTJ0+mP//8U20111evXhFR5tSFzp07U8WKFYko7wT2jx49ooIFC5IgCCSRSKhp06Z07tw50x0AE8XZs2fpxYsXObYnJCQQEbcbltOpU6fo8OHDObZ/+eWXVKdOHbU7vk+ePKHevXtT9erVlaveZ5eQkEBVq1blNmPjNF2jMjIyKDw8nH744QflYyKiNm3akJ+fHw0ZMkTteqaKzzX2IbfY5r333qNGjRrR6dOnSS6XU79+/ahs2bK0du1ajdc0BW43zBQ4Bmf64vibGYJjcGYIjsGZITgGtx820TH+9OlTatmyJXl5eVGdOnXIw8ODunTpQpcvXyairEBKLpfTwYMHSSKR0J9//klEOXPW/f3337R3717l44iICBo2bBhPbbBBR48epdq1a5MgCPTdd9/lWo7bDVM4deoUNW3alARBoE6dOtHDhw+JiCgtLY2IiHbv3k1OTk5qK9oTEf38889UoUIFtelVJ0+epDVr1igfV69enUaOHMltxgbldo26du0aEWWuOF6gQAE6duwYpaen08yZM6lRo0bUvHlzqlOnDl2/fl25Lz7X2I/c2s2FCxeIiOjw4cPUqFEjqlu3LkmlUqpYsSKNGDGCQkJCqEmTJmrthNsNMxWOwZm+OP5mhuAYnBmCY3BmCI7B7Y9NdIz/8ssvVLJkSbpx4wbJ5XI6cuQIxcTE0AcffKDMDaUIpJKSkqhx48bUoEEDIso5+qBKlSpUo0YN5Ukwt7uEzLpdvnyZunXrRj179qROnTpRbGyscoSKJtxuWGJiIo0ePZref/99Gj16NBUvXpx+//33HOXCw8NpzJgxatuuXLlCJUqUoMWLFyu3de3alWJiYujff/8lIm4ztkzTNSo6Opo++OADSktLo4SEBKpUqRIVLVqUnJ2dKSQkhI4fP06HDh0iR0dHevLkiXJffK6xH7nFNj169FAb+fbBBx/QwIEDlY+vXr1KdevWpdGjRyu3cbthpsIxONMHx9/MEByDM0NxDM4MwTG4/bH6jnG5XE6jR4+mqlWrqm1fuHAhlS1bVrmaueJuMhHRtm3bSBAEOn/+PBERPX/+XJn8fuPGjbRq1Sqz1J2J5+nTp7R8+XK6dOkS3b59m5ycnGjlypVaX8Ptxr6lpKTQ/v37lUF0XFwcDRkyRDldSvHFf/bs2eTt7U1nz55Ve72vr69yqh5R5tSs9evXm6fyTDTarlFlypShn376iYgyzyd///03/fPPP8oyJ06coJCQEOXISyKiTZs28bnGDuQV2yxdupSIMr/wx8bG0smTJ9XKlS9fngYMGKDsmOR2w0yBY3CmL46/mSE4BmeG4BicGYJjcPtk9R3jRETvv/8+tW3bVm3Ewb1796hr167KEQZEWaMMEhISqFatWtS0aVP6+OOPqXjx4nTgwAGz15tZjp49e1K5cuXo7du3uZbhdsNUzZo1i2JiYtSmRikUKVKEunTpQidOnCAior1791KJEiXo6NGj5q4mswDarlH169fP9XU9evSgxo0bU0ZGRo7p48z26dJukpKSyMHBgdauXassc+bMGSpfvjz9/PPPZq8zsz8cg7P84PibGYJjcKYrjsGZITgGtz8SsRf/zI+MjAwAQJMmTbBnzx48e/ZM+VxoaCiqVauGhIQEHDlyRO11V65cwbt377B9+3YcPHgQX3/9NWrXrm3WujPTun37NlatWpVnOcUq06NGjcKZM2ewd+/eXMtyu7FtiYmJOpVTtJmBAwciPT0du3fvxuvXrwEAaWlpAIBFixbh+fPnaNy4Mdq3b49WrVqhYsWKKFu2rGkqz0STkJCA1NRUjc/pco1KTExUXqNSU1Nx+vRpnDlzBv3798dff/2FQYMGQSKRQCKx6ss1y+b58+d48uSJxuf0iW3c3NwwdOhQ9OjRA127dsXAgQNRp04dFClSBM2aNTPLsTD7xDE404Tjb2YIjsGZITgGZ4bgGJxpYrGf8gsXLqBNmzbYs2cPAICIcpSRSqUAgHbt2kEmk2HdunVqz1erVg2PHj3C27dvAQCCIGDbtm1o1KgRHB0dceLECfzzzz9o27atiY+GmcupU6fQsGFDREVF4ezZs3j37p3W8ooLXWxsLJo3b47Zs2cjPT09R7mtW7dyu7FRFy5cQLNmzVC1alV069YNK1euVD6n6bwjkUiQkZEBZ2dndOnSBTt27MD58+cBADKZDABQr149rFq1CnPnzkWxYsWwc+dOLFu2DE5OTuY5KGZyp0+fRuvWrVG9enW0bdsW8+fPz1FG32uUo6Mjtm3bhvbt2yM+Ph4rV65E8+bNTX8wzGzOnz+P5s2bo1y5cmjdujXGjh2bo0NAl3bz+PFjZbuZNWsWZsyYAVdXVyQlJWHbtm1Ys2YN/Pz8zHNQzOZwDM70xfE3MwTH4MwQHIMzQ3AMzrQSd8B6Tq9fv6YZM2ZQVFQUCYJA1atXJ6Kci61kN2HCBAoKClJbifrhw4ckCAIdPHhQue327dt0584d01Seieb27dvKlcr79etHV65c0XsfR48eJUEQ6MiRI5ScnEwnTpyg+/fvExHRzZs3ud3YoD///JNKlChBAwcOpK1bt9KwYcPIx8eHvv/+e63nHMWUuqdPn1LBggVp6tSp9Pz5c9q7d2+OvIbMtjx79oyGDh1KAQEB1K9fP9q0aRMNGzaMpFKpctquJvpcoxTnHWZbDh48SNHR0TRgwAA6fPgwzZgxg9zd3WnDhg25vkbXdkOknseZMUNwDM70xfE3MxTH4ExfHIMzQ3EMzvJicR3jjx49oiFDhtCcOXNo8+bNJJVK6a+//iKivAPzwoULU/v27WnXrl2UkZFBEydOpNq1a9OzZ8/MUXUmAkWb+PfffykkJERtBeBr166p5SzUJT9Y7dq1KS4ujooWLUqRkZGcj86GZWRkUP/+/al58+bKxTGIiLp06UKFCxemXbt2Kcvl9noiogEDBlBYWBiFh4eTi4tLnotIMet2584dGjlyJP35559q293d3Wn16tVaX8vXKPskl8spIyODPv74Y6pXrx69e/dO+VxISAgtXLhQ6+u53TBz4Ric6Yrjb5YfHIMzQ3AMzvTFMTjTlegd40ePHlWuLK5w7tw5ysjIoNTUVGrUqBE1atSIiHIG5YqLomL7wYMHqVWrVhQaGkrFihUjHx8fWr58uekPgpnduXPnKDk5WW1bv379qFmzZvT1119TjRo1qHz58lSpUiUaMWKEWrn09PQc+0tISKBZs2aRj48PBQYG0rhx47QuBMSsT/bzDBFR6dKl6fPPPyeizAU0iDLvDguCQJ07d1aW0xSYv379mmbPnk2hoaEUEBBAEyZMULvYMtugqd3cunVL7Xq0efNmatKkCd29e1etHF+j7Jem2KZWrVrUtWtXevHiBRFlLghWr149unDhglo5xTWK2w0zNY7Bmb44/maG4BicGYJjcGYIjsGZIUTrGP/+++/Jz8+PChYsSMWKFaPp06dTYmKiWhm5XE5btmwhQRCUjTZ7YJ6amko3btxQPn737h0dPHhQ67QIZp0yMjLo66+/poIFC1KJEiWobNmy9NNPPymfP3DggPK5yZMn0/bt2+nTTz8lDw8PGj9+vNqIhNTUVHr69Kny8aZNm6hw4cI0ZcoUsx4TM62MjAyaM2cO+fv701dffaX8MqcIlkaPHk1RUVF0/fp1IsqcHtWiRQtq0aIFVa9eXW3EUmpqKp07d075+OnTp1SyZEmaNGmSGY+ImUNu7Sb79efevXtUo0YNkkqlFBMTQxERETR58mR6+PChsgxfo+yLpthGEYSvWbOGQkNDqVWrVlSpUiVycnKi8uXLU0BAAA0aNIguXryo3A+3G2ZKHIMzfXD8zQzBMTgzBMfgzFAcg7P8EKVj/Pjx41S6dGlaunQpXblyhaZNm0YFChSgsWPHKssoLpovX76kypUrU5cuXYgo50mxQ4cO1KZNG84HZeOuXbtGbdu2pUqVKtGGDRvo8OHDNHToUHJzc6Pz588ry82aNYsOHDig9trvv/+efHx86Pbt28pt1apVo4EDB1JCQgIRZY48YLblxYsXNGbMGKpSpQqVK1eOYmNjlcG3wtOnTykqKoqio6OpfPnyJAgCDRkyhLZt20ahoaG0d+9eZdnhw4dT1apV6dKlS+Y+FGZGurQbhUuXLtGsWbMoPj6eHjx4QEuXLqWCBQvS3LlzlWX4GmU/cottxowZoyzz4MEDGjp0KNWsWVOZbuC3336jqlWr0qhRo5TluN0wU+EYnOmD429mCI7BmSE4BmeG4hic5ZdEjAU/Dx48iBcvXqBr164oWrQoPv30U/Tv3x+7du3C1q1bAQByuRwA4O3tjcGDB2PdunV48OABBEEAESElJQUAUK5cObi6uvJK0zbu+fPnePjwIZYsWYJ27dqhevXq+O677+Dm5oZjx44py/Xr1w+1a9dWe23nzp3x5s0b3LhxQ7mtSpUqePLkCSSSzI+Au7u7eQ6EmY0gCIiIiMDo0aOxY8cOXLlyBTt37kRGRgYAICMjA/7+/ti3bx8mTpyIFi1aID4+HnPnzkWzZs3w6tUrtf2VLl0axYsXh4eHhwhHw8wlr3ajKiYmBiNGjEB0dDSCg4PRq1cvuLu748mTJ8oyFSpU4GuUncgtttm9eze2bNkCAHB0dMSZM2fw4YcfonDhwnBxcUHr1q3h5+eH58+fK1e553bDTIVjcKYPjr+ZITgGZ4bgGJwZimNwlm9i9MYPHjyY2rZtqzZKID4+nlq1akWtWrXKUf7JkydUsmRJGjJkCB0/fpz69euXYyVYZvsuX76s9vjVq1cUFxdHixcv1lheMbJp0aJFFBAQQMePH89z8ShmW1TPMb169aLSpUvTvXv3iEj7QmILFy6k8PBwio+P5zZjh7S1G20uXLhAkZGRNG/ePFNWj1kobbFNy5YtiSgzn66zs7NaDPP69WuqXLkyjRw50ux1ZvaHY3CmL46/mSE4BmeG4BicGYJjcJZfoowYj42NxZEjR/DixQvltujoaNSqVQv37t3DiRMnAGSNWHF1dUXlypXx/fffo3Llyrh//z5KlCghRtWZiIoVKwYgq13cvXsXd+/eRYMGDXKUffHiBQRBwP79+7FmzRr07NkTFStWhCAIZq0zE5e7u7tylMGkSZNw9uxZ7N+/H3K5PEdbePHiBV69eoX9+/dj5cqV6NGjB6Kjo7nN2CFt7Sa7x48fIz09HYcOHcInn3yCUqVKoVu3buauMrMAecU2x48fh6enJ5o1a4ZevXph3rx52LNnD9q1a4fk5GT06NFDxNoze8ExONMXx9/MEByDM0NwDM4MwTE4yy9ROsa7deuGxMRE7Ny5U217xYoVkZycjJs3b2ZWTiLBuXPnULduXSxduhSjRo3CkydPsHXrVvj5+YlRdWYBiAgA8Ouvv6JKlSqIiopCenq68vk7d+5g3LhxqFixIlq0aIGyZcti/PjxYlWXiUwqlSIjIwOhoaFo2bIlFi1ahGfPnqmVISJs2bIFbdq0QdOmTVGuXDmMGTNGpBozS6BLu0lKSsLnn3+OmjVrolmzZihSpAh+/vlneHt7i1NpJqq8Ypvbt28DABYtWoQSJUpg5cqV6N+/P6KiorBnzx7ExcWJUW1mZzgGZ4bi+Jvpi2NwZgiOwZm+OAZn+SWQIsoxs/79++PgwYPYvXs3wsLClNudnZ3x22+/oUmTJgCAkydP4uTJk+jZsyecnZ3FqCqzQBkZGahZsya6dOmCIUOGKLfL5XJIJBLMnz8fqampGDhwIOeHYsjIyIBUKsWFCxcQFxeHTZs2oWXLlkhMTERGRgZ8fHxw7tw5XLlyBc2bN+c2wwBobzdyuRze3t5Yt24dXrx4gV69enG7YVpjm40bN6Jp06bKbffv30dgYCBkMpkYVWV2jGNwZiiOv5m+OAZnhuAYnOmLY3CWH6J1jL948QJRUVHo168fhg0bhtDQUGzfvh3Dhw/HL7/8grJly4pRLWYlDhw4gM6dO+PChQvw8vLCrFmzcODAAUyZMoXbDtOIiCAIAurVqwdBEFCiRAns3r0bn3zyCXr37i129ZiF4nbD9MGxDbMG3E6ZoTj+ZobgWIoZgtsN0wfHNiw/REmlAgC+vr6YNWsW9u7di3r16qF///7o1q0batWqxVMZWK4U93G2b9+O2NhY/PTTTwgICMD8+fPRoUMHPuGxXMnlcjx8+BBubm7Yt28fduzYgdGjR3NgxbTidsP0wbENswbcTpm+OP5m+cGxFDMEtxumD45tWH6INmIcyAyyrl69ik2bNuHSpUto3749mjVrJlZ1mJVITk5GWFgYXrx4gbJly2LChAlo2bKl2NViFu7ixYuoVq0aQkJCMH/+fNStW1fsKjErwO2G6YtjG2YNuJ0yfXH8zQzFsRQzBLcbpi+ObZihRO8Y59WmmSG+//57VKlSBRUqVBC7KsxKJCUl4fHjxyhcuLDYVWFWhNsN0xfHNswacDtlhuD4mxmCYylmCG43TF8c2zBDidoxzhhjjDHGGGOMMcYYY4yZm2g5xhljjDHGGGOMMcYYY4wxMXDHOGOMMcYYY4wxxhhjjDG7wh3jjDHGGGOMMcYYY4wxxuwKd4wzxhhjjDHGGGOMMcYYsyvcMc4YY4wxxhhjjDHGGGPMrnDHOGOMMcYYY4wxxhhjjDG7wh3jjDHGGGOMMcYYY4wxxuwKd4wzxhgzmsjISHz77bdiV4MxxhhjjDG7wTE4Y4wZhjvGGWPMAvXs2ROCIEAQBMhkMhQoUAANGjTA0qVLIZfL9drX8uXL4e3tna/6HDhwQFmf3H4OHDiAEydOoG/fvvl6L8YYY4wxxsTAMThjjNkXB7ErwBhjTLPGjRtj2bJlyMjIwOPHj7Fjxw4MGzYMGzZswJYtW+DgYL5TeLVq1fDw4UPl42HDhiExMRHLli1TbvP19YWjo6PZ6sQYY4wxxpixcQzOGGP2g0eMM8aYhXJyckJQUBBCQ0NRrlw5jBs3Dps3b8b27duxfPlyZbnZs2cjLi4Obm5uCA8Px8CBA5GUlAQgc5RJr169kJCQoBxV8uWXXwIAUlJSMHLkSISGhsLNzQ2VK1fGgQMHNNbF0dERQUFByh8XFxdl/RQ/jo6OOaZxCoKAxYsXo3nz5nB1dUXx4sVx9OhRXLt2DXXq1IGbmxuqVauG69evq73f5s2bUa5cOTg7O6NQoUKYOHEi0tPTjfnnZYwxxhhjLAeOwTkGZ4zZD+4YZ4wxK/Lee++hdOnS2Lhxo3KbRCLB3LlzceHCBfz888/Yt28fRo8eDSBzlMm3334LT09PPHz4EA8fPsTIkSMBAIMHD8bRo0exZs0anD17Fh06dEDjxo1x9epVo9Z50qRJ6NGjB06fPo2YmBh07doV/fr1w9ixY3Hy5EkQEQYPHqws/+eff6JHjx4YNmwYLl68iMWLF2P58uWYPHmyUevFGGOMMcaYLjgGZ4wx28Qd44wxZmViYmJw69Yt5eOPP/4YdevWRWRkJN577z18/fXXWLduHYDMUSZeXl4QBEE5qsTd3R137tzBsmXLsH79etSsWROFCxfGyJEjUaNGDbWpmcbQq1cvdOzYEcWKFcOnn36KW7du4f3330ejRo1QvHhxDBs2TG2UzMSJEzFmzBh88MEHKFSoEBo0aIBJkyZh8eLFRq0XY4wxxhhjuuIYnDHGbA/nGGeMMStDRBAEQfl4z549mDp1KuLj45GYmIj09HQkJyfj7du3cHV11biPc+fOISMjA8WKFVPbnpKSAj8/P6PWt1SpUsrfCxQoAACIi4tT25acnIzExER4enrizJkzOHLkiNrolIyMjDyPiTHGGGOMMVPhGJxjcMaY7eGOccYYszKXLl1CVFQUAODWrVto3rw5BgwYgMmTJ8PX1xeHDx9G7969kZqammsAm5SUBKlUilOnTkEqlao95+7ubtT6ymQy5e+KLxOatsnlcmXdJk6ciLZt2+bYl7Ozs1HrxhhjjDHGmC44BmeMMdvDHeOMMWZF9u3bh3PnzmH48OEAgFOnTkEul2PWrFmQSDKzYymmcCo4OjoiIyNDbVvZsmWRkZGBJ0+eoGbNmuapvI7KlSuHy5cvo0iRImJXhTHGGGOMMY7BGWPMRnHHOGOMWaiUlBQ8evQIGRkZePz4MXbs2IGpU6eiefPm6NGjBwCgSJEiSEtLw7x589CiRQscOXIEixYtUttPZGQkkpKSsHfvXpQuXRqurq4oVqwY3n//ffTo0QOzZs1C2bJl8fTpU+zduxelSpVCs2bNxDhkAMD48ePRvHlzREREoH379pBIJDhz5gzOnz+Pr7/+WrR6McYYY4wx28cxOMfgjDH7wYtvMsaYhdqxYweCg4MRGRmJxo0bY//+/Zg7dy42b96snHpZunRpzJ49G9OnT0fJkiWxatUqTJ06VW0/1apVQ//+/dGpUycEBATgm2++Af7P3n2HN211cQD+ZUAIGeywIRRo2ZSy94YyCrRlFsosUDa0zPYDChQoGwpll7333nuvsCGL7L134tix9f2RxrFjecuWbJ/3eXiIZVk6lmX56ujqXAC7d+/G8OHD8euvv+KLL75Av3798Pz5c1SpUsXs71VR9+7dceHCBVy7dg1NmzZFixYtsG7dOlStWpXXuAghhBBCiPWjNji1wQkhtsOOYRiG7yAIIYQQQgghhBBCCCGEEHOhHuOEEEIIIYQQQgghhBBCbAolxgkhhBBCCCGEEEIIIYTYFEqME0IIIYQQQgghhBBCCLEplBgnhBBCCCGEEEIIIYQQYlMoMU4IIYQQQgghhBBCCCHEplBinBBCCCGEEEIIIYQQQohNocQ4IYQQQgghhBBCCCGEEJtCiXFCCCGEEEIIIYQQQgghNoUS44QQQgghhBBCCCGEEEJsCiXGCSGEEEIIIYQQQgghhNgUSowTQgghhBBCCCGEEEIIsSmUGCeEEEIIIYQQQgghhBBiUygxTgghhBBCCCGEEEIIIcSmUGKcEEIIIYQQQgghhBBCiE2hxDghhBBCCCGEEEIIIYQQm0KJcUIIIYQQQgghhBBCCCE2hRLjhBBCCCGEEEIIIYQQQmwKJcYJISZz584d2NnZ4c6dO3yHQgjRQc+ePTF27FjOlhccHAw7OzusXr2as2VqMnfuXDRv3tws6yKEEEIIUcfY86Dnz5+jVatWcHFxgZ2dHV6/fo0//vgDdnZ2ei+rQ4cO6NChg0FxCJ2npydGjhxp0GvT09Px008/oVy5crCzs8P06dO1zu/h4YGDBw8atD42e/bsgZ2dHV68eMHZMjVp0aIFZs+ebZZ1EWIpKDFOiBm9e/cO/fv3R9WqVVGkSBFUrFgRXbt2xcaNGw1a3ubNm7Fnzx5ug7TgOAgxhEQiQenSpdGmTRu18zAMg8qVK+Orr74CkH+yk/evUKFC+OyzzzB8+HAEBgaaK3ROPXz4ENeuXcOcOXP4DsVg06dPx5s3b3Du3Dm+QyGEEGLF+vTpg6JFiyItLU3tPEOHDkXhwoWRkJBgxsiINZBIJBgwYAASExOxbt067N+/H1WrVuVs+ZGRkfjjjz/w+vVrzpYJAFOnToWdnR0+ffqkdp7ff/8ddnZ2ePv2LYDcxLZim9rDwwNt27bF6dOnOY2NzbJly7Bnzx5MmDAB+/fvx48//qhx/g0bNsDNzQ2DBw82eWymMmfOHPzzzz+Ijo7mOxRCBIMS44SYyaNHj9CkSRO8efMGY8eOxaZNm/DTTz/B3t4eGzZsMGiZQklIq4ujXbt2yMrKQrt27cwfFCE6KlSoEAYMGIBHjx4hJCSEdZ579+4hPDwcw4YNU5o+depU7N+/H9u3b0evXr1w9OhRNG3aFJGRkeYInVOrVq1C586dUaNGDb5DMVi5cuXQt29fs/VQJ4QQYpuGDh2KrKwstcm7zMxMnD17Fl9//TVKlSpl5uiIpQsICEBISAhmzpyJcePGYdiwYShRogT+97//ISsrS+/lXbt2DdeuXZM/joyMxKJFizhPjA8dOhQAcOjQIbXzHD58GPXr10eDBg3k07788kvs378f+/fvx8yZMxEZGYnvvvsOW7du5TS+gm7duoUWLVpg4cKFGDZsGBo3bqx2XolEgg0bNuCnn36Cg4ODSeMypb59+8Ld3R2bN2/mOxRCBIMS44SYydKlS1GsWDE8f/4c//vf//DTTz9h0aJFuHr1Kh49esR3eHIMwxjU4GJjb2+PIkWKwN6eDjW6EIlEkMlkJll2RkaGSZZrKlzuh7oYOnQoGIbB4cOHWZ8/dOgQ7O3tVXqItG3bFsOGDcOoUaOwceNGrF69GomJidi7d685wuZMbGwsLl68iIEDB/IdikEU9++BAwfiwYMHFttznxBCiPD16dMHbm5uahOAZ8+eRUZGhjxRKCSmahPKZDKIRCKTLNtUTNn2NkZsbCwAoHjx4krTHR0dUaRIEb2XV7hwYRQuXJiL0DRq3rw5atSoobY9/fjxYwQFBal8LypWrIhhw4Zh2LBhmD17Nh4+fAgXFxesW7fOpPHGxsaqbGN1Lly4gLi4OIttK2dmZgLIPT/v378/9u3bB4ZheI6KEGGgbBUhZhIQEIC6deuy/vh6eHgoPd69ezc6deoEDw8PODk5oU6dOtiyZYvSPJ6envjw4QPu3r0rv/Usr3acuvpzeTXMgoODlZbTu3dvXL16FU2aNIGzszO2bdvGSRzqausdP34cjRs3hrOzM0qXLo1hw4YhIiJCaZ6RI0fC1dUVERER6NevH1xdXVGmTBnMnDkTUqlU3WYGAPTu3RufffYZ63MtW7ZEkyZN5I91eY+K2+natWv48ssvUaRIEdSpUwenTp1SmTcwMBADBgxAyZIlUbRoUbRo0QIXL15Umidv2xw5cgT/+9//ULFiRRQtWhSpqamscSvWal63bh2qVq0KZ2dntG/fHu/fv2fddgEBAejZsyfc3NzkDVCZTIb169ejbt26KFKkCMqWLYvx48cjKSlJaRkvXrxA9+7dUbp0aTg7O6NatWoYPXq00jxHjhxB48aN4ebmBnd3d9SvX1/p7geu9sPk5GRMnz4dlStXhpOTE2rUqIEVK1ZweiLTunVreHp6sp7gSiQSnDhxAh07dkSFChU0LqdTp04AgKCgIAD5n/OxY8ewaNEiVKxYEW5ubujfvz9SUlKQnZ2N6dOnw8PDA66urhg1ahSys7OVlqnLPnrr1i3Y29tjwYIFStMPHToEOzs71n1a0cWLF5GTk4MuXbooTc/7rB48eICpU6eiTJkyKF68OMaPHw+xWIzk5GQMHz4cJUqUQIkSJTB79my1jWxt++3bt28xcuRIfPbZZyhSpAjKlSuH0aNHq9yCnrdfffz4ET/88ANKlCihVAYn7z2cPXtW43smhBBCDOXs7IzvvvsON2/elCcxFR06dAhubm7o06cPEhMTMXPmTNSvXx+urq5wd3dHjx498ObNG6XX5LUZjh49it9++w3lypWDi4sL+vTpg7CwMJV16NOeZmsTssn7jfXx8cHAgQPh7u6OUqVKYdq0aSpJbzs7O0yePBkHDx5E3bp14eTkhCtXrgAAIiIiMHr0aJQtWxZOTk6oW7cudu3apbK+jRs3om7duihatChKlCiBJk2aKLXF0tLSMH36dHh6esLJyQkeHh7o2rUrXr58KZ9HXY3pgnW1tbW9nz59iq+//hrFihVD0aJF0b59ezx8+FDttlIUHh6Ofv36wcXFBR4eHpgxY4ZKey6PtvWMHDkS7du3BwAMGDBAp3O8AwcOoFmzZvLt2K5dO6Ue4orb4s6dO2jatCkAYNSoUfLzN67uQh46dCh8fHyUPqM8ee3SIUOGaFxGuXLlULt2bXl7GsjtNPPnn3+iUqVKKFq0KDp27IgPHz6wvl7buUPevhAUFISLFy/Kt4HiuUlBZ86cgaenJ6pXr640Pe87Fhoait69e8PV1RUVK1bEP//8AyC3lGqnTp3g4uKCqlWrqr2YlpmZifHjx6NUqVJwd3fH8OHDVc7Pzp49i169eqFChQpwcnJC9erVsWTJEpVz4w4dOqBevXrw8vJCu3btULRoUfz222/y57t27YqQkBDO7xggxFI58h0AIbaiatWqePz4Md6/f4969eppnHfLli2oW7cu+vTpA0dHR5w/fx4TJ06ETCbDpEmTAADr16/HlClT4Orqit9//x0AULZsWYNi8/X1xZAhQzB+/HiMHTsWX3zxhcni2LNnD0aNGoWmTZti+fLliImJwYYNG/Dw4UO8evVK6cKBVCpF9+7d0bx5c6xevRo3btzAmjVrUL16dUyYMEHtOgYNGoThw4fj+fPn8oYfAISEhODJkydYtWqVfJou7zGPv78/Bg0ahJ9//hkjRozA7t27MWDAAFy5cgVdu3YFAMTExKBVq1bIzMzE1KlTUapUKezduxd9+vTBiRMn8O233yotc8mSJShcuDBmzpyJ7Oxsrb059u3bh7S0NEyaNAkikQgbNmxAp06d8O7dO6XtnpOTg+7du6NNmzZYvXo1ihYtCgAYP368/DOYOnUqgoKCsGnTJrx69QoPHz5EoUKFEBsbi27duqFMmTKYO3cuihcvjuDgYKWLANevX8eQIUPQuXNnrFixAgDg7e2Nhw8fYtq0aRrfgzps+2FmZibat2+PiIgIjB8/HlWqVMGjR48wb948REVFYf369QatqyA7Ozv88MMPWLZsGT58+IC6devKn7ty5QoSExN16vUVEBAAACq3TS9fvhzOzs6YO3cuPn36hI0bN6JQoUKwt7dHUlIS/vjjDzx58gR79uxBtWrVlBLcuuyjnTp1wsSJE7F8+XL069cPX331FaKiojBlyhR06dIFP//8s8a4Hz16hFKlSqmtXzllyhSUK1cOixYtwpMnT7B9+3YUL14cjx49QpUqVbBs2TJcunQJq1atQr169TB8+HCl1+uy316/fh2BgYEYNWoUypUrhw8fPmD79u348OEDnjx5onIiOGDAANSsWRPLli1TSsYXK1YM1atXx8OHDzFjxgyN75sQQggx1NChQ7F3714cO3YMkydPlk9PTEzE1atXMWTIEDg7O+PDhw84c+YMBgwYgGrVqiEmJgbbtm1D+/bt8fHjR5WL7kuXLoWdnR3mzJmD2NhYrF+/Hl26dMHr16/h7OwMQL/2tLo2oSYDBw6Ep6cnli9fjidPnuDvv/9GUlIS9u3bpzTfrVu35O+/dOnS8PT0RExMDFq0aCFPnJcpUwaXL1/GmDFjkJqaKh/gcMeOHZg6dSr69+8vT7y/ffsWT58+xQ8//AAA+Pnnn3HixAlMnjwZderUQUJCAh48eABvb2/5uC/6Ymt737p1Cz169EDjxo2xcOFC2Nvbyzsm3L9/H82aNVO7vKysLHTu3BmhoaGYOnUqKlSogP379+PWrVsq8+qynvHjx6NixYpYtmwZpk6diqZNm2o8t1q0aBH++OMPtGrVCosXL0bhwoXx9OlT3Lp1C926dVOZv3bt2li8eDEWLFiAcePGoW3btgCAVq1aGbA1VQ0dOhSLFi3CoUOHlD4jqVSKY8eOoW3btqhSpYrGZUgkEoSFhSm1pxcsWIA///wTPXv2RM+ePfHy5Ut069YNYrFY6bW6nDvUrl0b+/fvx4wZM1CpUiX8+uuvAIAyZcqojenRo0dq9zmpVIoePXqgXbt2WLlyJQ4ePIjJkyfDxcUFv//+O4YOHSovDTN8+HC0bNkS1apVU1rG5MmTUbx4cfzxxx/w9fXFli1bEBISIk/iA7nfe1dXV/zyyy9wdXXFrVu3sGDBAqSmpiqd3wJAQkICevTogcGDB2PYsGFK+1BeyZiHDx+iUaNGGj8LQmwCQwgxi2vXrjEODg6Mg4MD07JlS2b27NnM1atXGbFYrDJvZmamyrTu3bszn332mdK0unXrMu3bt1eZd+HChQzb13v37t0MACYoKEg+rWrVqgwA5sqVK5zHcfv2bQYAc/v2bYZhGEYsFjMeHh5MvXr1mKysLPl8Fy5cYAAwCxYskE8bMWIEA4BZvHix0jIbNWrENG7cWGVdilJSUhgnJyfm119/VZq+cuVKxs7OjgkJCdH7PeZtp5MnTyqtp3z58kyjRo3k06ZPn84AYO7fvy+flpaWxlSrVo3x9PRkpFKp0rb57LPPWGMoKCgoiAHAODs7M+Hh4fLpT58+ZQAwM2bMkE/L23Zz585VWsb9+/cZAMzBgweVpl+5ckVp+unTpxkAzPPnz9XGM23aNMbd3Z3JyclROw8X++GSJUsYFxcXxs/PT2n63LlzGQcHByY0NFTt+vX14cMHBgAzb948pemDBw9mihQpwqSkpMin5X1+u3btYuLi4pjIyEjm4sWLjKenJ2NnZyffdnnz1atXT+m7PmTIEMbOzo7p0aOH0rpatmzJVK1aVWmarvtoRkYGU6NGDaZu3bqMSCRievXqxbi7uyvt7+q0adOG9XuV91l1796dkclkSnHa2dkxP//8s3xaTk4OU6lSJaVjgT77Ldv7PHz4MAOAuXfvnnxa3n41ZMgQte+nW7duTO3atbW+b0IIIcRQOTk5TPny5ZmWLVsqTd+6dSsDgLl69SrDMAwjEonk7b88QUFBjJOTk1I7N6/NULFiRSY1NVU+/dixYwwAZsOGDQzDGNaeLtgmVCfvN7ZPnz5K0ydOnMgAYN68eSOfBoCxt7dnPnz4oDTvmDFjmPLlyzPx8fFK0wcPHswUK1ZM/nvft29fpm7duhrjKVasGDNp0iSN81StWpUZMWKEyvT27dsrtUnUtb1lMhlTs2ZNlbZOZmYmU61aNaZr164a179+/XoGAHPs2DH5tLw2meJ5kD7ryYv1+PHjSusq2Lb29/dn7O3tmW+//VZlH1NcR8Ft8fz5cwYAs3v3bo3vzVBNmzZlKlWqpBRT3vnGtm3blOatWrUq061bNyYuLo6Ji4tj3rx5wwwePJgBwEyZMoVhGIaJjY1lChcuzPTq1Uvpff32228MAKXPX59zh6pVqzK9evXS+n4kEgljZ2encm7JMPnfsWXLlsmnJSUlMc7OzoydnR1z5MgR+XQfHx8GALNw4UL5tLy2duPGjZXOFVauXMkAYM6ePSufxtZWHj9+PFO0aFFGJBLJp7Vv354BwGzdulXteypcuDAzYcIEre+dEFtApVQIMZOuXbvi8ePH6NOnD968eYOVK1eie/fuqFixIs6dO6c0b15vEABISUlBfHw82rdvj8DAQKSkpHAeW7Vq1dC9e3eV6VzH8eLFC8TGxmLixIlK9fF69eqFWrVqqZQbAaDS07Vt27Zaawfn3aJ67NgxpZ6kR48eRYsWLZR6KejzHitUqKDU4zvvNrdXr17JR/a+dOkSmjVrplTawdXVFePGjUNwcDA+fvyotMwRI0YoxaBNv379ULFiRfnjZs2aoXnz5rh06ZLKvAV71R8/fhzFihVD165dER8fL//XuHFjuLq64vbt2wDy6xleuHABEomENY7ixYsjIyMD169f1zl2bdj2w+PHj6Nt27YoUaKEUsxdunSBVCrFvXv3OFt/nTp10KhRIxw5ckQ+LSMjA+fOnUPv3r3h7u6u8prRo0ejTJkyqFChAnr16oWMjAzs3btXqVwPAAwfPhyFChWSP27evDkYhlEpT9O8eXOEhYUhJydHPk3XfbRo0aLYs2cPvL290a5dO1y8eBHr1q3T2isHyO1VUqJECbXPjxkzRqnHdl78Y8aMkU9zcHBAkyZNWL+fuuy3iu9TJBIhPj4eLVq0AADW23E19YLP218IIYQQU3FwcMDgwYPx+PFjpRIMhw4dQtmyZdG5c2cAgJOTk3y8HalUioSEBLi6uuKLL75g/X0bPnw43Nzc5I/79++P8uXLy38zDWlPa7rTkk3BuyanTJkCACrtzfbt26NOnTryxwzD4OTJk/jmm2/AMIxS26179+5ISUmRv+fixYsjPDwcz58/VxtH8eLF8fTpU04HNS/Y9n79+jX8/f3xww8/ICEhQR5vRkYGOnfujHv37mks33fp0iWUL18e/fv3l08rWrQoxo0bpzSfsethc+bMGchkMixYsEBlTCe2kivmMmzYMISHhyu10w8dOoTChQtjwIABKvNfu3YNZcqUQZkyZdCwYUMcP34cP/74o/yu1Bs3bkAsFmPKlClK7yvv7gNFpjh3SExMBMMwGtvKP/30k/zv4sWL44svvoCLi4tSTfIvvvgCxYsXZ20rjxs3TulcYcKECXB0dFTbVk5LS0N8fDzatm2LzMxM+Pj4KC3PyckJo0aNUhsvtZUJyUeJcULMqGnTpjh16hSSkpLw7NkzzJs3D2lpaejfv79SwvThw4fo0qULXFxcULx4cZQpU0ZeF8xUiXE2XMcREhICAPJSLYpq1aolfz5PkSJFVG5pK1GihEq9NTaDBg1CWFgYHj9+DCC3xIWXlxcGDRqkNJ8+77FGjRoqjczPP/8cAOQnRCEhIazvr3bt2vLnFanb9urUrFlTZdrnn3+uUhPP0dERlSpVUprm7++PlJQUeHh4yBufef/S09PlNTLbt2+P77//HosWLULp0qXRt29f7N69W6lW4sSJE/H555+jR48eqFSpEkaPHi2vK2kotm3h7++PK1euqMSbV0eara5nnpSUFERHR8v/JSYmao1h6NChCAoKkg+Ie+bMGWRmZqoto7JgwQJcv34dt27dwtu3bxEZGYkff/xRZb6CyelixYoBACpXrqwyXSaTKe17+uyjrVu3xoQJE/Ds2TN0795dJfGuieJFJGPiZ/t+6rLfJiYmYtq0aShbtiycnZ1RpkwZ+T7BdrzR9N1hGIbXE0JCCCG2Ia99kFc3ODw8HPfv38fgwYPh4OAAIHd8l3Xr1qFmzZpwcnJC6dKlUaZMGbx9+5b1963gb6adnR1q1Kih1NYEdG9Ps7UJtSkYQ/Xq1WFvb6/S3iz4WxwXF4fk5GRs375dpe2Wl6TLa7vNmTMHrq6uaNasGWrWrIlJkyap1PReuXIl3r9/j8qVK6NZs2b4448/jB5cu2DM/v7+AHIT5gVj3rlzJ7KzszWe94SEhLCeIxT8fIxdD5uAgADY29srXZzgmlgsVmpPR0dHax3vKW//z/teiEQinD59Gj169GBNLjdv3hzXr1/HjRs38OjRI8THx2Pfvn3yRHDePl1wvyxTpozK8ow5d9BGXVuZ7Zy1WLFiqFSpksp+oWtb2dXVFeXLl1f6zn348AHffvstihUrBnd3d5QpUwbDhg0DoNpWrlixosYSndRWJiQf1RgnhAeFCxdG06ZN0bRpU3z++ecYNWoUjh8/joULFyIgIACdO3dGrVq1sHbtWlSuXBmFCxfGpUuXsG7dOp16Eqj7kVPXiGHrscxFHMbKO6EwxDfffIOiRYvi2LFjaNWqFY4dOwZ7e3ulXgpCeI/69BbXh2LvpDwymQweHh44ePAg62vyGnR2dnY4ceIEnjx5gvPnz+Pq1asYPXo01qxZgydPnsDV1RUeHh54/fo1rl69isuXL+Py5cvYvXs3hg8fjr1798qXw0af/VAmk6Fr166YPXs262vyLkywmTZtmjwWIDfhX3Ag2IKGDBmC2bNn49ChQ2jVqhUOHTqEEiVKoGfPnqzz169fX2XASjbq9mV10/Ma3vruo9nZ2fL3GBAQgMzMTJ1qiZYqVUrjBSd94teUYNdk4MCBePToEWbNmoUvv/wSrq6ukMlk+Prrr1m/i5q+O0lJSShdurRBcRBCCCG6aty4MWrVqoXDhw/jt99+w+HDh8EwjNIF9WXLlmH+/PkYPXo0lixZgpIlS8Le3h7Tp083S1uTrU2oL3VtuoK/xXnvZ9iwYRgxYgTraxo0aAAgt9OIr68vLly4gCtXruDkyZPYvHkzFixYgEWLFgHIbRu0bdsWp0+fxrVr17Bq1SqsWLECp06dQo8ePTTGJpVKWdsp6mJetWoVvvzyS9Zlubq6sk7Xh7nWw7VHjx6hY8eOStOCgoLg6emp9jV5g6SePHkS//zzD86fP4+0tDS1HU1Kly6tU3taF8acO6hTsmRJ2NnZqW0rG9rO10dycjLat28Pd3d3LF68GNWrV0eRIkXw8uVLzJkzR+VYou0cMzk5mdrKhPyHEuOE8Cyv5EJUVBQA4Pz588jOzsa5c+eUemnmlblQpK4hmHflPDk5WWnwnYI9SDThIo6C8gb28/X1RadOnZSe8/X1VTvwnyFcXFzQu3dvHD9+HGvXrsXRo0fRtm1bpQGO9HmPAPDp0yeVq+t+fn4AIG8cVq1aFb6+viqvzbu9zdj3mNfbRJGfn5/Gxmme6tWr48aNG2jdurVOCfkWLVqgRYsWWLp0KQ4dOoShQ4fiyJEj8lsFCxcujG+++QbffPMNZDIZJk6ciG3btmH+/PmoUaMGJ/th9erVkZ6eblBjefbs2fJeFAA03v6Yp0KFCujYsSOOHz+O+fPn4/r16xg5cqTWQVFNRd99dOHChfD29sbq1asxZ84czJ07F3///bfW9dSqVQsnT57kLO6CtO23SUlJuHnzJhYtWqQ08Cjb63QRFBSEhg0bGvRaQgghRB9Dhw7F/Pnz8fbtWxw6dAg1a9ZUGvz9xIkT6NixI/7991+l16lLTBX87WMYBp8+fZInlM3Rnvb391fqWf3p0yfIZDKt7c0yZcrAzc0NUqlUp7abi4sLBg0ahEGDBkEsFuO7777D0qVLMW/ePHmZmPLly2PixImYOHEiYmNj8dVXX2Hp0qXyxHiJEiWQnJyssuyQkBB89tlnWmOoXr06gNwSiYa0N6tWrYr379+rnCMUPB8wdj1sqlevDplMho8fP6pNtrPRp6dww4YNVUonlitXTuvrhg4diitXruDy5cs4dOgQ3N3d8c033+i8XkV5+7S/v7/SZxoXF6eSrDbm3EEdR0dHVK9eHUFBQZwtsyB/f3+lCxDp6emIioqSd865c+cOEhIScOrUKbRr104+nyExRUREQCwWy+9oJsTWUSkVQszk9u3brFeH8+qG5d1ul3dlWXHelJQU7N69W+W1Li4urA3BvIaXYg21vNrHuuIijoKaNGkCDw8PbN26Vaksx+XLl+Ht7Y1evXrpHJ8uBg0ahMjISOzcuRNv3rxRKaOiz3sEgMjISJw+fVr+ODU1Ffv27cOXX34pbyD27NkTz549k5dwAXK3/fbt2+Hp6Wn0rY5nzpxBRESE/PGzZ8/w9OlT+cmBJgMHDoRUKsWSJUtUnsvJyZF/hklJSSr7al5jO+9zS0hIUHre3t5efsKWNw8X++HAgQPx+PFjXL16VeW55ORkpVrcBdWpUwddunSR/8sbgV2boUOHIjY2FuPHj4dEIlHbu8Uc9NlHnz59itWrV2P69On49ddfMWvWLGzatAl3797Vup6WLVsiKSnJ6NuT1dG237K9TwBYv3693utKSUlBQEAAWrVqZXjAhBBCiI7y2gkLFizA69evVdoNDg4OKr9vx48fV/pdVLRv3z6kpaXJH584cQJRUVHy30xztKf/+ecfpccbN24EAK3tTQcHB3z//fc4efIk3r9/r/J8XFyc/O+CbcnChQujTp06YBgGEokEUqlUpTyEh4cHKlSooPS+q1evjidPnkAsFsunXbhwAWFhYVreZa7GjRujevXqWL16NdLT0zXGzKZnz56IjIzEiRMn5NMyMzOxfft2TtfDpl+/frC3t8fixYtVegxr6pXs4uICADqdv5UoUUKpPd2lSxel2vaaYitatCg2b96My5cv47vvvtPpdWy6dOmCQoUKYePGjUrvi62daMy5gyYtW7bEixcvDHqtLrZv3640ttOWLVuQk5Ojsa0sFouxefNmvdfl5eUFANRWJuQ/1GOcEDOZMmUKMjMz8e2336JWrVoQi8V49OgRjh49Ck9PT3ndvW7dusl74o4fPx7p6enYsWMHPDw85L3K8zRu3BhbtmzBn3/+iRo1asDDwwOdOnVCt27dUKVKFYwZMwazZs2Cg4MDdu3ahTJlyiA0NFSneLmIo6BChQphxYoVGDVqFNq3b48hQ4YgJiYGGzZsgKenJ2bMmGHg1mXXs2dPuLm5YebMmfKGuqHvEci99W7MmDF4/vw5ypYti127diEmJkYpSTl37lwcPnwYPXr0wNSpU1GyZEns3bsXQUFBOHnypNG3staoUQNt2rTBhAkTkJ2djfXr16NUqVJqbxdU1L59e4wfPx7Lly/H69ev0a1bNxQqVAj+/v44fvw4NmzYgP79+2Pv3r3YvHkzvv32W1SvXh1paWnYsWMH3N3d5b0WfvrpJyQmJqJTp06oVKkSQkJCsHHjRnz55Zfy3gdc7IezZs2SD345cuRING7cGBkZGXj37h1OnDiB4OBgzm8D/P777zFx4kScPXsWlStXVuqVYW667qMikQgjRoxAzZo1sXTpUgDAokWLcP78eYwaNQrv3r2TnwSx6dWrFxwdHXHjxg2VwaK4oG2/dXd3R7t27bBy5UpIJBJUrFgR165dM6gXzI0bN8AwDPr27cv12yCEEEJUVKtWDa1atcLZs2cBQCUx3rt3byxevBijRo1Cq1at8O7dOxw8eFBtb+aSJUuiTZs2GDVqFGJiYrB+/XrUqFEDY8eOBWCe9nRQUBD69OmDr7/+Go8fP8aBAwfwww8/6HQ31l9//YXbt2+jefPmGDt2LOrUqYPExES8fPkSN27ckI/50q1bN5QrVw6tW7dG2bJl4e3tjU2bNqFXr15wc3NDcnIyKlWqhP79+6Nhw4ZwdXXFjRs38Pz5c6xZs0a+vp9++gknTpzA119/jYEDByIgIAAHDhyQd9DQxt7eHjt37kSPHj1Qt25djBo1ChUrVkRERARu374Nd3d3nD9/Xu3rx44di02bNmH48OHw8vJC+fLlsX//fpVSdsauh02NGjXw+++/Y8mSJWjbti2+++47ODk54fnz56hQoQKWL1/O+rrq1aujePHi2Lp1K9zc3ODi4oLmzZvrPfaRJq6urujXr5+8zrgxHU3KlCmDmTNnYvny5ejduzd69uyJV69e4fLlyyrnAaY6d+jbty/2798PPz8/g8qxaCMWi9G5c2cMHDgQvr6+2Lx5M9q0aYM+ffoAyE1ilyhRAiNGjMDUqVNhZ2eH/fv3G1SW5fr166hSpQoaNWrE9dsgxDIxhBCzuHz5MjN69GimVq1ajKurK1O4cGGmRo0azJQpU5iYmBilec+dO8c0aNCAKVKkCOPp6cmsWLGC2bVrFwOACQoKks8XHR3N9OrVi3Fzc2MAMO3bt5c/5+XlxTRv3pwpXLgwU6VKFWbt2rXM7t27VZZRtWpVplevXqwxGxvH7du3GQDM7du3lZZ79OhRplGjRoyTkxNTsmRJZujQoUx4eLjSPCNGjGBcXFxUYlq4cCGjz6Fr6NChDACmS5cuRr3HvO109epVpkGDBoyTkxNTq1Yt5vjx4yrLDAgIYPr3788UL16cKVKkCNOsWTPmwoULSvPkbRu217MJCgpiADCrVq1i1qxZw1SuXJlxcnJi2rZty7x580ZpXnXbLs/27duZxo0bM87OzoybmxtTv359Zvbs2UxkZCTDMAzz8uVLZsiQIUyVKlUYJycnxsPDg+nduzfz4sUL+TJOnDjBdOvWjfHw8JDvY+PHj2eioqKU1sXFfpiWlsbMmzePqVGjBlO4cGGmdOnSTKtWrZjVq1czYrFYp+2nrwEDBjAAmNmzZ7M+r+vnp26+vG3w/Plzpel5+3dcXJx8mi776IwZMxgHBwfm6dOnSst78eIF4+joyEyYMEHre+7Tpw/TuXNng+NkGNV9T5/9Njw8nPn222+Z4sWLM8WKFWMGDBjAREZGMgCYhQsXal13nkGDBjFt2rTR+n4JIYQQrvzzzz8MAKZZs2Yqz4lEIubXX39lypcvzzg7OzOtW7dmHj9+zLRv316p7Z7XZjh8+DAzb948xsPDg3F2dmZ69erFhISEqCzXmPa0Onm/sR8/fmT69+/PuLm5MSVKlGAmT57MZGVlKc0LgJk0aRLrcmJiYphJkyYxlStXZgoVKsSUK1eO6dy5M7N9+3b5PNu2bWPatWvHlCpVinFycmKqV6/OzJo1i0lJSWEYhmGys7OZWbNmMQ0bNmTc3NwYFxcXpmHDhszmzZtV1rdmzRqmYsWKjJOTE9O6dWvmxYsXarevurbbq1evmO+++04eT9WqVZmBAwcyN2/e1LrdQkJCmD59+jBFixZlSpcuzUybNo25cuUK63mQLutRF6u686Bdu3bJ94USJUow7du3Z65fvy5/vuC2YBiGOXv2LFOnTh3G0dGRAcDs3r1b6/vU18WLFxkATPny5RmpVMo6j6ZzAEVSqZRZtGiR/HvUoUMH5v3790zVqlWZESNGKM2r67mDrutmmNz9sXTp0sySJUuUpqv7jrVv356pW7eu1veb19a+e/cuM27cOKZEiRKMq6srM3ToUCYhIUHptQ8fPmRatGjBODs7MxUqVGBmz57NXL16VWU/U7duhsndjuXLl2f+97//6fS+CbEFdgxj4ChZhBBiQzw9PVGvXj1cuHCBl/UHBwejWrVqWLVqFWbOnMlLDMS63b9/Hx06dICPjw9q1qzJdzgGiY6ORrVq1XDkyBHqMU4IIcSi3LlzRz7OSf/+/XmJ4Y8//sCiRYsQFxdHA/MRUsCSJUuwe/du+Pv7qx1YU+jOnDmDH374AQEBAShfvjzf4RAiCFRjnBBCCCFo27YtunXrhpUrV/IdisHWr1+P+vXrU1KcEEIIIYRwasaMGUhPT8eRI0f4DsVgK1aswOTJkykpTogCqjFOCCGEEAC5A3dZsr/++ovvEAghhBBCiBVydXVFbGws32EY5fHjx3yHQIjgUI9xQgghhBBCCCGEEEIIITaFaowTQgghhBBCCCGEEEIIsSnUY5wQQgghhBBCCCGEEEKITaHEOCGEEEIIIYQQQgghhBCbQolxQgghhBBCCCGEEEIIITbFke8AhEAmkyEyMhJubm6ws7PjOxxCCCGEECJwDMMgLS0NFSpUgL099TUxBLXBCSGEEEKIPrhug1NiHEBkZCQqV67MdxiEEEIIIcTChIWFoVKlSnyHYZGoDU4IIYQQQgzBVRucEuMA3NzcAORuVHd3d56jIYQQQgghQpeamorKlSvL25FEf9QGJ4QQQggh+uC6DU6JcUB+66a7uzs1ygkhhBBCiM6oBIjhqA1OCCGEEEIMwVUbnAoiEkIIIYQQQgghhBBCCLEplBgnhBBCCCGEEEIIIYQQYlMoMU4IIYQQQgghhBBCCCHEplBinBBCCCE2LysxE58u+0EmlfEdCiGEEEIIITZB5PcOWT6v+Q6D2DBKjBNCCCHE5u1qsgVHe+7Di01P+A6FEEIIIYQQqyeTiOHfvwE+DWwEWWYG3+EQG0WJcUIIIYTYvOSgJACAz4kPPEdCCCGEEEKI9WNEWfK/c5LieIyE2DJKjBNCCCGE/CfsQQjfIRBCCCGEEGJTEk/t5DsEYqMoMU4IIYQQQgghhBBCCOFFTlykyrTMt08hCvLhIRpiSxz5DoAQQgghhBBCCCGEEEIAQBITgYBhLQAA9d8yPEdDrBn1GCeEEEIIIYQQQgghhAhCdtgnvkMgNoIS44QQQgghhBBCCCGEEPNhqCc44Z/VJMYjIiIwbNgwlCpVCs7Ozqhfvz5evHjBd1iEEEIIsXB+57xxYcwpSLIkfIdCCCGEEEKI9bGz4zsCYqOsosZ4UlISWrdujY4dO+Ly5csoU6YM/P39UaJECb5DI4QQQoiFO973IACg+Gcl0eb3DvwGQwghhBBCCCGEE1bRY3zFihWoXLkydu/ejWbNmqFatWro1q0bqlevzndohBBCCLES6ZFpfIdAiKBIpVLMnz8f1apVg7OzM6pXr44lS5aAoVujCSGEEKIN9RInAmAVifFz586hSZMmGDBgADw8PNCoUSPs2LGD77AIIYQQQgixWitWrMCWLVuwadMmeHt7Y8WKFVi5ciU2btzId2iEEEIIsWB2oKQ5MQ+rKKUSGBiILVu24JdffsFvv/2G58+fY+rUqShcuDBGjBihMn92djays7Plj1NTU80ZLiGEGIVhGGTEpMO1nBvfoRBiU6gXLCHKHj16hL59+6JXr14AAE9PTxw+fBjPnj3jOTJCCCGEEEK0s4oe4zKZDF999RWWLVuGRo0aYdy4cRg7diy2bt3KOv/y5ctRrFgx+b/KlSubOWJCCDHc2WHHsaH8Cvid9+E7FEIIITasVatWuHnzJvz8/AAAb968wYMHD9CjRw/W+bOzs5Gamqr0jxBCCCE2ijqdEAGwisR4+fLlUadOHaVptWvXRmhoKOv88+bNQ0pKivxfWFiYOcIkhBBOfDj0FgDwaNldniMhhBBiy+bOnYvBgwejVq1aKFSoEBo1aoTp06dj6NChrPNT5xRCiKVipFJELB6PpLN7+A6FEEIIh6wiMd66dWv4+voqTfPz80PVqlVZ53dycoK7u7vSP0IIsTQRT+iiniKZVEalLgghxIyOHTuGgwcP4tChQ3j58iX27t2L1atXY+/evazzU+cUQoilSrlxEokntiN8/ii+QyGEEMIhq6gxPmPGDLRq1QrLli3DwIED8ezZM2zfvh3bt2/nOzRCCCFmIMuRYnu9jShS0hkjH43nOxxCCLEJs2bNkvcaB4D69esjJCQEy5cvZx3nx8nJCU5OTuYOkxBCjCZNiuc7BEJsix0NvknMwyp6jDdt2hSnT5/G4cOHUa9ePSxZsgTr169XexsnIYQQ6xLvHYcE33hEPKbeh4QQYi6ZmZmwt1c+nXBwcIBMJuMpIkIIIYRYDE3Jb7oT2GDi6DBErZ0NcWQI36FYBKvoMQ4AvXv3Ru/evfkOgxBCCCGEEJvwzTffYOnSpahSpQrq1q2LV69eYe3atRg9ejTfoRFCCMcoSUcIsQwhk3pB5P8OqbfP4ovzvtpfYOOsJjFOCCGEEGJSdE5MiJKNGzdi/vz5mDhxImJjY1GhQgWMHz8eCxYs4Ds0QgghhAgd9Qo3CZH/OwCAOMSP50gsAyXGCTFS4DV/iJJEqDOoPt+hEEIIIYSYjZubG9avX4/169fzHQohhBBCLBrVFCf8oMQ4IUY63H0vAKBii0ooVrUEz9EQYpuoswExC2qvE0IIITaJocYmIeZFg28SM7GKwTcJEYKM2Ay+QyCEgE5ciAnRrkUIIYTYJmpfEmJalAgnPKHEOCGEEItH7ShCCCHEdjASCeL2rEaWz2u+QyG2ghLjhBBilSgxTghXKDNHiEnJpDKIUkRa54t7H2OGaIg1C70fjNB7QXyHITgyqQyMTKbXa+gODkKIKSQc2YTotbPwaWAjvkMhxKYxEglSbp1BTnIC36EQS0dtRsITSowTQgixCAc6/Is1xf9EcnCSynOK7agdDTYh+lWkGSMj1mZ/u53Y3/5fiDPEStOTAmz3pE8mlWHrF+uxs9FmnZPd4gwxttXegKtTLpg4OkKIrcnyfsl3CIQQALG7/kLo9G/h3a40ks7u5TscQgjRGyXGCSGEWISwByEAgA+H32qdN+hGgKnDITZAnK6cGE+PSucpEv6lBCchKSARsW+jIRVLdXrNh0NvkOAbjxebnpg4OkIIIcTEqDcrq5Srx+R/h88fyV8gxOqk3qOOFcQ8KDFOCEeokgohhFg3Os7rh5FREoEQQoiVoMQ4UUMSH42kc/sgy9Ze8pHoLo0S48RMHPkOgBBrkRaZBsciMShTtyzfoRBi3ejEhBCLIxXnwKEwNTsJIYQQYl0ChjaHJCoUooAPKD9jBd/hWK6CPVDonI+YCfUYJ4Qjx/scwPZ6G5Ealsx3KITYPDsb7NrLyGTwOf0RaZGpfIditRTb56kRqUiPsZ3SKoacmyi+5uW259wFQwghlDAhZkf7HGEniQoFAKTdOcdzJIQQQ1BinBCOxbyN4TsEQqybDklvXQcHtCav//XCye8OYXP1tRrny8nOMVNE1kucIcbGSiuxodxfYGQyvsMxO0OuO6VHpnEfCCGEAIg/tBGZH17wHQaxIbbYziSEEGtFiXFCCCGWhU5GWAVc8QcA5IjUJ74vjDmFFUX+QOKnBHOFZZXSFXrly6S2sT9GPguX/01fQUII32SZ+XfsRP01FQFDmvIYDbEFsqxM+d+S6DAeIxEYahQQDkkSYvI7ndjgHcBsZJkZiN25HKIgH75DsVqUGCfECGEPgvkOgRDCwhZLqejiza6XAICnax7yHAmxNP7nqTFOCBGO1Ntn+Q6B2BiGkSk+4C8QQqxU+uNr8OlYDqEzB/IdiqBEb/wdMX//Bv++tfkOxWpRYpwQI+xr9y/fIRBCSC46RzO5uPcxiH0XzXcYvDPkuhPddk4IIcSi0e8Y0YY65hglr1Z76o2TPEciLJlvHvMdgtWjxDghxmBpINHvoeEYhsGVSefxeNV9vkMhhBDY2UGlhviOBpt4ioZnlA8ghBBCCCFmIomN4DsEYiMoMU4MEvsuGgc770L4o1C+QxEc6kxguCivSHhtfopbs6/yHQqxdDZ4gYp65HKPYYBXO734DsNyKeyTVN6IEEKIRaN2FiFmJUtL4TsEYiMoMU4McqjbHgTfCsTe1tv5DoVYEUmGmO8QBOfZhke4/sslSnrqizaXRmkKg0cSzd7vf813CIQQQggREmqXE0KI1aDEODFIRnS69plsFHWKI1y6Pv0Snq17hOiXkXyHQgROnx656VFpJoyEkP/QDyIhhBBCbBwjlSLp/H5khwXwHYoA0UUm7WgbmRolxgkhxAKkRVAPX40K9tyxwXwc3VXAvYtjTmvdrtFetnHRyqD9S+E1tH8SQgixaPQ7RgyUdGY3wn8fDr9eNfgORXBkErpjnPCPEuOEEGIBzv14gu8QCLE5ny76IjMuU+M8EU/DzBQNzygfQAghhOSiO6KIDsQRwWBycpDhdY/vUAQr+exevkMghBLjhBBiCbJTs/kOgQgdJS5NgpHRhjWU4rZLDaUBlAjhQvSG3+DbuyakqUl8h0KIbaEe40QPqXfOw7dHNQRP7AFRwAe+wxEsaTq1D7WjC3GmRolxQgghlo967hAiOIo5hBxRDn+BEGJF4v5dDnHoJ8Qf/JvvUAixMQo/apQkJ2wUzkcSDuUeo9Of3ACTncVXRIQQHVBinBBCiOWjExTqTEDMRtevW3JAosJr6DtKCKdkMr4jIFZE9OkDPv3QDGkPrvAdilEYhkHy1WPIDvbjOxSrknRuHzJePlDzLP2+EyNQ+1AHtI1MjRLjhBBCrI7/OR++QzA/ajPphGEYZMSmc7hA7hZlbZ6tf8R3CMQMIiIiMGzYMJQqVQrOzs6oX78+Xrx4wXdYhBA9hMz4FlnvnyN4Yg++QzFK2p1zCJs1CH59vuA7FKuR+e4Zwv83AoEj2/IdiuWi5K8GtG0I/ygxTgjXqKQDMUBmfAa2fL4OD/68zXcogqdL2zL0XrDJ4yCW6fa8a1hf9i+8/lfHxB2dzBCiVlJSElq3bo1ChQrh8uXL+PjxI9asWYMSJUrwHRohRA/S5AS+Q+BE5tsnJlu2rd75JA4L4DsEi2Sr+4vedNxODN0lRUyIEuOEECIAj1feR6J/Au7Ov8l3KMRC6dMAt7PhC3iPV9wHAFyffsnwhdjg9qMTPMJmxYoVqFy5Mnbv3o1mzZqhWrVq6NatG6pXr853aIQQQoiZ2V770Fw+tiqGrI9efIfBiyzvl3yHYPUoMU4IIQIgk9BVcGOkhtGI5uowDKOS1KQkpx7YkuAK24+2pe6yEjMRcjeItpkVOXfuHJo0aYIBAwbAw8MDjRo1wo4dO/gOixBCuEe/XUSr/H3EljuhmIIsMx3hf/yU+3dWJs/RmIYkJgI5KYmqT0il5g/GxlhlYvyvv/6CnZ0dpk+fzncoxIrdXXCD7xAIIf9h62lva8m3zNgMlWkMw+Bgp13Y336nzW0PfUgl1ODUSnH3MXBf2tFwEw50+BcfDr3hJibCu8DAQGzZsgU1a9bE1atXMWHCBEydOhV79+5lnT87OxupqalK/wghxCJQO4rogdrdqkSB3kh/cdeoZaS/uIsPzV0QtWYWR1EJQ05KIny6VoJ321J8h2KTrC4x/vz5c2zbtg0NGjTgOxRi5R4sucN3CISQ/1DjE4h5E60yLSsxCyF3ghB2PwQZMfkDTlIvFmWxb1W3HeFeWnhuEvTxqgc8R0K4IpPJ8NVXX2HZsmVo1KgRxo0bh7Fjx2Lr1q2s8y9fvhzFihWT/6tcubKZIyaEsLKadgF370Pk/x7SjDSFRVvLNuIYtcGJjvz71UHQ6A7IDv1k8DKi18wEAMTvXc1VWIKQ/ekD3yHYNKtKjKenp2Po0KHYsWMHDfpDCLEY4gwx3yFYFJ+Tqg0HqSiHh0gsjMIJHV1IUKZxc2jbVrayKTnMB8SyXMQhlql8+fKoU6eO0rTatWsjNDSUdf558+YhJSVF/i8sLMwcYRJCiF7Sn9+B//f14de3dv5EajsRwonsYF/533ROQoTAqhLjkyZNQq9evdClSxe+QyGEEJ282fMSq1wXw2vzU75DsRgxr6JUpiX4xvMQicCwNSypsWm0pACWWn+22GuMdffSY/+iXdEqtW7dGr6+vkrT/Pz8ULVqVdb5nZyc4O7urvSPGMgWj0PEdKymvcDN+0i9cRIAkBMbobBoa9lGxHTUHJdp3+EI/e4R07CaxPiRI0fw8uVLLF++XOu8VN+QmBKdpxAAuD3vGo723g+ZVPOgmhdGnQIASMVU49hQse9j+A5BEHK09ZpnaEAgReJ0I+7UsOLBN5+seYAdDTYiM165Zn3B93l34U38XWklAq/54+nah5CKtex/tMtZpRkzZuDJkydYtmwZPn36hEOHDmH79u2YNGkS36FZPys79hBCLBS1KQkhFs4qEuNhYWGYNm0aDh48iCJFimidn+obEiJMomQR3yFw5tFf9/Dpoi+CbwVyutzkIJbeqzZOnJbN/gQlDdSerFhbMpdw5+bMK4h9F4MHf97RON+DxbeRHpmGw9334savl/F03SPzBEgEpWnTpjh9+jQOHz6MevXqYcmSJVi/fj2GDh3Kd2iEEJtkyiStQtvpv3YUwzCQpiaZcJ2EEJtA52a8sorEuJeXF2JjY/HVV1/B0dERjo6OuHv3Lv7++284OjpCKlXuiUn1DY2TlZTFdwjESp0eeITvEDjHdU9wSaaE0+VZBWpHqKfQyEqLoLuj1KLGqApptvpjF9vminoRoTpR6UVGBkQEq3fv3nj37h1EIhG8vb0xduxYvkMihOiLev0qYe1AwDItbO5QfGxTEhkvaVBpQnSmeLyhNjgRAEe+A+BC586d8e7dO6Vpo0aNQq1atTBnzhw4ODgoPefk5AQnJydzhmhV7i+6pfQ47EEw7OztUalVFZ4iItbCKsuJ0I89EYgzQ47J/6ZSKkZSatDzFwYhhBBCzETxt/+/v1MuHwYAxO1ZBZev2vARFe+yAz7yHYJwUMJXN7RtiMBYRWLczc0N9erVU5rm4uKCUqVKqUwnxstKyFR6vK/tTgDAHNEfcHSyil2KEIuTnZYNJzcbveBHOV6dJPon8B0CsWR0DkOIsNAFTkLMShwWwHcIgpP26BrfIQhK9qf3fIdALBX9pvPKKkqpEDNTc3KsdeA3G0EXQIm5Bd0MwGr3Jbg69QLfoZiMxkFM6TunN4ZhkBqWjKzETO0z2wC9j9t0oCeEEN6IAr35DoFYO5bf+ZRrx3kIRNgyXtzlOwThokSnbqhNnYu2A6+sNjF+584drF+/nu8wiJXwPv4eh7/ei4y4DK3zfjz81gwREZLv9tzc3hovNj7hORLTyYzXP4FL7Qv1suIzsbHKaqwttYzvUCweDWSaKyeLLo4TYlY2fOzx71eH7xCIDZHEsIyhUfD7Z6Pfx9Sbp/gOgVgiumhgdglH/kHozIFgJDReGRurTYwTE7LB49ipgUcQeNUft+de1TpvwBV/lWnWnjhhGAYHO+/C8X4H+Q5FcERJWdjdfCueb3zMdyiWjaPvUHpMOifLsXTJQUl8h0AsGcv38dNFXx4CIYQQQkwr9Z713pFprOwgH75DEC6FtpK15wLMhhLqBmFkMkQum4yUa8eRfOUI3+EIEiXGif5s+LiuU6/VAj980a+jsKH8Crza+cJEUfEvKSARwbcC4XfWGzkiugqp6NFf9xH5LBzXpl7U+TXUeDKNZ+sfYUO5v/Dgz9t8h0IsnS0Mvsn1uQedyxDCLUoQEEIIsXR03mty4vBA+d/S5HgeIxEuSowToocEn9wDScBV1V7hcgVOVM4PP4GMmHRcGnvGhJHxTPEHzcATtfcHX3MTi8BIMsR6v4aRUQNBBQcJgOszLgEA7s6/afSyCLF6KneJG3lcosMaIYSYhCQ2EoxMw1gstoSvC0bWnNyji3BGs6NtyA1r/p6ZktJ2o32RDSXGif5s+LuU6JebGD/y9V618xT83ZPlWH9DlYO8OM4OO8FNMNaOGlZEB3TXgW5i30Xn/qHn9nq55ZkJohE42qUI4V3aQ+0l/awd/b4pS7l5Gj5dKiJs3jC+Q7Fosiz1dwWzJjVtqT1O3zlCrAh9n9lQYpzoT813yZbaB/oQJYv4DoHwiMsTuLf7XrFOl0qknK3DqthwQz7iSRjfIViEHQ02QZSi/zH66dqH8r+tNklT8DedfuMJ4V3whK/5DoF3Gc+oHJqi2O1/AgBSLh82bkHWciLH8puc4XUfUatnQpbN/nsft2c1PjR3Qcr1k0athxB1rLatyAFZdhbr9NS7LLX9reU4xZG4XSuRcGSzXq+hfZEdJcYJZ+g7xi49Ko3vEHiVlZSF1PAUvV9n0wft/957or9yDbDzI9gb7LFvok0eEu9seX8wgDg9t4QPbTbtMmNpQFad0L5ECBGAnIQYvkMgFiZwVDvE71uDuN0rWZ+PXjsLABA+f2T+RGpAGUyapv95H7FdiUfZE7shU74xcySWRRIdjuj1cxC5bBIYqZZOcnRBQStKjBOiRXq0bSe2jbW25FJsrLwKmQk6DFyqYJPnatycfQUpIUkmisz8TvY/jLAHwTrPH/0qynTBWBGbvohCiJkofs8M+crliHI4jIYQQggASuAWpCEBJA5VHiMqO8gXKbfOmDgg26M40B8hbOzoNkSjybIyDHod1btnR4lxorcEP9sayfb2b9f1e4GNH2zSItkvJMS916+HT2poCp6seoBNnmusZp/zOfkB+9ru1Dqf/ByHznWIgfIOQzZ+ONIJw8Co75ookf0WUGuj2JBmpPqPnRGoadBqQojeJHGRCPr5a/bbza0Z/bCZhg0m2P361kLo9G/5DoPYAHGIH98hWAU7OztkW+m2ZEx44i9NSzbZsq0FJcaJ3jLj2K9OWWs7VZyWzXcIFuWfamsQ7xOnMv3ZukfIjDfsymbQ9U/GhsUfE59nUH1xICdLwncIgqXLee6rnS8M/m4S4PHK+3yHYHbvD73lOwRCbF7SyR1If3SVbje3ddZ6AsY3G7xQoBbtY4RjxiSBZempHEZimdKf3EDmxxc6z694AZDutGZHiXGik4y4DDAMg4fL7iAlOJl1Hqv9jun7vmyx7VDgw/c/76Myi99Zb5zsrzowkCzHuhO7UrHq+4t9p6Um+H/bU5cfrlVuSwyKy5o8Wf2Qdfr1GZdxZugxagBocWnsGRzttZ/vMHiVI6KLK9oofo/SI9lPSiSZYnOFQwghBODuBMxKkp+MNL9sV4bXfQRP7av7i9Vsg/QnNyCO1jaouRW3NTnYx7KD/ZB6/xIHwRBi28TRYQga1xXh84bp/BpJTLgJI7IOlBgnWn265Iv1HsuxzH4+7vx+g+9wBI/qNqkXejdY6fH50aewyv1PpFnxAKUZMaoD+73Z/dLg5aUEK9dcl2ZT3d7U0GTW6S82PcGHQ2/1LuNjTXQ9HEU+s84Gk1QiRdiDYEjFmr8nj1c+MFNElkPlt0yH82Jb7D1PCCFEOKSJsfK/A0e1Q9qdc7q/WDEBrPAbmHLtOHy7VeEiPJvl1+cLhEzqhYxX7J1ZiG2hGuOqdN0mkqhQ49ZDuSpWlBgnSjJi07G9/kY8XZv/o3V/0W2dXkvfsVzpUWl4ue2ZTfdA1PWA+3b3S+RkSfBy6zMTRyQsaRGabwHLrzGumomKfB5hgogsW7y3aukeRS+3PTdTJOa3qdpqLLX7n9pe8bbeWf76jEvY13YnLo0/q34mhkFSQKL5grIQmu60SFdzMfPj0fdgZDLqOU4IIYQXdJegsGV5G945yOLQvqhW+nPd8kuEe3SMZEeJcaLk4dK7iHsfgxu/Xtb7tfQdy3f553M6X1CwShry4lrLiNgAXS8csH2n6AKU/pL8E/gOwSTE6dny0lbPNzxWfpJ2FACA1z9PAQBv97ziORIroLBLfVBTYzw7VYQDnXZhpctipLPcLUMIIUaj3zeiCVcnpPouh06ECdFZ0tk9fIcgODrXXTfyWCPLsN479Y1BiXEb9GT1A3ip6aEroUHsOBN0I4DvEHiXGp6iMi3BJ56HSARG2zkdNa5V3J1PZZwKUtxN4j6wl4uhwYN1I0rK4jsEwTGklAqQXzLL99QHbgMihNikjNePkPnmCd9h2ABbuOCg5T3qcdEl480jI2OxIFxejLKlcxy6iEfMRY/vVeyWP0wXhwWjxLiNSY1Ixc1ZV3BlwjnIpDKt80uyJDrXnqVjPyko7EGITvM9WHLHpHEIjc61vWyp8ahBRmw6Xu/04jsMi2RrZYoMlRmXwXcIgqd08UDdMUzhkHVl4nnTBkQIsXrSzHQEDm+NgB9bQpYtAgBELpvEc1SWQ5qeqsdt81bS5tTYxubuPaZcPqz0WPTpPWfLtgYZXveRk2LjZeroPE4tqnNtBNp2JkGJcRsjSdev9+Dd/1EvTYPZ0DFLlCxSeqz3jx01HJRo3Bw2+GOYIzJygFEb3GZ5b1mWo/0CKCG6ULzQqTYvTsdyQgiHZGn5dx4y2bkX56TJ1lkejWuigI/42KoYQqb25TsUy6H0G6bl96zA752xA+IJmp6/7SHT+iJwVDv49allooCIJZCmJkH0if3uQYPbizZ4TqeCZduJI4PNH4eVocQ4Uevj0XdKg3ASos6eFttMuwJr+xGkDuOEEEtmbcdkQgQq48U9hC8aB2lqMt+h8CLx5A6+Q7BYice3AgDS7up29440yUpKHWpqPFPD2iwk0WEAAGlSnOqT9BnYDO9O5eH/XT1k+bxmeZb2Ay6Fzx/FdwgWjxLjREm4Qo+w04OP8hgJsWh5vVUlUn7jECg7ey1JpbxGIzUeuWEDOTy1uwrtQsQE1NWuF6eJzRwJIdYtcHR7JJ3cgegN8/gOhRexWxfxHQKxIskXD2qegS76EgPIJOxtn4znt80cibAw4ty2Yvrj6xwulE5s2OTER/EdgsWjxLgtYzmwxHuzXNm1cYbe6mPTtbP+22RP19nQwDRmYpO7lZrvIMMwyNZhcElr/S7m0GDJnKA2NnckGZQYJ8QUxGGf+A6BWBzrbPsIhpW2LVlx+V6tcLtJwoP0mj/L9w38vquP1Ds0FgvRn0yUqfa5lFtnIPKn8Q4MQYlxQgjnslNza47HvKKrl2y0JWo1JerCHlhxDUM9nfvxBFa7L+E7DN682vFC7XOU7CVGswOebXiESz+fpdrhRCd//fUX7OzsMH36dL5DIcRmiHxesT9hhQlIc5KmJfMdgnWi9gRCZ3yH7E/vETK1D9+hEAsUPn8k6/SM148QOv1b+H9f37wBWQlKjNsQ7+PvcePXKyZbfuKnRDp5Jrk0NMZPDTxi8GLvLbqFK5Os4Oq6ETXGA6/6cxuLwEgyxfILK9q8P/hGt4Va6bmhOFWht3yBnSXvK0jHZGIwBrg+/RJebXuO0HvBfEdDBO758+fYtm0bGjRowHcoxGpZ6Y+5EdKf31H/JCXGjSIOC9A8g5W1r8RRofD52hNxu1dxvmxJfLT8b9l/g+haA0aWO8A9o2fdQmlGqinCsTB0fFKh4zElJ46946HIV8fzYsKKEuM25NTAI/h00Vf+mOvf812NN+PFP0+5XagA+J76aNDrRMkiJPhSaRou3f/jFrw2P0W8dyzfoRhFW4/x5KAkTtcX/ToKG6uswrsDrzldrimscluC1cX+hEShTIiVnXuYBW0zwiVxOpVIIeqlp6dj6NCh2LFjB0qUKMF3OFYp/ckNBIxoy3cYFifr40ukP7nJdxicynz3DH59aiH13kVkvX+ufkaFtmZ2KJXi4Zq1dTyI2fg7JJEhiF43W/VJI99rXq1pAMB/yWRLl3LrDN5/6YDIv6bq/2Ir23e0oot0xAJQYpxw6sGiW3yHYHLhj3QrZZHoF4+ttTaYOBphinkVBf8LPiZbfo4ox2TLNgst7YMd9TciKTCRs4bTmSHHkBqWgnM/nuBkeabEyHLfc3Jgosb59rbZbo5wLJ+Bu9DFcWdwd8ENbmMhloXOY4iOJk2ahF69eqFLly58h2LVMl894DsEi/NpcGMEjesCcZT1lKELnvA1soN9ETK5t8b5FDth+PWuCVGgt6lDsyqMmgEV5c9nZZgpEvNgcsx0bmUlSeHQ6d8CABIObdT/PVnJNjCOYdtAlq3bXcUWyZgLCAxD+5WRKDFuy+jLY5AjPffxHYLg+Z31xrFvDnC6TK8t+XcjZCVa+G14Ovzw+Z3x5uwrKhUL70JCSkgSLo47Y3Dv//CHup/kWuvgm6YS/jgUr3e8wIMld5ARm853OKZHv4Vahd7Rb2ApYjuOHDmCly9fYvny5TrNn52djdTUVKV/hOhCFGR4YlcSGcJhJPySZqblPyjw+5V4cqfa1wWOameqkISFozafyO+txuczvO4hcvkUTtZlW6jNRQgRHkqME05lxqsfJddaSLOFl2S0djlZElyZmF9b/FCX3TxGQ7hwvN8hvN7xArubbZVPU3tbKgeJyw9HNJ/gWDqVTfTfBENu9Y3yipT/LUq2rp4ZjJXcwmtuT1ZTT1WiKiwsDNOmTcPBgwdRpEgRnV6zfPlyFCtWTP6vcuXKJo6SWIv0B6YbJ8laRCwaq/BIOUEsTYpX+7q0R9dMFBEPzHixO+HwJrOti1ecdjCxws4q1AFHb9KkeI0X8tSiba0BXXQyBiXGbRh1kjOMLIcSK4xMhvOjTuLpuofmWZ/UBndWOyAjxnp768a8zh04xBy1ixP94nFmyDGTr8fsTNQ2ZGtzSjLFeLXzBdKi0lSftCApIcl8h0CI1fDy8kJsbCy++uorODo6wtHREXfv3sXff/8NR0dHSKVSldfMmzcPKSkp8n9hYWE8RC5MMlEWPv3QDNEb5vEditnIRFlIPPUvJLGR2memhIhesoN1K2koiYtC8M/dTRyNGdEJrrBZ4/dYz31OmqK5XKStUL6QpyNr/n5b83uzAI58B0CIEMS8jUYhZ0eUrFla67yUGAeCbgTg7Z5XAIBm01uZfoVW1obStU14e64V9eDRE5dtg0T/BO4WZmkM2Y4sO+jNWVfhtfkpilUtjsnBM42Pywz8zlE9VUJMqXPnznj37p3StFGjRqFWrVqYM2cOHBwcVF7j5OQEJycnc4VoUZIvHkTW++fIev8c5abpVprG0sVsmo/4fWvgWLocat+K0jyzMQ0Da0o4KNWCVv++0u5d1G1xcTpclCCEK9b0XSQ8oP1HnZSbp/kOwaJRYtyW0Q8TACAzIRM7G+beCvc78yfP0VgGcVp+L19z9MS1uhrROrwfc/SkFhw1xyQ6VKmhuF1MtZH+W25ektmSelwf73tQp/myU7JNHAkh1snNzQ316tVTmubi4oJSpUqpTLd10sx02BcpCjt79TfrMjkS+d+iIB/IMq33rrE8afdzk7c58dGcLC/jzWMwEjFcm7TnZHnWLOHIPyhc8TM4lvJQeS72379QZuQs2LFc3CI2yNg2ptJ5jxU26ulExWD6lnzMDvhookgsG8MwyHh6U/44btdKHqOxTFRKhdi81NBkvkOwaB+PvtM+Ewt9fggNqZNs6e4tuKl9Jhb+F30Fv72SAmy4B7eZMAyQnZaNF/881T6zFuIM675Ic6Djv3yHIEhWd0GSEJ5I4qPxsYUbAn5shayPLyHLVjN2g8Jvt3/f2ggY0lTndcTtWW1smFYh8MdWCBrdAdLUJOUnrOR4lh3iz8lyMt8/R+SyyQie1JP1+ZgN85B8YT8n67IksgzLLhdHCB8YqRQp106oL4ml4fhLZWVMI3r9HL5DsDhWkRhfvnw5mjZtCjc3N3h4eKBfv37w9fXlOyyLkxKSpH0mQjgQcjcIW2qu4zsMq3Ss9358OKw80KQkU6Jmbn5kJmQpPY54Fg5AOB0uMuMzLGKQRqULICzb7tqUCwZtVMX2a/jjMKxyXYy08FQDIrQMOSLjB1TOiMsQ/AUpfQVd/2TydcS8jYYoxboGeLV1d+7cwfr16/kOQ1BS/7u9OevdU3wa3BjBE3uomdPwY0j02lnI8rPuQaYB3TtK5KQkglEsOWIlx2dZhvJvsaG/O5KYcK3zZHm/NGjZxAoZeWEp881j+d/W1lYiuXefhM4cAL8+X/Adiu2i75XRrCIxfvfuXUyaNAlPnjzB9evXIZFI0K1bN2RkZPAdmqAxTO6P09O1D/Hpsh/ifdSPVq6PyOfhSI2w3iSKMbISM/kOQRAOdPgXSQHWe4U4J1tzou3Nv14QpYhM1hM38Kpyj6KMaGHfjr2n+VbEvFV/G3VWYpba57gWei8I68osx8kBR8y2Ti5Ev1Ktzep/XreBtzS5t9CwOxf4wMhkkEn5uaCx3mM5rkw8z8u6TSXBl5s2gTqh94Oxs+EmbKmx1qTrIURoMp7fMclypcnWfzdW2v1LOs+b8eKuCSPhhzmTigmHNpptXcS6pd45x3cIxITyjssGlf+ihC4RCKtIjF+5cgUjR45E3bp10bBhQ+zZswehoaHw8vLiOzTBC7sfjBu/XsbRnvs4u8twd7Ot2FiJ6hqxuTj2DN8h6Mxry1P8U30Na9kLay+tYKyCiWk2W2qsRdSLCNMEYIFtjIjHoWqfe7LqvtnieLzqAQDA95Twa9hlxudfaIsteGGBYQxuayq+LjU0xbCFmBnDMNjZaDO21fmbt+T4y63PeFkvFwKv+WNv6+34dNnPbOv0O5Nbt15xPybEKpnpxF8Spf531FrkJMbqNJ+dnR0YaX4nhXQv60uSA7klTwxCySizUls+yQLlpCQi/sAGSBJi+A6FCAYdT3hnJeXC+GQVifGCUlJyT+RLlizJ+nx2djZSU1OV/tkkhkFqmGUkPUzKjAeS0LvBAHJLRwi9zvKVieeRHJiEq1NUR7U/P+IkDxFZDl3ONygZpIxhwLrhGJkM3sfemz8gC/B2t/rbnA933wtRkmE97bUdEoV4G6w4LRuxb6OR6BeP9Ej1v+k52VIzRmUZRCkiHO6+F+GPQnG05z6+wyGEGCh6w1y+QxCMqHVzkHLtuPxxwqG/eYyGO+Ye+0Hy36CoOYlx+DS0BRJPbDfr+q1B+KJx+NDUGSJ/62jLhv/2I6JWTkfwhK8h1bGHsNWPWSLAdrFZaXv/1v75C4AkIojvECye1SXGZTIZpk+fjtatW6NevXqs8yxfvhzFihWT/6tcubKZozQNUXIW7i64gQTfOJ3mP973oFWXs9CZOX/MGAZJgYnY03wrNtewjBrbMgklkvTF++8/3+vXgm37MDL272HUS9USIYRf68v+Ba8txg/qyYe3e6hmakHZyeYrVUQIUc/Yi46MlNpreVKvn0DSacWBlQXeMNKRsftI2oMruX/o2FD16VQeABCz5Q9kvXuKiMXjjVq/EHA1gKmukk7uAADE/rvcrOs1lbyyGSKf10i9bkBHKVtPIhcgCvTmOwTjsXymindJMCJqZ6ojiYtC8KReSGUpExa1Zhb8+tSClAYFNgurS4xPmjQJ79+/x5Ej6uvDzps3DykpKfJ/YWFhZozQdK5OvoAHS+5gWx3dekUE3QjAvYW38ifwns3jn2KD8+LY07g65QLn64j7kH8bKCOTQZIlrIERieV7t+817vzvOt9hqMXWJhanKt9menNm7skbw1NZDL5JsiRIDhbmgMiZcRmCq6ettE9p+C0Tp1MZKMGgJgexGZQI4gZDSTUjRa6YpjIty+e11tcZVDvYRKI3zEPUujkGv14cavqBpYUu7fF1RG/4TXmAWgPyAOHzR+o0n1Jiz0byDbpegPHvV8fEkZge2wU7mcJnLss0XWI3x8LH1ohcNglp9y8hZFIvlefi965GdrAvkk7t5CEy2+PIdwBcmjx5Mi5cuIB79+6hUqVKaudzcnKCk5OTGSMzj/D/avSq63lJ1GD5gU7wjcPrndzXqC/4u7Gv3U6EPwzFjPjfULRUUc7XR3iiY6Pv+YbH2mcy0MOld9Hhz64mWz7XRMkiXJ9xWf44r057upkHDhXK7Z7b6/6N5KAkjPaaiPJfVTDbelNCkxF0I8Bs6zM3oXy+BMjJ0jxIMSG2RuTziu8QzI8S3fxQ2O7JF/bzGIh+pGkpiPv3LwBAmVGz4Vi8lMo84jBKfGsTPL4bAICRSeExZh4c3Iub7LuYfPkI0hQH37SR77zfN5/zHYL58PiZykSZAFSPA5Yi8532O3AZmW12EjM3q+gxzjAMJk+ejNOnT+PWrVuoVq0a3yGZnVScgyyFmsVCqV8d/jgUV6dcgCjFQgYd+e/AHno/xKTLzxP+MPdixqcLPqZZn7Ww0jaU72nhD/BoLo9X3MeLTU9Upj9cesf8wQhAclBub3Gfkx/Mut5NVVdbxMCjxPJ5bbbMcjyEmErS6V1GvZ4u/KlH2yYPA1lWJtIeXjF4CXwOuqg4oKri34oy35iu04k1yEnJL6Mav3slvDuW1foacXigwesLmzNEeYKNJMb1IfJ7x3cIxqEa4wbLiY3UPhNtP7OwisT4pEmTcODAARw6dAhubm6Ijo5GdHQ0srJsp57R9vqbkJ2aLX9sSP3quHfcN3T2ttqOF5ue4Pa8a5wv25TMffyxhIEYr027iKV2/0NKaLLZ1y3EK6WyHKrlaQ6yHOF99mYl4BOIjVVX4flGYZ6ASsWqJ8yRz8N5iIQQYuuEOGCxpZKm2PjYSDrsS7HblyJ8wWjW58Qh/gj7bZi87rXOFE6MMp7e0jAjEbrI5VOUHjMSzSXmUq6dQMzG300ZkuUz8hiffO0YR4FYIPp9ZCXLzOA7BJtjFYnxLVu2ICUlBR06dED58uXl/44ePcp3aGaT6BevMs3vvA8u/HRa5xrWN369rH0mPaRH59eTSvRVjc/cwh+FIuxBsMp0tsElTXWMFiWLWJPuefWUhez537kJsE1VV5t93R8OC+tK+oM/b2Oly2JEv2K/yksXdjWj7WMdUkNTcG3qRb7DyKV40LazQ8BV1VupdzfbavK61hHPKPlOiC3K8n6F2B3LIBNna5+ZGCx67SzDXmhhDY/0p7eQ/uy2Qa+N2fQ/JJ3Zrfb51JunlR7rNGirEJNXBsaUZcKSRZKYCJMtmysi39fsT6j5jsQf0L+zHbE1LN9F5cF/TLhqAR6bDKXwXuIP6TZmIOGOVSTGGYZh/Tdy5Ei+Q+PV8T4H8OZfLzxb95CX9d9beJOX9bLJyc7B3tbbsa/tTojTlU9adjfbKv879F6wmSMTPiHUG459G813CEruzr8JqViK69NVR5AmhPCPr7E29jTfqn0mQojV+TToK8Rs/B0+ncqDkSh3SKEyHoA4OkwlAStNT0V2sK95ArCg5IksMwNBYzsj6KdOkGWZ/o7SzFcPtM9kQdtPG1P2fvbpqn6MM8FQ91la0WdsLEYmozt99EGlVDgny0jlOwSbYxWJcaJZWoTpRgLWJEeUfyu7VMxv2YkchV7zohT1vXnSIk2/rSyxNIRQyyUIFjUAiBFysvOPnZ8u+gHIbaR7H3/PSykji8TjCQ3DMDg/+hQer7rPWwyEEH5IU5MQf3gjcpLzx/qx9QRL2oMr8O1WBcGTeipNTzi6Wa/l2Mp2lGblDzouyxZGWdAsb6/8B1bwOQixRCMRBlm2CH69ayL0l/58h2I5FI4JEX9O1Pg852zgnJsurpsHJcZtAFutVXNQ/BKHPTDRYJa6UjygaDo45z1nwgP4i42qAwwK3d3/3eA7BEFSd5JGv1/cMXtjQACfnWJv59i30chKysKb3S9xauARbKq6Gv4XfBB6P5j79Rp43EsJTcarnS+UEvq2LPRuEN7ufolbs6/yHQohxMRk2SIEDG+tNC169a/wblcaaY+v8xSVsCQc3ggASH+kPN4Qk6NbqUdbx8hkEAV85PXCgCwzP1mfeHI7b3FwJfMVD3dTC+WCAt9x8L1+LdIfX4c4PBCpN0/p/iKBvydTUzw2JR7bonY+SVyUOcKxWCK/t/kPbHyf4gMlxm1A4DXVWqu2Rim3puFAE/4oTNssRgu5G2y6hROzCrvP8wUfA4gzNA+yIzTRL3UYrdvKpUemKpU0OvbNAexvt5Pz9YQ/CjXodVtrbcClsWfwcNldjiOyTOIMYSZ7koMScXveNaXxPwghxkm+dAiZrx+xPhe3/U+1r8tJTgAjkyHL761uNZ6JcY1zS+qxUOB9Rv41Ff7f1kXs1sXIeMn/nUgZL3j8rVf4HKWpSQYvhpGIIYml9qUSNd8RqcLdL5ywgYRf5tunfIdgXlo+09RbpyHLFiFyqZl7k1uYqJXT+Q7BplFi3AakhqawDjppS+zs83/sNdWezUrIreXnc/y9yWOyKJZ0QkE0yooXwCjXFrI/RTwJ42fFLI1EcZrpL2jEf4w16HV5paqCBTAeAQD4nv6otp1tjjt2hLp7722zA4/+uofTg21nYHJCTI3RZbBNlgOSd7vSiFg0Dp/6N7T6k2HOejrbSmK8gMQj/wAAYrf8gZRLh8y+fkYmgyTKsAvnppR4zLgxPWK3LuIoEh0JZR/UMw7OxwEQynZQwDAMIldMR/zhTZwsL2BYC06WYzk0H5uzg3wQvXYWUm+dUXkuJynO+LVbY3Jd4XuiaTBlwh1KjNuIK5MumH2db/eabtRvY2g6dpaoURKAaQecFGB7gHBNwB+yNbYdTGVva/PeLnz2x+NYavc/pEcp9+hlmNzyHELHZ8P0pkLZkmtTLsD31AfeYhGq9P/G0LDEO10IsUZJp/8FACRwlIwRctuD6EHhc8zyfsljILmE0EudnXFtDi4SchaJ78E3BXgiknb3AhIObkDU8ilIuXFS79cnXTxg1Potvoa0Dp9p0vl9rNP9v6tn1Krj/v0LPp0rQBwu/PMkQ4n83/Edgk2gxLiNiH0bzXcIvPI5qZAk0XDwLl3Hw/TBWOCPnwWGTIjRNN1dYgrvD7wBAGyr87fKc3YO9HOtTlZiJl7veKE0jZK/hBBimbJD/BE6ezCyfN8oTRf5vuYnIHNTOE8JHt9N+SkeBo1kJJZVgk83DMw+qIwAE8L8EN52yHyXX/ok+dxevV8fv3ulUevX1rEk4+UDRK+fC1m2yKj1mAyP+3bi0c3IiY9G9Po5vMVgClTqyfzoTJvYhOTgZPnfGo/d1GhhJUoW6A+xQAnlQkJKSBIyYtO1z2hmQtk+QiUVq9abzU4x/Xcw7r1hpVT4xra9ckQ8DgQq8B3c3Bd8CLF5NtwTs6C0x9cRf2CDxnmCJ/dCypWjCBjSVPm19y+ZMjSLYDMXB3Rh9P7O/vpPQ1sg6yP3PfWzAz9yvkyDqNtuZmu7CLCNxPOxM/X6CY3PB45si7hdKxC/b62ZIjIBE29jayunwkhNfx7Dx4VWIaPEOLEJir/1mpICVnZMJTZuk+carC/7F99hqNKx8c1HLeRoL9u9Qv/878d8h8CZjBhhXBCSSlST9if7H8bBzrusrhFvrPcHX+Nk/8OQZFpj70RCCJDbAzpq5XSkP7utdh5xiD8AgMkR5kDGvKLfDTnjfkPVt0Oz3j1F0LguRiybnajAHRC2S8N5uFTKT0kMht8EYXaQj27zhfiZOBLDFPwuysTZiCwwdoZMlGnqIEy7fCuTfPEQPrYtifTnd/gORTAoMU5sg1JmnN8Dp4wlUQIA50edhCyH/TliYQTeY9RSfDxq/ppqaRGpZl9n5IsIpIYlm329XLP4Gokm8Gz9I6XHjEwGn5MfEHwrEIl+8TxFJUxnh52Az8kPKtuMEEHTcNzL8LoHmUSsU5sgy5uDcXkEegzOiQlXmSbEwRwFQ6CfozVhpDkQh35S+7w0NcmM0dgWTRc0wuYMgW/Pz5B80cyDzFJS1TgFtl/Cwb+Rcvmw8jxSynHoI+32WZMuP2zeUMjSUhA8qadJ12NJKDFObM7lCefUP8njD+PbPa94SQQS41z46TQ+HrOgz40af4KS4BeP3U23YGOV1XyHYjSZlG7JA5RzGmEPlGudK379qKQJu8x4E/cqIoRLWn5TfTpX0Ol3N+3hFa4iEhxBDBxWINksE2cj+fIR5CQIsIQYtdN0Y0SiLXjC18LYLwVECKVeUq4dBwDE7V5h1vVaSkkJO3uBpu4KHLPyBpYmhpNlZZhpTXQhNo8j3wEQYg6K9XmDbwYi0T8exTxLwKGQg9J8fLdFsxKz+A3AgjAMI4geqm/+9cKbf71QZ2B9vkMhFijaK4LvEDgT+VS1VyApQOFHhu/fG0KI6UmTEwCZ9gQelQ0xD0lsJOL+XQ5xeKC8Znn9t3QwtkSJx7ci891T1DjqJYjzAUsny0gzz4p0afyYu4FkIYlx4d5Novx5ZQf78hQHIYYT6GUnQrglSlJOOG/5fD2O9tqnOiNlKixGwGVh1VkLfxSKw933IN47VrjtFghjFxfy9hEkIXxohBOp4QqleuhzJcTycfSDFrvlD+MXYkE/rjkJ0bysN2zOECQc3kQDeepBSEnngrGIfF4hdvufPEVjmXgf30SH9Zs/Rt1iEgV8RNj/RiLz3TOTRJH28CpEfhZ4JwPf+5RQYiAWjRLjxDawNOqCrgfwEAjhivfx93yHoGRv6+0IvPYJx745gE+XhJW0FxpZjjB6Zrw/9EZw+xGblNAUvkMQNMG1hRV+b+LexSg99U+1NfK/JZnC6CGanZrNdwgWcxszISbD0YFMJrKMOw+j18/lZb2ZH17wsl69CKwWL++JVAVsscT+s4CHSIg1YBgGoiAfMDp856JWTIf/t3WRfG4vAoY25zyW5EuHETzha/j3b6BhLuFcpMojE2UhyxKOq4RoQYlxYhNSQ5JZp6dFKg+0x3fb79rUi6zTZTlSPFpxD5HPqVRBHjuH3MMXwzAIvh2I9Ggz3QKoRWpYCl5te853GIL2eif/DaispCycHXocpwYegSRLGAlKdY713s93CIKUHpMuyLrmYoVEc3JQ/gBemfHK9QKP9uL/c437EIMdDTbxHQY+HhP+BSrCbvny5WjatCnc3Nzg4eGBfv36wdeXbqPmQ058ND40K4qEo1v4DkV4BNTrWZvkiwf4DoHYGP+BjSAOD+Q7DLOL27EM/n1rI+HgBq3zJhz626SxhM39Qf63TKymw4IAj2Ox2xbzHQIhnKDEOLEJQTfYe4f/XXGlmSPRLuat6u2lr3a8wO2517C72VazxCCk3iHq2NkBEc/C8fHoOxzstEuQnyVhF/Oan1uoFYnT8hud0uwcHiMhhoh4GoYN5f7Cwc67+A5FxamBR1inv937SulxZpy5BtZR7+nah3yHAABIjxTGhU2iv7t372LSpEl48uQJrl+/DolEgm7duiEjg//9WyjM3aaKXDrRrOuzDLkJJSGVBVEn9c45vkNQYgnbTEjCF45Bls9rvsNQS5aRqjJNZM54BXSOGbPpf3yHwOpDkyKIWDxe9QkBfhcz3z7hOwRCOEGJcUIUCeDH+uT3h1Wmxb6NYZnTdO4vvm3W9RnC/4Iv9jTfijNDjgEAGBn/nx2QuwsJYDciWtz49bL8b+qtanlebc+9KyP0bjC/gRBOKCYOQ24H8RgJ0deVK1cwcuRI1K1bFw0bNsSePXsQGhoKLy8vvkMTDmoUsDJvCYzcz8ASOn5kvn7EdwiCZQlJ+qTTu/BpYCO+w1BLJsrUeV5RkI8JI9HAAr6nppZ4YrtKiRdB7v/0WRlMCL9HgtyneOLIdwCECIkAjk8Qp4rkf6eGJeNg591I9E8wawz3/7hl1vUZIiM6XWVavHcsStf24CGaAoSwIxGNfE58kP9dsA40IdZOnJ4NSVYOJBnCKyMU8zqK7xCIEVJScsdEKFmyJOvz2dnZyM7Ov2MnNVW19yIhXMtJjOU7BIslhOQN4Ufwz91NsFRd9idh7HOShBgUKlWWt/V/aOmOkt+PzZ9ASUwNhLHP6CNy6SS+QyAKqMc4sXr61A9+te053u1/pX1GM7k195rZk+KWbFsd09Z/04WdncDz4kIITmDtuhebniD4diCSg5O0z0x4JcsR1qBklmqV2xKs91iOj0ff8R0KAMD39Ee+QyAckMlkmD59Olq3bo169eqxzrN8+XIUK1ZM/q9y5cpmjpIHlMzgX05uyTTqHac/Rl29Y6JRyq0zfIfATsfvACOTQRIVyv36dTgPEco+59e7Jq/rZ0SZOtU/54M0478SeAI7pkrioxG5YjpEgd58h6JEmpEGSWyk0rTEYzQeiJBQYpxYvVuzr+o8b+SzcJwbftKE0WiXEZtfl1MqpiSQvnJ4rhfNMIBMQp+bpTnYaRf+qbaG7zCIBtemXcTqYn8iJSQJOVn533NL+b4JJQktROEPTXDyTcxu0qRJeP/+PY4cYa+zDwDz5s1DSkqK/F9YWJgZI+SJEC5I80SaTncEWLr4vav5DkGr1LsX+A5BRej0b3lZb+rts/DtWR2Zb58atRwmxzR3lBW8A0ESrzrukDgsAPH715tk/fqQ/Zf8jfxrKs+R5MqJj0bK9ZMqJVbMLWbzH/jY0h0pN09DHMY+jpu5ZX3MLd8WNucHJBzcgE+DG/MckTLvtqXg06WiSnKcCAclxq2AOEPMdwhGSQ5Owrv9r0zWE9D7mOUmI6hni/74vphgKUk6PkU+Dec7BJ09//sx3ux5yXcYVolhGMR9iNH52P/878eQZEqwyXMNPhx+K5/+eucLU4XIqajnEbyt29JuhQ+9F4SkwES+wyB6mDx5Mi5cuIDbt2+jUqVKaudzcnKCu7u70j9rp09NX2vzsVUxvkOQYyQSyLLYB4WNWPIzAsd05D3hJMQLCVk+wrmTVp2QKd/wHYJghEzrB3F4IIIn9mCfQYf2QOr9SwgY1pLjyFTF/vsXfDqVR9zuVSrPRa2aYfL16yInIRYJhzbyHQaA3Iseob/2RwLPPY1jty4CkDvQsyRaGBe38+5uyPqQOwYRI8riMxwVeReaMt885jkSog4lxq1AeqTwGlH6+KfaGpwbfhJeW5+bZPmKPbAtSfSrSHgfN9+ggOGPQhF045PZ1kf4YY78WFZSFnY2+gePV943/cpM7Nq0i7gw6hQYmYzvUKzOy63PsL3eRpwadNSo5aSEJHMTEA+Cbwmjp43Q7G//LzZXX8t3GEQHDMNg8uTJOH36NG7duoVq1arxHZJ56dCBwbyDTObKSYwz+zqFLmrdbLXPJR7fhoznd5Dx6oEZI1IlTU/hdf1sZAJM1rMJXziG2moKZNmGJwZDJvWCyAwXRGI2zAMARGv4bvJNiN/J9AeX+Q4hl4V1uhAKcXQYwueP4jsMAJbXccaUKDFOBCPkViDfIQjKvjY7zLYuRibD3tbbcajrHmTEWeaFBDk6wPPuyeoHiHkdhVtzdC9jJHQ5In5L9FijxytyL5z4nrLd+tIHO+9GyN0g06+IjovERCZNmoQDBw7g0KFDcHNzQ3R0NKKjo5GVJazeWiYj0O+WdwcBDEQuMAkH1rNOV0oMUGLVYiWd3oX0Jzf4DkM4BHpsEmxcRKP4QxuRfPUY32FolJMUL7ia52zCZg9G0tk9fIcBILeOPclFiXFrYAEHAKdiRfgOweJIMk1T242NYhslK97CE+OEd1IrTCKb8/tI9GMJJafE6eoHkgo2w0VhOg8lprJlyxakpKSgQ4cOKF++vPzf0aPG3QlCiLnksNQ4JpYpO8iH7xCIlZFlCO+OCVm2CFkfX5qtt68o0BtRf01F2KxByk8IrP0ds3kh3yGwyg5VviNf9Ml8FQGI7igxTsyiSntPvkMgOmJklp1BMUeSyVa82vEc+9rtQFYiXU0Wp6lPbBrK1m9f4+z9C6tdrkKWI8W5EeoHdf54hH0cjLgPMYjy4q8uOSG6YBiG9d/IkSP5Ds08BJYYIJZLFPARwRN78h2GRYtaMY3vEIRDqMcmC2v7xu1dw3cIKjKe3cKnwY2RdHqXWdaXkxgr/zvh2FazrNMQQryIAQCSyGDlCUL9bto4SowTq5OTnYMHf95G1Esa9VdnCo2U7fWEMcCIoSKfmWZgx6ykLIQ/DrXaZCbb+7o07izC7ofgwZ93zB+QwARc5bb+/vNNT7DMfj5e7bCMgSN1dfbH49hQcQWkYuu7a8BQQTcDNZaLSfSLV5nme9Yb2+ttxK4mW5CVxEFJCis9bhFC1LPW9oq1Cp7YA9nUk1ALSijpTM33n/ea8RZ2XBKH+vMdglqJJ7ZDmpqEnBQTD1auUGIq8s8Jpl0XITyhxDgRjJjXUZws58nqB7g7/yZ2Nd7MyfJsgUxqWY0UPmyrswF7W22H31lvvkPh3PmRJ7Gl5jpIMsWsz+vdW9oKz1tK1yrN6fKuTbkAAAi5bYb60mb0/sAbpEem4S+nP3B73jXNM9vIYScpQL8TlqAbn3Ci30H546wEumODEnyEWL/MN08gE9lIbfr/SKLD4T+oMRLP7IYkKpTvcCwA/RYQ88r6INwOLIw0Bx/blIR321KQibm/s1XOCsZeEEeGwK9fHSQc38bD2q3wxNgKUWKcmJ26WqvJQUlIizT+KjZXCXZb4nfGepK94Y9Mc2KREZ0OAPA9beEDBbIkmN7ufYWkgES93ltWYiauTr1gM3dmSCW6NQrjvWNx4vtDSI9JV3kuIy4DjAAal9039UbxaiVMvp5Hf93T+DxXZZve7nnFyXJMRdea+7HvouF3zht3F9xUmu5QyPimmiXnlR/8eRvL7Ofj9S4vvkMhRJWQv1xCjo1FwI8tETy5t/lXzON2ilrzK0TeLxGxYDRvMRBiXvwfl2SiLDBSKd9hGE1x4ETFciecr4fh/9xFF5K4KMgy0uSPFS8WBAxvhexAb0Qu+ZmHyAru88JLlIujw0x/54HAUWLcCsR7x/EdglZ29rkHgOd/P8YqtyW4M5991PBbs68avy6q26S3TCsacDP0brDSY1mOlNPehnn7si1h23xXJ1/Ai41PbObOjMIuhdU+l5WUhadrHyItMhXb6vwN31MfsaHcX0rzRDwJw3qP5Tja+4CpQ9WqyaQWvLTJYt5GI+at5Q5y5tn5M7hWcNP/hTpu6x0NNuF434OIeBymNN2+sCPr/EmBiTpdaGEYBlf/u0PBEt2dn3uh4OKY0zxHQggLAVzsVCd67SyEzPiOtzsuDFlvxrNbJohED2piNtU2lGWqXkQn1oOR0MDtQiNNTcaHZkXxoaU736FYDnXHP4FdfM14qtyxRDG+nFjb6MhliJyEWPh2qwLvtqX4DoVXVpUY/+eff+Dp6YkiRYqgefPmePbsGd8hmcWr7c/5DkErvzPeyErMxLVpFwEAD/+rWRxdoHe3OJ29lINebC9vqZauDXmB/a5xJjstG+vLrcDRXvs5W6adg2kPm2XqlTXp8g3CsoPEvBFmgrPbhl4oVrU458t1KevCOv3t3pf4u8IK3Pj1Mg523q329c82PAIABFz24zw2S5AjkmBnw03Y2XATJFmWcaJYqlYZpcef962NMS8n6b0cmY53G6jD1rP+6pQL2Fx9LZY5LAAApMek42DnXfh4LH8gT4ZhcHrIUaxyXYxX24TfTtCHz+mPiPtout5RhFiD+H1rkXrzNLLePuU7FGHT0qEm+dJh+HQsh4w3j80UELEW0vQUvkMQHEk8v+cP6f8lTxV7W1ssc53AC/gCsEb2wkh1Mjn5d44mX+AuJ8GVLL83fIcgCMLYWzhw9OhR/PLLL1i4cCFevnyJhg0bonv37oiNta4TJ3GGauLYUnpI3198W2Xav43+UXpMdUS5c2PmZWypuQ6iZO31Gu//wXMPHRP5dNEXWQmZnCYjTd1jvEiJIiZdvqavmLrnAq+pDjzJSNU3kkxVzkYXTae2xJhX+icvtWFLTsb7xOH8yFPI+a9URoKP+rt3uCobwhVz/25kp+X/drHVrM/JFt5gnRWaVlSZ5uSm/s4BdXJExl0ISA1JVnosTs/Gi01PlKbdmHEJwbcCcXrQUfm0lJBkfDzyDpJM81yI6Lzqa7OsJ+RuEE5+dwjb6/5tlvURogkjE/7t+IxEfacTSUIMcpITzBiNACk2flh+G8Pm/oCcxFiETO1rxqCETRIbicQT2yHLsoLkoinRea2KvMEsU+9a7p1sQiRLM91FGEsppVKQnUB6SyYczb+7OvX2WR4jYcfkWEaHJVOzmsT42rVrMXbsWIwaNQp16tTB1q1bUbRoUezatYvv0DjzeOV9rHJdrNQjDLCc0g4ZLDV3C5KwJP71ZSkXCkzt6ZqHSApIxKsdyoOGvD/0BiF3ApWmWe3gbhoapC/+eYJzw09ApiHBm0dxUEpTf9+M7V1qCmkRaSrTNCV6C5aCMJcfbowCADiXcOZ82S9ZetxmRKtuF3UYgQ1wW7ZRebOuT9th+cXGJ5pn4EHdoQ2VHjs4OcK+kIPeyyns5mRUHAUviK9yW6IyT3oUy3dUh2Mbl5xLFzXLeqJtZFwDYhni963lOwStGDU1fWVZmfDpWA7e7UqbZvwLa0sKWsBFEHPx6VIREYvHI2rdbLOu19I6UGUH+/IdguAUKl8VABAy5RueI7F8it+H+EMm7CxAPcaNkvnmkdJjWVoyP4GokR3kw3cIgiCMvcVIYrEYXl5e6NKli3yavb09unTpgsePree2t1tzcutvXxh1Smm631nLGDgx5E6Q0uOwhyEq8wTfDFSZZotkORw2vhXakGtK/ImzQ4/jQEfruWDERpQiwvUZlxD5LELtPFcnX8C7/a+1DjzKyGRYXXyp/LG9iUupODqz1xPmiigx/w4CTSfCyUGaB+AQWg9oAKjWubrJlv10zUPViXpchFPcXgFX/bkIySg9tvThbd1s57WJn4TXY7F695pKj+sNbQh7R/2//67lDahLruDZukcanw+44sfa497c39HP+9Y2+TqCb6u2EQKu+uPdfmEPwEqslyQymO8QtFOTTJTEKrSROBqIThITYb09iS0sKWsOSSe2I/XuBaVB7ki+wJFt+Q5BcFKvn2CdLk1P1Ws5MlEWks7vR06i8MdaMwtT9vq11MQ4dZbUiZ2d8rmNTKS92oA1sorEeHx8PKRSKcqWVa7NW7ZsWURHq9axys7ORmpqqtI/YnqiJJHS4+SgJNb5wh8bWYbBCo6BbGVndMXIZNjfYafK9CivCIiSRSyvsD63Zl/Bs/WP8Gy95oQSAK2lZqQSGWSS/BNGTi9asDHxedeeltuw1O5/WGr3P6wttUw5Ialw0pcWmd8Dla2XvKFJNy57+5SoYb5BQjwallOZpk97S3F7Hfl6LxchGaVoaReM/zgVxauVMMv6lPYXC00uFHJ2NOiOJF2+K0d67lP7nLY7qY702Ccv56Po7b7XWtfLlVJflIZzCWf03v2dSddzsNMulc/gyNd7cW74SST6x5t03YRYKl0GtFTXq1xfnwY3RsTi8Yj++zeLPdYT3TE5EoRM+QYfmhRB+pOb2l9g9Appn7JW8XtX6zV/1OpfEf77cASO6WiiiEgemTXUY1eQcuOU9plsiULP+qSLB/GhWVEkHNms4QXWySoS4/pavnw5ihUrJv9XuXJlvkPSC8Pk9uY80OlffDz6TvsLBEJaoEebup53aeHGXago2DOdTxMDfjHodU/Xak/oqpMUmITQu8Hyx3mJyMy4DIOXaWni3usxtoCeia5X219on8kI5uzlKUoW4UCHf9UEkh8HI5XhUNfdyIjNL4dkaJymKrNSsqZpk+SxbIONGthjXChK1/bApMBfzbIumUIpmdODj2qYU8AM7HkS/lD7xV5N4yDYF9LeVIt5FaUyLfat+Qa4ciiSe6dLWZYLSAUZfTFGzceQHq29XBshtijz3TP2JxSPaRwlHHMSYgAA6Y+ucrI8c7C2pA9fgsZ10T6TkVJvnjb5OqwFY2G9+KV61shO+a/neXbAB/1WZFW9iPOP2+II0+U/xGGqY01ZBDWfdegv35s5EIFTSIyHzxsGAIhcljtelzg8CLE7l0OamsxHZGZlFYnx0qVLw8HBATExMUrTY2JiUK6c6knavHnzkJKSIv8XFsZPPVxD5WRJ8M9naxFyO8gkCYbyLAOOmcKZIcdYpxvbozRDQCfHJT4radDrjKm1XrCu7O2513Knq9ms5hz07peE38yyHn0Gf9TWPjJ3QlPX9XE10F1aBPuFqIL7S9CNAFybdtHo9T34847Ry2Az5OoIkyxXE33qzetSy97U7B3t0WRKC5XptQfWU5n23fHBGP5gLGfrlonzjzOhd4Mhk8rU7nsAIBXn4Mqk8/A77wPv4++xqZp+PYlMwdDxKwqO86Ave0f965pzpdPK7irTihRnGSD4v+NFuUYVtC6z/ohGxobFyqrOdQnhEh9fDoHUdtWFf/8GKtPi9q7BxzYl9S7voDc6cOklO0T9RWRrE73xf4g/vInvMMxH7+9C/olK3K6VphknwYJkvLir/2tePYTI/73W+RiOSm3ZIklsJKQCH+C6YCkVRZ+GNkfM378h4s+fzRgRPyyn1aJB4cKF0bhxY9y8mX8Ll0wmw82bN9GyZUuV+Z2cnODu7q70j+Qb+Xi8/O/h93/C7MyFZl1/WngqpGLzJWu54FG/rPaZzERtYlVNZlwqNt+PnXNJ1cHZyn2lPZFiUloaYq//9TJTILncKxdT+1wRhUElndiSU0aKfJ5fb5RtP/p4xPg7VLgcOE/xrhOnYtxvj4LE6cq9b/RJlAqhx/jszIXo/ndvlenfHR2sMs3O3g6VW1eFk7txA0fm8TurPLCLynGnwPHJa8szeG1+iuN9DuDUwCNICU7mJA4+KJZiMkRauH69qLhU8OJPlXaeWuusl67jYcqQ1LKzoEQcIVbPzt5iyl4wCvVUM17eBwBEr5kJaWoSPrbKb5MZ03FHJhEj4s+JSL19zvBAic0QBXxE3I6liFo+he9QTIK1Jj1Lm1qWraEEqML3MXr9HCSf389FaBZFHGL4mEWSmAgEjmgD/+/ra59Z3cDDAj/GG9qhhUtRqw2rHmBWGraTNCm3hn/6U+0l2Syd1ZxF/PLLL9ixYwf27t0Lb29vTJgwARkZGRg1ahTfoRmEYRj4nvVGaliy2ddt72CP35k/8TvzJyq38UQh50JwdC5ktvXf+PUydjXdarb1Gapo6fwkb/OZbTDo4o88RpNPXQJOliPMK+k/3vsJ3+z9HoXduEnAacLWO17bb+a1KRdMFA27IiWdUaK66p0G02Pmovhn+SUIyjUqj2pduR1s8sXGJ/kPBN7YAQDnks5oNqMVmk1vxXrRhWtvdr9UnqBHe8vYElFccCikR8/j/z7+MS8nGr3epMBElbsNCh6PCu5uQthe2jQYaZqezwXFfdCjNBQAr63PsLnGWiQHso/joY+CifEy9crCji0xrvABKv42Gov9mJ0fk9KYD/yf/xAiTOoaOiZMGljqharYzabpDJR4fBsSj21ByLS+Jlm+zbCAtikXsj6Ytmwj36LXzFSZlvVRtSOSLEtDGdAC+0J2sI+aGQsQQLJUCPQpvWKNPcZj/lmA+P3rTboOhmEgTUk06To4weiSI7L+Y69ltlpYDBo0CKtXr8aCBQvw5Zdf4vXr17hy5YrKgJyW4sPhtzjR7yA2VuH/9nFAuRera3k3k6/P0NqoqWbsWdf/zFD53/aO9qjR8wvMFS8y2/rVUddmPN73oNJjn1O5NdlM1T7ouLwrOv7VTet8hV0Ko8HwRnAu5ax1XmMstfsfVhT5A3tablNKpqSG8dcbkw0jYzDk6gh8ObaJ0nQXD1elhFDxaiXQYZn27WtwHFp+/wzuOcXxSU3XtT3RdV1PjfPMzlyIPvu+x/SYuZytV5yejUvjzmqc5/Zv15CVlIV4nzjEvY/ROK/Q5H2+JaobV7udYRh4/fNUZXrBxPjHw2+VHhtbfkQXzaa3Muh1U8JmYdDFH1F7gGoJGlORZEmQlaTbKPFXJpxDUkAiJ/ucvYM92izIH9iqZM1SaDGzjcp8Sl9rLb8p9g66/+i83qm6HyheZIl9l/8ezXn3EyGWRJdec5KYcPZenIayt5we4wVp7KVqoJzYCJVp4sgQZPm84nxdhKgjiVMdj4QPCSwlYjL/u1tDUXbAR/ULsdDji2DoWHom5dYZJBxhL+mTk6hfxw0hid22BFGrZphs+Vm+b+DdvgzSH1832Tq4Er1hnvaZbOD7ZjWJcQCYPHkyQkJCkJ2djadPn6J58+Z8h2SwwKuG3xpjjFZz27FOH3B2KKp1rY4f7/2EkY/HoePyrmaJh2EYZCboPihO5LNwE0ajqsnkFvBoUA61vqsDILdH5s++09F51dcY92GqSdb57sBrTpZz8vvDYGQykx3nyn5ZHq3mqO5Pk0NUewkA5rvdKeJJGJYXyu8RdHf+TbMOYluqVhnNMzC5yche2/uhUFH1d2o4lyxq0k4P2kp/6JqE4rrmn+JFOl2T84WcC6H+j43g4uGKSYGG39Jm55D/k7nKbYnWxOOj5fewtuRSHOy8y+B18oaj44JMIoUkS6Iy3fe08smOOF15XIXsFO4TEyoKfH9cK7gp3ZUBQH4nUKVWVeTT3CsVQ42eX8ClrKvJQ8yzodxfWFtyqc7Jca5U61YD7Rd1xo93x6DVvHZoPLEZKiiMQ1KucW4prPrDv5RPK3gsVzyOlapVBl/93Ezn9V+drPmOHcVBXXNEllWCjRC+ZTy7Lf/br1cN3W6p15WGmqVCx9Zz1WgFjosp107A92tP5MRyV16OWB5GIkHY/0YiqUAZkMKVPjPJ+hIO/W2S5ZpKyvXjap/Tp4OONC0Fafcvg5GotkdtVfjC0TrNFzr9W8hMPdaCFYpYOEbwtcXzyDLStM9EiXHCl8Ar/CTG1dV7Ll2rDH64NgpV2nqiWNUSaDW3vcljYRgGK4r8gXWll8H7uPaBIQCY9/YohkH3jb0x9s1kOBZROPH/vDRazGyDMv/VWW04+iuUrq0lGaqHcz+eUL59vICIx6oDT0qyJChTV7Xu6+aa67DafQlnsWlSsmZuz9NiVYqzPt9717dmiYPN6cFH5T3oFWXGa7iFz0A9t/XR+LxSQ6/g/lxw9zbR/p4UmIi782+oTP+8X23537oOcnt1inIJjYxY47ZpjV5f6DRfw9FfsU4vXs2wAXEBQGrgQLXpkTo0OEzMrRI/Y2lIJTLkZKqeiMS84rfXkpO7k0oC171yMfTZmztS/VcTcpO3NXp+gd9kSzDi4TiVZZRvbJ6BqgEgOzW3J2e0l2qvQ1OZFPgLSv93Ia9Ku2rouKwbHAo7Kh13ht0ajR9ujELzX1rnv1DlgkP+vvez9zT2wTsNpFjvvHi1EhrmJIQ7MnE2Um6cgjg8kO9QdJId5IOIPydCEqN8/Ei9e17psTH1aguy1FIqAEzUtlJeZujMASZYB7E0Sef3IfncXoT/Ptw8K7S05JbGeFWfy/r4EnG7V4HJUW6vB/3cHcGTeiJ2x1KOA7Rc4rAAtc9lvHqIoPHdIAr0NmNE/ND3DujM988Rs2WR1jusTHKBlU+WduwwgAW3WqyTTJrbu1IxeZQeo1sCylgNRjZCrf51dZ5/gt900wUDwOfkB3mv1Ou/XNLpNYzUdHW0C/Y01fX40Pvf7zjvPa6pNy9beYeshEzWOrVc1KBVp+TnpQEAbhVzkyLVe34uf67tH50AAO3/7CKfVrXDZyqlaHRNgnLh/qLbKtOerH7A+XoKfnbtl3TGsDtj5I/LNSov/7t8k9wLVQ5OjgAgL2FQo3fudin1uXFlLtTZXH0tIh6HqUz3O8PeQMpOVd+712uzahkNQ7Wc0xZd1nydP0HDd7BoaRfO1psnb5vEvBHGrajadFrRHZ1X5969MjVstsZ5HQor1x83ZpAxRVKxFPE+capP8Fzi0alYEaUYavT6At8eHojKbTwxM3U+emzOv4AlhMF78pjzrih1F5EUN4eTexFU61wd9gp3UxTcXrUH5pacKVa1uOoCjKT4my+gj4lYuej1cxH6y/fw7cntOB+mIg4PROKxLQidNVBpukmPbXb2YCy1Jqna7WLE+6EDFGEhTY436/qYHCvqMa3STrXDp8GNEb1uNhKOblZ6Jutd7rlI0rm9ZgrOsgWOaIP0x9cROLIt36EYTZqeipiti9U+n6NneaGAH5ohdssfiN+7xtjQLIrieSFX54hCQ4lxATk95CjWlV6GuA/Kt+cf+do8B/Fvdn+vVyO5ZM3SKtNmxM3DlHDNCRhdnRpwRP43I9XtC/h07UNO1l2Qi4cLilcrqdSrOa8HtC74TqwUHEDNlMZ9mIphd8agxGe5SZVRz35Gz+190XFZfvmdtgs6YnLITLT+TfnOg4KDA3Ze/TXMJfZtNCKeKCeDH69QrXdnrIKJ8RYz26Bq+2r46c1kdPu7F778Kb+2eL9DA9F4UnP5AIh1BtbHxE8zMOD0DwCAwq5O+PHuGJhTcpDqICJ/V1xp8vXaO9qj01/dUahoYfk0jwbqx5Bo9Vt7VO/xOfrs789ZDHl3ruz88h/OlsmFdos6KT3+/tQP6LK2B1rMbI0Wv+bfvaKJfYEBFRUfe9RX3c4VmlXSKTapWIrIp6rJXKWBXnlQMP5BF36UJ4Kd9BgIuM6g/NID5hik+s7vqndymEK/wwPVPudcSsvgmgV+bqp2qIYJ/jMw/mPuBWIuf48Uj9FW2k4nApR0xgLLY8HMPdjs7S3mNnKzoMS4QSRxUYg/sAHSzHSIgnwQv1cYY29xh32/EPmbpsRjys3TJlkuLzT86Cce26LuRaaJxUpZwzE8atUMjYMqpz+7pfQ4890zBI3vhiy/t2pekSvl+nGE/W8ksoP9OIlT+HK/O6m3z+Fjm5JIvau51KElosS4gHw88g6iZBG219uoND3mdRTndXpNYVb6AhQt7WKSJKy2escAIJVIVXq5clUKo7B77q3fikk513L6DUL6xX91yLmgdwLAzg7VupqnZ1OZOh6o2r6a/LFbBXc0GttUadvZ2dmhWJXirBcMFJN8pbXV4+bYnpbbTL6Ogvty3mdZtkE5NJ3SUqnnpVsFd3y96RulxGaJ6qVg75h/AUFrkopjlyeeV5lWsD60KbRSuIgy2msimv/aGp1Wqr9wUqRYEQy+NBz1h33JaRxRL4VXD7RW//xBIDsu74pa39ZB8xmt9bqVXfEiVOU2VVGzt8LdGizH9CFXR+i0XFPexWMMhmHQYlZbuJRzZR1MUld5d8QAwPgPU7gITRAKXqRUVLq2B7qs6YG+B9lLASge1+sMro9qnT9DyRql5L8BXF4oViyzdnrwUc6WS0hBkpgIRK2bg/Tndyy33qoZrx6JQ/2RaqFJOEbN4JuyNMMHa7fo0jIGkqanIvHEDuQkstw1piDl2nFErf6V9VzXp3MFRK2cjsBR7eHftzbLqy1L0tk9iFw+BYxU8zg9BZN1XJFEBJlkuaaktndqgek5Sfn7GSNhPy+RRIYg7d5F1ueshcj/PUJmfA+Rv45laK1c0mktF7IL7EcBQ5sj/fF1fOrfECnXT6p9mcjnNZLP7UXQePOMu8e3vN+/kGl9IUtLRsiUb3iOiHu29ystUNpuSXi8ivuSDlwr7JJ30sv9sjNi0lm3ESOT4fGq+wi9F4Tr01XLrZweZNyJsmfn3MFPfrz3k1HLAYDvTwwxehl5dLlQUJDioIWmoi5Rog8XPS84cC36tWnLZKjcaWDkiWph18LaZ+KQIeMfeG19ZvD6Ws5pi9FeE9FuYUf5tPJfVUCX1T1QpJhhtYpdKxi+j+1qvFn7TDxqNK6pQa/7ckxjlPqiNL74rg6G3x+bW0v6P2yJzCLFnXVarlAT42AA17KumBYxG51XGX5nSpsFHVF7QD30P/0DilcrqdfAkkJW8xvNZaya/9Ia9X5oyP6kwu7y7eFBGhNCXdb0MCQ8VnzXrSfWLXhiD8TvXomgMR21zyxQjESM1PuX8tvTJuzFnNvT0DJ7Zwb91En7THrK8Lon/9uaBwCMWjsbaY+vI+P1I0QsGouIxeMQPFHzcT505kDE71uL1Bun1M4j8n7Jdai8CJ8/CgmHN+F9I0ckXzqsdj5DLyBbQkc6fSQc3oRPg5uwvi9ZpnKp2aRTO+V/S9PVX8RKOv0vdwEKUOCodki9eQqBYzrwHQrvdCr5oeE7E/qr9ruOJVGqY7tJjbiISvhDiXEBkGRJsMx+vsZ5bs+9xsm6Rj79GRP8pqP+j18qTWcbWEwXQ2+OQqlaZZQSx6Yq2/Fw2V2VaT4nP+LW7KvY3/5f1lrGwbeMGxhp6I3R+J35E27lcxNpzqV0Swax0dTI0TuhrGcylZExOpejMYZiWQFDORZx1D6TCf3byLRlMopVLaHUQ9XYDlzFqpaQ12wXgtQI1Z50Vyacgzhd8yAl6lRp54nyX1XgtLfVsFuj0XBMY86Wx7diVfIvehUpYdgxyqGwI8Z/nIr+J39Qec6YY/qHI7rfDswwDGQ5UogzTH8HQl5j2dj9qkixIvju2GB80S/3jiBjLroIieKFEX3V/KYWAN3uZinkwm35mUR/89ZrJbbDVKUNzC1kUi8kXzoEaVoKUm+d4Tscm5HxIv8chpEaNpC3JYjfswrB47shcHhrpFw9BkD3Ej6ShGhThiY4YXNV21tyhl600nBSYalJc5H3S70HBraGEiCGkqbmjh9my9sgT9od1bucC2IYbr8XGW8e42Pr4pwuk5gHJcYF4P2B12ZZz7gPU1GxWSWUrFkaffblXwH7/tQPqNSqikHL9OxUHT97T0OVtp7yaU4G9uLU5t7C/NvK8pIa5j4J9uxcHc2mt0Kvf7/VPrOOSn5eWn3POzXyeow/XfcQm6qtRkqIlkE0ZTL5wK5c6vXvt+ixra/8sWIZEEPVGVQfVdp5os38DgCA1r8r1yGv3Kaq0eswl3aLO6PW96oD2tYf0Uj+dyFn4y8EtFvYCWXqaq8jrYvQ+8EGvS7w+ifEvotGVkIm6/NZCZlIDUvWuAy2BGy5xhUNikeTUl+UQe+d3H2H+VbY1QlTI2Zjeuw8o8pUqE0SKy7Szg4NRn2l8zJvzb6q87zL7OdjeaGFONRlt86vMZiJrhNSGVmg8cTm6H/6B4x7r760TLcNvdD6fx3kgzRzJd5b8y37hBAg/cFlRC7nvvRTTpJym9xaB+gylncHbtprxApw3Wgo8J0LXzgG6U9zz58lkSHcrsucbLAUkTlZ67E6ZFpf7TNxeMFIJs5G4I+tOFse32SZ3JQkthR0lBGAHJF5eg6oG4DNjeMebo5Ojui5vS+cSxreu5pNXtvh9m/XsMx+PuI+xJh1UMncGOzQdV1PfDmau96mHf7sovdr8hLjN365jJTgZGzyXIONVVapnV8qkUGWw31ivO6QBqg7pAHcqxTTK1mmiaOTI368+xPaL87dLh3+7IoeW/vIn6/WrQYn6zGHRmObsJbQURzYUMZRT/5hd40v9wMA+9vt1D4Ti8Pd9mBHg01qe6sc7LwbG6soD5pkV/BCCssJgouHi0Hx2II++77HpKBfAeTWo3cpY5pt9Xmf3B7AruXdMFe0EN/s+g4A0PGvbiZZX8FBcE3BVCcBbBfCbI29gz2+6FdH4zgcTae2RIclXVCxRWV5W+GrCcaXobHSczuL8M8//8DT0xNFihRB8+bN8eyZ4SW0zEmamY6Ua8chLXBbvjVjpDnIeHGH8+Va38CIhsvyfYO4vWtYy6YULAFB/mODB/CMV2pKpWpJmGe+f47A0R2Q+eGF8hMFtmHS6V0IGtvZmBCFgRLjOsl4cU/7TGxs8Lsn9997z/J5rXJxV1/SlEQuIhKMnFTl9xM4ugM/gZgJHWWEgMNjUf8zQ3Wed9DFH9FtQy9UbF6ZuwD+02hsU/yS8Dt+ky3hbJl5id1Hy3MP+tvrbcTtedc5W745jHw8HnYO9hjzciKmhM7EgLNDUau//omU+4tvq0xLDUtR2yP33f7XkEm4T4w7FLKHk5sTJgf9Kk+WmcKXPzVBp5XdMerZz0pJZaFzcndina5Y793egZuLO0VLFVWqbzwtag4ny9VXlBf74JRJAaqNhdnp81GxRe7xp1LrKkoXukY8Goc5WQs5HaivoBq9NddRFrr6PzZCcc8SJl9Pq7nt0O/QAIx5OVGpxEarOe1Mvm5jFa9WAr8zf6pM77jcNEn90rV17wnYck5bk8RgqEbjm2LQpeGYFj3XbOss5FwI06Ln4jfpYvTY3Mf4ddvyyR2Pjh49il9++QULFy7Ey5cv0bBhQ3Tv3h2xsbF8h6ZV+PxRCJ05EOG/D1eabs09pVKuHIUkmtsLkHG7VyFu1wqlaRY7SCkHPg34EtFrZiLhiGnL8xHLlnbnnJpnNLd9A4e3RsaLuwgcKax2hKnklQchmgWObq99JjYWWmaHE4wMkcun4NPARvBuX8a4ZWkZVNfS2Nkp51wUS4JZI8vJMFkx7xPcjRpctmE5DLszRqd5a/T8Ak2ntuRs3WxMmdQyFY+G5QBApQ47Fyq2qIzfchajXKMKcK9cHJ/3qW3QNnq65iFraZTA6wGs89//4xZ8Tn7Qez264rL+Mxt7B3u0nNUWFZpWwhf9LGNU+lr966JQUfaBMQu7FM4tfREzl9Nt13n11+j2dy9MDv5VY29NY2gbxPXGL5d1XpZjkUIYcHYoOq3oju9P/oDOq7oDyO1NWqllFTgW4bb+cEHOBtbjNpeCxyC3iu68xOFQ2BF1hzQ02T5lSnm9kJtMaQEAaL+kM+ZJFqm9g8qc7As58B2CkvZLuqBGj8/hWtbVrOt1KOQgPw66lnVFp5Xdzbp+Yry1a9di7NixGDVqFOrUqYOtW7eiaNGi2LVrF9+haZV6/UTu/zdPy6fFbP4DH1q4IvX2Wb7CsjjR62arTLPmWtqaJJ7JLweW5fOKx0gsTIELm2KOL95YFIVzQ0lCjMrTTE7unQhMtkh5usbedpZ74ThgiGEDy5PcOyRDZnyH8Pmj1A/8a8OdChiZDAmHN6l9PjvEH3G7Vmi8qyzvLtSkiwc4j49XNnanhm29W4EKu89dza/iniVQtX01tJnfAQ1GfYViVYtztmxTUiyVwbdOK7pj+IOx6LWzH9+haJSdIlKZdnHMaZY5uVPqC+V6sHz8jpau7YEGIxtpn5FnlVur1kKvO6SB/G+3Cu5w8eA2AVXYpTCaTmmJYlVzexFzXc4IADy7VNf4PNt+qYmLhytazm4L17KuaDatFSYF/oKu63saE6Lu1FyTEko5jB5b+8hLpQD5gxoS3bX4tTUAoNv6nvjZZxpa/94B9o6mTUjrmvAW2udpqlI8+mo0tonBr7XhczveiMVieHl5oUuX/LJw9vb26NKlCx4/fsxjZIaL3boIABCxdCLPkVg4G/xCpj+7jYgFo/Mn2OA20EXkX9MQMLKdcqKuwLaKXqt6scVmKCTGfTqWgyQ6XLfXqdnfGIZByrUTXERmcdIeXeM7BF6JwwORevM0ks7uwfvGhRG+ULUDJdcDUFoULcdovz5fIHr9XMRsmKd2nuDx3RAy/VuN81iizFcPtc4jTU2CODIEsmz9zv+FiBLjVqr94i74Ztd3Zq/BbYhWc9vhq/HG1xblSvnGFVC5dVWlkgHmUKW9p17zh94LNkkcmpSpX1bpMVdlQPTlXqW4SZfPxV0cijWM8xJgTaeZ9g6NggacGyb/u/du40rdNP8lN8EYeMXfpIO0FK9W0mx3mqhLTPY9OMAs69emUNHCSt+xdos65T8p4LtxmkxuwXcIcnk9ke3s7VHqizJm2bdKfKZbeRuuBszVhUeBY7eQFSluxAU9SkKZXXx8PKRSKcqWVd7HypYti+joaJX5s7OzkZqaqvRPKN41sMPHdvkdAHJi2UuDWTNxRDB3C7PC76NKTecCRH5vlR7nJKh+B2xR4uldyPJ5LX+ccOhvZL68j7RHCgN0F9hfJLERZopO+ML/UD+OkCQ+GlFrZiE72E/tdy7x6BZEr+enxCJfpKnJAIDgn238LjSWuvMFJV88KP/bu0slk4ckJLE7VMstKvlv+2W8fqR2lvQnN5B66wyHUQlD6EzN58NZfm/xsU1J+H7tCf/+DTTOawkoMc6zk/0Pm3T5ebck591Gzoe6P2j+ouTVeq3cVrWHbUGh94I4iYnNr0m/Y0r4bBQtzU+vuRI1Suk1/4lvD5koEmUeDcuhfNOKKFG9JLqs/lrpOVOXUFGnaKmiKtN+vMfN4JMAcGrAEchyjKsTVlOhfvWAMz9gRvxvJqnnr0nl1lUx6NJw9D8zFA1HGjc46rt9ubcDp0elQSaxjhpqBXuG/3h3DIY/GAtHJ/NeFNNIIZHr4OQov2uj+tc1+YpIiWt51fIq3Tf25iES4WD7zWu3WHXwK4dCxh8/HZ11Kzfkqq0Mj8AutHRYqv+g1MQyLF++HMWKFZP/q1zZvL+L2kiTE5QeMzk5VtETSle+Paoh/tBGTpYV9+9yTpYjJNpKOiSdUU46pT+2rLGQTCVi4Rh8GtgITE6OUkkCTYmXzJf3zRGaIBW8iJ+ueAGhgLC5QxG/dzUChrVQO7Br5LJJnMZnCTLfPuE7BGHQoX0X8V8vcmlqMnJs7IKUrhfA+cp5CFni0c3yv8Uh/jxGwg36hHnkffy9Ses+A0Dt/vUwI24eum3oZdL1aNJn7/dqn5sSrt9tcvvb/2tsOGoVKe4Md55q+ALA533Ye6/OFS9CgxGN8I2G7WhKY19PxuhnEzDx0y/yEh18qz9CtZRKlbaenK4j5q1qTT99lKyZ3+vMzt6eNZlvDjV6fI4v+hpflz0zPlP+t/8FX6OXJwR2dnaYGPALAKDVvHao0q4aawkcXik2aBkGP9wcjY5/dUOf/f35i0lB13W5ZW8+614TA88Pw5iX6ksPODg5mu0upqodq6H7P9+YZV0FtZrXHgPODkXp2vmD+LSe1w4/vZksf9xxeVeNJVc+61YDP1wfqXVdFZpW1CmmvJIyQO5F4N+ZPzE5OL9Mj9B6drb+rYNhLxTW27AJpUuXhoODA2JilH8zY2JiUK5cOZX5582bh5SUFPm/sDBh1xH2/eZzfGgq7PEouBa9Pn8QXGPuEGMkYi7CsSgFe4wTZZK4SHxskX9BXblGdv6+Jomnnva6ynh2C0BuSYPotbN4jsZ0clISAeQekxgdBovM8n5p0jtcLYE4Ogx+vWqoTGdybHP8B2NkfXiBDC/bvVjHRhxhug6rfKDEOI9ODTxilvUULe3C6yCY9o4OrPW6P+9XWykRbeoYuxXoxVh/+JcmXZ++an5TS6XXc8MxjeFQyAHf7PkeDYabv642W8/HYp7FzR5HQYVd2Qe1rNVf99rQvzN/4jfpYjSe2Jz1+Tf/eum0nOEPxmJm6nyd12tpHJ0LYVqU8u2XJ783/k4XU9Q/N0SJz0rid+ZPdFzWTWn6F9/VAQBUaGa+WwrrDKqvMq1AXhzuFd3Rak473i60FFRnUH387DsdA88PQ83etVCuUQW187ac0xaMzHQnKUWKFwEAuHi4YNitMWii5rttag6FHPB5n9pwVviM7B0dlEqnFC2j+Xe53+GBqNZF9WRG0Vc/N8Nn3TXPk6dS66pwcHJEyZql5KVKilUtIS+xUkPhDhdLZsr9i7ArXLgwGjdujJs3b8qnyWQy3Lx5Ey1bqpYPc3Jygru7u9I/vkgz0rTOI7GyEz/d5H6P4vashk+XisgO/cQ6lzQ9FVneNLgk0Z2fho4aUat+gSwzAwCQ8fSWuUISJEMHrk1/Zr3bLfz3ERBHheJ9Q3u8/1L7WC4xG39H0skdZohMuEJ/Ye9U92mQcXcR26rAUe34DkFQ0q2sfj8lxi1UoaKqt0+Xb6JbzzE+uJTNH2Twq5+boXrPz/Hd0UFK85iy3EuDEY3QZGIzuJTLjaPN/A74Zvd3aDmnLQCgSjtPk61bV3Z2dqjS1hNjXk1CMc/iqNCsErqZaxBCNaqxDLQ46MKPqNLeEz/eVR28w1zU9TptMautTq8f7TXxv+XYo2RN9hI2Xpuf6rSs4p+VhJObk9K0kp+XVjM3v4qUyE9Gf3/qB63zz0z5H+ZkLoRrOTeU/bI8p7E4CKlcCYu++/tj0MUf8ePdMfLjhiZ5vZO1ffa/Jv3O+r0a83Ii+h4cAM9OnwEAKrbILS/gUtYVRUo4o2jpoihSzEnldUJQ6vPScCjQ+3l2xgKV+RoM/1Lllk7F3wZt6v7QAEOujUTxaux3rox9NwUjn4zHeJ/pOi/TlAp+Z+wd8ptcrhU0JwOdS2q/8NFjSx+dB4ot5FwIM5N/x/iPU5WmD7k2El3W9tB4Z5clkUlteAApHv3yyy/YsWMH9u7dC29vb0yYMAEZGRkYNWoU36GpFX/wb3xsyV9SXtD+62UZvXYWcuKi1PZC9e/fAJ8GfYW0+5fNGR2xYIwoU+PzSef3AQBk2VnmCEew7IuqlqnTiRX3kE67dwG+3fW7qzNi8XgTRWMZstSMiSDyf8c6PWrNTFOGQ4igCTszQVQMuTYShZwdUfKLMljvkV+7r/aAeoIZMI5NMc/8REa3v3upJFGA3LIvgy4NR1p4Ci6NO8vp+tsu7Ag7e3uMeTkJwTcDUHtAPdjZ26Pj8m6o1b+eWQdB06bcl+UxOYj9h2mueBH+KrzQLHG0W9wZ9Vl6qZepWxY/3uGunrch7OzsMDtzIdaWWoacLIm8ZIGTu+bEYYORjfDNbuUEUJ0hDXB9xiWt6yzfpCJq9Poc9xfdxnfHBsOjYTlkp4jgVqDG8vcnhgi296XiBYUv+uX32pkj+gMrivyhMr+TexH53z/e+wmr3ZdwFotDYe29PfhUqGhh1OiZ+zlOj5oLhmEQ7x2H7XX/Vpl35OPxqNC8Eiq1rIySNUthTcllrHXY28zvgCLFnfHD9VHIiE1HRmwGMmLSUallZRQqmnsXxLfHBuPdvleoN7QhgNxk6vTo3B77llTfrlDRwhh+/yfsa7tTPs3O3k7lpG169Fwstfuf/PGXPzXG653sd2tUaeeJz7rWwMgn47G+7F8AgH6HBqBK+2pwLecKO3t7uFcqZoJ3Y5gOy7qiUNFCqD2w3v/Zu+u4qLL3D+CfoQUFFbEQsUEUG7sLO7C71u792rtr9xq7trtr7Bprr92BrWB3i60gKKHkzPP7g99cHQllBIb4vF8vXjL3nnvnucPx3mfOPfccZVnbXZ3x5sorZYz4om2K4/bm6Ml+q/5SE/533+qcd2tMrYvjPx+O8z1UxvHXiT43BsPWOfr8aGIR84Z6xpyZUGF4lRjLU4IqP9fE6ameCdom5OXXewBT4mvXrh38/Pwwfvx4vH79GqVKlcL+/ftjTMiZkryaNdTQIaRYEh6G4FP7ldexTSoWdHw3Il8+AQC8XfdbMkWWOoU9um3oEFKNl9MGwLZdf7yIZ7LJtErUaqiMjfF23QK837su5noRqFQqZVLJWPfxDUOMUDqSgBsl95oXRfjjO0kYDFHKxobxVMQiswUK1Pv02HTXU72xoeE/KNSoCJr90yrWxuaUInvxHGi+tjUy5raON85CDYsAQKI3jJvbRDfwZcqVCa6dSynLVSoVcqfgnvZfSujf2K5Ydvjd9P3m8l1P9YbXb2dQb15DWDtkTmB0ycs0gyn63xuGKysuokzf6MmQbIt86v1dbUItnJx0DEB0A1WF4ZVjbRiysvt6z8wGS5uhZI8yMDE3QcURVWGWMWYDfPv93fDugf839+A0hM8bxlUqFX6SqUqi/TVGJglrlM1TJS+en34aY3mzf1rh+C9H4LG5fYL2Z2gqlQomFrqXzGb/tIJrl0+NmNphROr91ggHBu6KsY8K/6uq/G6VPSOssmcEius2HFnaWsZoqDQ2S52Xaoeq+TDcbyzm20XfxDX94v9Nzen1AEQPsXJ21kn08OqH3G554mwYL9kj+tFPq+wZ0e/OULw4/xwu7VxT7A0D80zmqD3LXWdZ4SbOKNzk03wSzde2RpEWRRH5MRKlfygXYx9VxlaPt2HcMtun81f7/d2wocHfAID+94fD1NIUmb7SMz0lqzmlboIbxiM+pL8xjVOKQYMGYdCgQV8vSKmCz4CGca6LeP4YTwZ/msMhrT1O/TWayAj4rZiJTJXqw7Lk1592vd/CJRmiSjs0EeGGDsEgQm9fwoeLJ/A6jl67N0oawXHR7ngbO9PbxImUeNgoTuld6vy2nYZlKWSLdw/8AQC2Ttngf/etss7hi+E+HKo4YmQqGtu4eKdSyfZeNafXg+e4TzPBf8tj6WlRzwv9cfe/W9jecbOyrOzACrC0s8LJiTHHoXOo4pjyJh+Mh3UeG1SfUFt5rTIywk8yFRq1BkbGRsiY2xp3t96E2+CKsTaKa7cpO6ACLi45D+u8Ngh6GhijTNl+5ZXfY2sUB4CC7oUB98LfeURJq/rkOtjffydK9iqrLNM2irff1xUbGv4T57ZGxrE3nn/5fw0AKo+pjpA3IbE2jLt2Ka3TmJyafD5m9ICHPyJLgayxlis3oAKKNHVC8KsQrK6wDACQyd4aFjYWsZZPyyyzWaHJKg9EhUbCys4Kdec2xOH/RT92r50QsvZMd9ScVk9nqBGtUr3LofEfLWIst3Wyg62TXYzlqY2xmQmKdywZ53qVkRGqTawd6/kaiJ40uvOxnjAyNYZDFUd0PtYTUeFqZC0U+xBRqY1d8Rzwu/EGBRoUxqP9ujPeq4yNIGoNmv3TCju7bgWQsoeUI0orPl49a+gQDOr13JHwX78AvksmoPjlKAQd3wXLkpVgnDHlPLGUqqXh4UDi87Bj+a+WeTKoCRwXxux4QURE34cN4ylMD69+CHzyHjlK5IDKyEjnEfOE9thMzUwtTRH5MRKAbs/fb1VlbI0YjXXpkYmFKYp1KKnTMF7/t0a4uuqSAaNKetoGtjJ93FCmj9tXy7svaoJqE2rh1obrODh0T1KHZzBl+5VHgfqFkDmWCVQLNiii87rG1Lo6r43ieFqhWHtX5f9a+/3dkN01BzLltoaI4Foaq2cWNhbocLA7jIxVcTaKa1k7ZIbZZ0PRRIWl3xngS3b/NMlPLrdPDZef94T/vFG87e4uuLn+KqqNr5UmGr+/V/UJtVF9Qm14Lzgb6/nJsWaBWH9PCzoc7I5b/15Die6lsav7Ntzf9alHU735DeE2OHpyx2urL+PDmxAUqBdz/H4i+n73PFzhMH0NQm94I/hk2s2TvoX/+k9Dqt0oza/Sie2DV8K+86U3nz+tQUREiYNX8xRGZaRCzs8m7NIZYzMd3UDveqo3VpRZAiDuBrm4ZEkjPeXiMsjnf1iUb67e26uMjWJM3pq7fB64di31nZGlXiqVClbZMyJ7iZQ7Hmpiia9BN2thWwTcj35ipepPNXXWxTbcSqEmTjD7bOLR7CVyKmOux1besVZ+fUJOUT4fzuprPu8hXqD+t2+XltlXdIBd8RzIXCD2CTQBoHBjJxRunDLH6TckU6vYn3pJyzLlyoQKP0Y/WdBmRyecnHxM6T1frEMJpVzHwz0AkRQ7rA5Rahf+4AYetE2dT3tR6uIzsJGhQyCiFERlYgqJijR0GJTG8RuEAZXuG7Mn65dj2NaYXEf53SaWXp5pVZaCnxrvRB1zIhHn1p/GcW6xvg3qzf+URH35GaY1No5xNyh9ru3uLsrvlUZXAwBUHlcDKpUqxs2DHuf7odzAr4+TmNblrZH6G26/h2Pt+Hub1poRPSZ01fG1MDp0Atrt6oIMtpbIWyMf7Cs6IGPOjHFua1csOxoubZao8aYGpftEjxtdc1rdr5RMH4xNjdH72iC02d7J0KGkOmn92vY1KpUK1SfUxjDfsRj1YTwss1nprGOjOBERxcW6VnNDh0BEcTDLG3cHosxNuyZjJJRe8VuEATVaFvMCbWKu+8VXpVKh46HuKNmzDKpPrB2jfFplltFM+T0qNCrGTQHTDJ96ztnky4LywyorrzWRagBAi3/bwiSDqU4DcXox5OVonR6XtWe64yeZilrTohs27Ss4KOuyFk7bPewT4lsmoUzLirV3BYA4e/NWGl0dg56MQPWJtZUx21UqFTof64VuZ/rE+fkVbFgEfW4MSZfDYjRa3gJjwicic/74h15JT1QqVbr/v6YPjp8dzcrOCqaWZl8vSERE9P/yztkMlVns8wQRkWHlmbwq1uVZ2w9E7tG/J3M0aYd1nZYwsU37T8QnBjaMpyBlB1aIdXn+uoXQZIUHzK3Tz8Rtn/f8OjPzBEr3LqezPlf5PMrv6vDosXvz/v/kpKV+iC5brH0JjAz+Jc0/kv/DlYExllnZfX2yUYssGQBED9dDBESPT9z7+mD0vjoo1vUqlQo2eTPHaNSMq6Gz2ZrWyFM5LxqvaJkk8aYWn4+lTaQvWyc7lPn/iYA9Nrc3cDRERMkrS8uehg6BUjGVqSmKnnib4O1yjZyHvPO2JkFEhpVnSuwNkQmRoVg55P8r9snBiRJEBHnnbNZZlLlJZ9iPWwQjSys4H3puoMCSh4VzaZjnd070/TrO34bc4xYn+n7TIjaMpyB15zQwdAgpkmvXUqg0qhra7u6Cjod7oPZsd5Tt92kYGquc0WMat9vbFV2O90L54Z96j38+oVta0v1cXwCA25BKyFEyF36SqRgTMQlWOTPCtWspGJl8fVz2fneGot3ernDtXDKpw6VUJHvxHDDLmDg9alw7l0K3032UcceJ6Ps0XNoMY8Inomjr4oYOhSjVinj+2NAhJEjuX5bB9Vo6mmgoFoV33Ib9L8uRc/hsFPzXGyZZswMAjLPYwXHBTjjt9zFsgAZmki2noUNIFYwt4x7y70s27m1R9NgbZOsyHDZ1PeC092ESRpb8MtX8vuENreu1RsH1XshYvlacZbK2HwjnQ8+RoVi5OMukRhbOpWJdnmfGWuQYOgOFNlyIdX3W9jE7swGAyuLrHdpSq4Jrz6HwthsovP2WsszYJivsxy/XKZehaBlY12uFjFU+tYdlbvLpqX/THGn7qcn8yw+iwMrjyN5/YpxlcgyaqvPa5VxwvPvU7ktlwg5a3yJtthqmUtqhCShanxuDUbJXWTT+qyWMTIxRuLET8tcpiEojq8HIxBjt9nZF479aIJtz9PAMZlZmyFs9f5ptDP+cfQUH/CRTUf/3xsoyY1NjDHs1Bs3+bv1N+7DKnhGFGhbhuKxfqPOr7g2qzsfYQ4mIUg4+gUD0fYwzJ/8Qcvn/OIRiF8Phek2QreuPyFDcDQ6zN8S7jdO+xyh+VQPbNtGdIYqdC0H+P4/A+eCzT4USYVgqmwbtvnsf3yrXmAU6r4ue9Ifj7zvi3Sbf8oOwyO8MlYkJ7HqMhGWxcii43gs5h82C0657sK7ZFGa5HVH8qgbZeoyKdR85hkxPtGNITpalq8D1miDPjLXxliv8381Yl9tP+FP5vcCqE8j/5xEYZ/m2Ye2KnQv59kC/wnHxHr22yztnMzJWbZigbQqsPoniV3Xnp/r8xtK3NNJm8fgB9pNWwMQ2u7LMLM+neXiytOgBu56jExRXSmNikxWmOfJ8vWAcHOduVp4WVVlEP4WsMtd9uj3X8NkwzWGP/H8dTfDfMbnl//OIzmuHXzfCqmz1WMsW3nQZ+Vcc01lWaMtVZGncCdl7jUEGl7IoflWD4pci4XL6vVImx4BJse6v2On3yDls1vcdwDfIVL3x1wvpwaZBOxTZ80BnmVWFOnA6+BSWJSrAolAxWBQoCjPHwgCArO0GIIvHD8i3eC9sOw5BwX+9YWRpBZVKhfxL96HwlmtwmLkemSrX19lnzuGz44whe9/xCYq3mNfHBBxhTKY58sCyVOWvF4yHy7lgFPX0hes1gUmWbDCxzY4c/Seg2LkQqEx02wXtev+E7H1+gsOvGwEA2br+CGPLjMrfNP8fh1H8ihrFr2qQ/4/DcD7yEjn6TwAAZKzaEBbOpZGlVe8ke/LKokiJJNlvclKJSPruggAgKCgINjY2CAwMhLW1dbK+952tN7Gn93a0+LctCroXTtb3JqKYNGoNvBecxeuLL+G+qAksMmcwdEhERJQCGTJ/TCsM9RkGee7CkyHRPSat67WGOugdPpzXbRix+2Ec3m1fiai3r3WW5x63CJmbdEG4z10En9oHs1x5YWxjC6uy1WGcyQZPhrbAxxteiPJ7Bet6reE4V/fx8M/5rZyNqEB/ZHApi1e//ogo3xcwL+iCAiuPwyRLtji300SEI+TMQViVq4HQG97KxGXPx/fEB6/ooQ0Kb7mGD1fPwH/NfIT73NXZPlONpsjW7X+wKlMNKiMjhD26jfstXGDX+ydIeChgZIy3q3/V2cbIMiM0H6MbS/Mt3gvL0lUQdu8aMriURcSzh3j2czeE3b4E+/F/wCxfEVgUdoWJTVaEnDsCdVAArOu2irMzxts1vyHIcyfyLd4DiCDy7SsgKgpmeQpAZfrtHYdEBOGPbsM8vzNURkYQtRrhT+7BPL8z1AF+CLt/HRGvnsCyREXcb1kMdj+Mg22HQXg9fxTe7/7U+GyaKy8yN+4MkyzZ8Hr+aEhUZKzvl2vkfLz6dXic8Tgu2IlnYzpC8zEERXbdQ9iDG3g63CN629G/I+KlD7K26An1hyA87lMXeedsRsCWP2BZvDw+XD6FPJNWwDR7bgCA36pfoTK3QNaWvfBm2SQYmVnAd/lkOMz6F5kbtkfwyX34eO0sot77I3vfX6BSGcHENjt8/5qB8Ic3kWfaP8rnH+n/Bq/njkTW1n1gnNEGgUf/g5l9fhiZZ4CFcykYWWaEabaciHj9DHfr51WOJ1u3EbAqVwNPBjf95r9JnimrkaV5N0S+eYE79aIbYnMMngbrWs1hUagYRKNB5Msn+HDxBAK2/QVjm6wwzW6PbJ2Gwjx/9HCYr+aORMDWP+A4byus3GrhYeeKCL15AQ6/boQ66B1MbGxhUdgVxlmyweT/b3ypgwPxZLgHMjfqiKwevWLUE5/+DRFy5gByDpuFzE27wDijDZ6O7gDrWs2RNY7Gow9XziBgyx/I9eOvMMka+w0GEQGioqAyNYUmMgIRT+7jvsenp7wcF+3Gk0FNYt02+4BJ8P93IdTvood8yVC8PAquOYN7LVyQreuP8P93ERxmrIVZ7nz4cMETIeePwDR7Hrz+LfZGepWFJSTsIwquPQdj6yzw37wMEvoBOQZNVeLXRITjYZfKiHj2AM77n0ATHgpTu1x4Pr4nQm9fgmXpqvh45TRyj10EI8uM8F06EbYdh+j0FJeoKGjCQ6EJ/YCQMwdhmisvTLLYwaJQMZ14Ip4/xt1GBWCUyQamORwQ/uAG7CetwIsJun8fs7yFYNt+EMLuXcW77fEP+VJkxx08+V9rWBR0QZ7JqxDucxcP2pWJUc5x4S5kqtoQIWcOwsgyI6Lev1X+L2asWBf5lh9EsOcuPBnaHFZlq6PAquMAos+p77avQtb2A5GxfG3Y1PVQ9qn5+AEfr52FVdka8Z6n/FbPATRq2PUcjfAn9+G/fgE0YaF4998KFP7vJiwKuihlg0/th8+AuG8iWBQpgbB715CxSgPY1GuNt3/PQfjjO/F+RkB0Q3X+ZQfwbGwnBHnugvN+HxhnyYYbJT+dkwusOQOrkpUQeOQ/+K/9DeaFiiN7759gYpcLbxb9Ar8/p6Hw1uswymAJGJvALFdenff4cPk0QryOInuvsbH2Uo4K8EOI9zFY124BI9OEzxUjkZHwXTEDptntEXr7ElTGxrBwKoUov1ew6zUGKuPoJ+ZFowFUKp1j08pYtSHyL9kLAAh7fAf3mxfVWZ973CIEHtyMD1dOA1FRgEoFmwbtka3jEBjbZMW77SuRtXVfmOXJH3298bkLU9uceNzPHRkr14dth0F4MbE3cg6eFn0etc+HyBc+eNy/ARxmrEW4z12ojE1g4VwKFvEMnSIiCPbchQzF3WCc2Vb5vEQE4Y/vwDxvYahMTCAaDdTv3urcxIv3MxTB8196wNQuN8Ie3ECWZt1gXbMZHvdzR7jPHUT5vdIpn8XjB7zb9hcAwChTZti26Qvz/EXx/JfuAICC/3rj/d71sOs2QrlWJZfEzh/ZMA5+sSEiIiKihGH++P34GRIRERFRQiR2/sgxFIiIiIiIiIiIiIgoXUn1DeM+Pj7o1asX8ufPjwwZMqBgwYKYMGECIiIiDB0aEREREREREREREaVAqX4Gpzt37kCj0WD58uUoVKgQbty4gd69e+PDhw+YM2eOocMjIiIiIiIiIiIiohQm1TeMN2jQAA0aNFBeFyhQAHfv3sXSpUvZME5EREREREREREREMaT6hvHYBAYGImvWrHGuDw8PR3h4uPI6KCgoOcIiIiIiIiIiIiIiohQgzTWMP3jwAAsXLoy3t/iMGTMwadKkGMvZQE5ERERE30KbN4qIgSNJvbSfHXNwIiIiIvoWiZ2DqySFZvNjxozBrFmz4i1z+/ZtODs7K69fvHiBGjVqoGbNmvjrr7/i3O7LHuMvXryAi4vL9wdNREREROnKs2fPkCdPHkOHkSo9f/4cDg4Ohg6DiIiIiFKZxMrBU2zDuJ+fH/z9/eMtU6BAAZiZmQEAXr58iZo1a6JixYpYvXo1jIyMvvm9NBoNXr58iUyZMkGlUn1X3AkRFBQEBwcHPHv2DNbW1sn2vpS6sd6QPlhvKKFYZ0gf6aneiAiCg4ORO3fuBOWd9AlzcEpNWG8ooVhnSB+sN6SP9FRvEjsHT7FDqdjZ2cHOzu6byr548QK1atVC2bJlsWrVqgR/MEZGRgbt6WNtbZ3mKy4lPtYb0gfrDSUU6wzpI73UGxsbG0OHkKoxB6fUiPWGEop1hvTBekP6SC/1JjFz8BTbMP6tXrx4gZo1a8LR0RFz5syBn5+fsi5nzpwGjIyIiIiIiIiIiIiIUqJU3zB+6NAhPHjwAA8ePIjR4ySFjhJDRERERERERERERAaU6gdE7N69O0Qk1p+UztzcHBMmTIC5ubmhQ6FUhPWG9MF6QwnFOkP6YL2h1ID1lPTBekMJxTpD+mC9IX2w3ugvxU6+SURERERERERERESUFFJ9j3EiIiIiIiIiIiIiooRgwzgRERERERERERERpStsGCciIiIiIiIiIiKidIUN45TsOKw9ESUHnmtIH6w3pA/WG0oNWE+JKDnwXEP6YL0hfSRGvWHDOCUrf39/qFQqQ4dBqczz58+h0WgMHQalIq9fv+a5hhIsMDCQ9YYSjLkNpQasp5RQzL9JH8zBSR/MwUkfiZXbsGGcksXhw4dRoUIF1K9fHwMGDMDRo0cB8K4gxe/EiRMoV64cqlSpggYNGmDx4sWGDolSuGPHjsHNzQ01a9ZEu3btsGnTJkOHRKnAgQMHUKVKFbRo0QLjx4/H1atXAYANAhQv5jaUGrCeUkIx/yZ9MAcnfTAHJ30kdm7DhnFKcsePH8cPP/ygVNpbt26hVatWuHv3Lu8KUpzu37+PYcOGoXbt2li1ahVcXV0xbNgwLF68GJGRkYYOj1KgS5cuoX///qhfvz5mzJgBIyMjdOnSBfv27WNyRXHatWsXunfvjlq1aqFhw4bYvn07WrdujaCgIBgZMU2i2DG3odSA9ZQSivk36YM5OOmDOTjpIylyG5WwuwAlEW3VGjRoEG7fvo0DBw7A1NQUAFChQgXY2tpi6dKlcHR0NGSYlMJoNBoYGRlh1apVGDduHK5evYrs2bMDAIYMGYLLly9j1KhRaNq0qYEjpZRCRKBSqTB9+nSsW7cO586dQ6ZMmQAALVu2RGBgIGbOnIny5csbOFJKKbR1JioqCu3atUOGDBmwdu1aAMCzZ89Qr149VKpUCUuWLEGGDBkMHC2lJMxtKDVgPaWEYv5N+mAOTgnFHJz0lZS5DW/DUKIJDw/H0aNHERQUBABQqVRQqVS4cuUKSpYsCVNTU0RERAAAfv/9d3h5ecHT09OAEVNKEBYWhk2bNuH69euIiopS7g5fu3YNJUqUgLW1tVJ2yJAhyJAhA7Zs2cJHgNOxsLAw7N69G8+fPwcA5c7wpUuXUKJECWTKlEnp1TRp0iS8ffsWe/fuNVi8lDKEh4fj3LlzUKvVSp0xMTHBtWvXULJkSQCAWq2Gg4MD5syZg7Vr18LLy8uQIVMKwNyGUgPWU0oo5t+kD+bgpA/m4KSP5Mxt2DBO3y08PBzjxo1D1qxZ0bt3b5QrVw6zZs1SKmn58uVx5MgRAICZmRlEBBUrVkSJEiWwc+dOvHv3zpDhk4FoNBrMmjUL2bJlw8SJE1G3bl306tUL169fBwCUKVMGXl5eCA0NVbYpVKgQqlSpgkePHuHs2bOGCp0MJCoqCpMmTYKtrS2GDx+OihUrYuTIkXj9+jWA6HPN8ePHAQCmpqYQEZQoUQLlypXDuXPncP/+fUOGTwYSGhqKESNGwNbWFp07d0bFihWxatUqANHXLzc3N5w4cQIAYGxsDBFBkyZNULhwYWzYsMGQoZMBMbeh1ID1lBKK+Tfpgzk46YM5OOnDELkNG8bpux0+fBg7duzArl27sH//fvTt2xdTpkzBkiVLAAAVK1bE+/fvlbs34eHhAKIfgdi/fz/HOEyn7ty5g02bNmH58uXw9vbGH3/8gZs3b2Ls2LFQq9Vo1KgR1Go1tmzZAiA6IQOAhg0b4sWLF0oiRumHl5cXtm7dig0bNuD06dOYPn061q9fj+nTp0NEUKtWLbx79w67d+8G8Olc07FjR1y4cAEfPnwwZPhkIFu3bsXevXuxf/9+rF+/HtWrV0f//v2xe/dumJubw9XVFa9fv8alS5cAQOnp1L9/f2zbts2QoZMBMbeh1ID1lBKK+Tfpgzk46YM5OOnDILmNEH0HtVotQ4cOlYoVK0pUVJSyfODAgVKlShU5ffq0vHr1SurVqyceHh4iIqLRaERE5MmTJ5IxY0Y5e/asQWInw1q7dq1kypRJgoODlWWbNm2SwoULy8KFC0VEpHfv3lKwYEEJDQ3V2TZLliyyevXqZI2XDG/27NmSL18+CQsLU5b9+uuvUqpUKdmyZYuIiDRr1kzKlSsnIp/ONZGRkWJlZSV79uxJ/qDJoMLCwqR169bK9UercePGUq9ePXn06JFcvHhRKleuLD/++KOIfKo3np6ekiNHDrl161ayx02GxdyGUgPWU9IH82/SB3NwSijm4KQPQ+U27DFO38XIyAgPHjyAi4sLjI2NoVarAQB9+/aFqakp1q9fj5w5c6JDhw44ePAgDh06pNzBOXToEHLmzKlM7EJpn3w2LuHr169RqlQpvH37VllWt25d1K9fHwsXLgQA/Pzzz/D19cWvv/6K9+/fAwC8vb2ROXNm5MyZM1ljJ8N7+vQpSpQogbCwMGVZmzZtUKRIEfz1118AgOHDh+PKlStYvXo1NBoNAODAgQOws7PjuSYdMjc3x4MHD1C0aFEAn3oUjBs3Di9fvsR///2HMmXKoE6dOti5cycuX76sXKNOnz4NOzs75MiRw2Dxk2Ewt6HUgPWUvhXzb/pezMEpoZiDkz4MlduwYZz0pq2kNWrUwMGDBxEZGQljY2MAgKurK8qWLYtbt27hwYMH6N69Ozp27IjOnTtjyJAhWLNmDX777TfUqVMHBQoUMORhUDL6/LGWwoUL4+HDh3j8+LGyLEuWLGjYsCGioqKwfft25M2bFzNmzMDq1avRsGFDLFy4EL169YKzszOqV69uiEMgA9B+oStXrhxOnDgBf39/ZZ2joyOqV68OX19fnDlzBjVr1sS4ceMwZswYtGnTBn/99RfGjBmDChUqoEyZMoY6BDKAz69R27dvBxA9Dh0AVK5cGU5OTjhx4gSCgoLQu3dvFCtWDE2aNMGvv/6K9evX499//0WzZs2QNWtWQx0CGQBzG0oNWE8pIZh/k76Yg5M+mIOTPgyZ27BhnOK0cOFCjBo1CocOHUJAQACAT+PMbd26FT4+PgCAZs2awc/PDzt37tQpU79+fdy5cwf+/v5QqVRYtmwZ/ve//+Hx48eYMWMGWrVqhaVLlyb/gVGSmjdvHtq0aYOlS5fi1q1bAD6d5Hbs2KFMpNGsWTMAwM6dO3XGnXNyckKuXLlw584dAMDAgQOxcuVKlCpVClu3boWHhwd2796NDBkyJOdhURKaP38+fvjhB2zatAlPnz4F8GmMuY0bN+LUqVMAgPbt20NEsGPHDp3ty5cvjw8fPuDZs2cAgEmTJmH+/PmwsLDAsmXL0KpVK6xfvx5GRrzkpSVLly7F7Nmzcf78eaUXiraH0o4dO5QJWtzd3XH//n2cPn0aKpVK6e3UunVrnD59Gh8/foSDgwM2btyI1q1bY+/evfjll1/Qpk0bTJ061TAHR0mGuQ2lBqynlFDMv0kfzMFJH8zBSR8pOrf53jFgKO25du2aODk5iYuLizRv3lzs7OykadOmyvrg4GBRqVTyv//9T0REwsPDpXPnzlKyZEmdsegCAwNFpVLJmTNndPYfEhKSPAdCyerZs2dSvXp1cXFxkf79+0vRokXF3t5ebt68qZRxcXGRevXqiY+Pj4iIzJs3T3Lnzi1HjhzR2ZednZ388ccfIvJpzCi1Wp1MR0LJ5f79+1KmTBlxcXGRzp07i4ODg5QpU0Zn3Etzc3Np27atBAYGiojIqFGjJG/evHL//n2ljEajETMzM9m5c6fO/sPDw5PnQChZnT17VhwdHaVo0aJSt25dsbW1lSFDhijrb9++LSqVSn7//XcREXnx4oXUr19fatWqpbOf27dvi5mZmc45SkQkICAg6Q+Ckh1zG0oNWE8poZh/kz6Yg5M+mIOTPlJDbsOGcVJoE6ApU6ZItWrVJDg4WDQajRw+fFhsbW3lp59+ksjISBERWb9+vRw+fFjZ9t69e5IhQwaZPHmyPHv2TEREli1bJmXKlFFeU9qkrTdbtmwRR0dH5e8dGhoqZcqUkZYtW8q1a9dEROTkyZNy9OhRne3d3NykadOmcu7cOREROX78uBQvXlxOnTqVjEdByUk7kcbSpUvF1dVV/P39RSQ6Sbe3t5cePXrIixcvRERk//79cuDAAWXbsLAwyZ49u/Tt21eZkGXr1q3i6uoaI7mitEej0cjQoUOlefPm8vHjRwkPD5c///xTsmbNKkuWLBGR6DqyaNEi8fT0VLY7cOCAqFQqWb16tbx//15Eoq91VapUkffv3/OLfxqmPd8wt6GUjDk4JRTzb9IHc3DSF3NwSqjUlIOzYZyUxEqrRIkSMnr0aJ1ly5cvl4wZM8qFCxfi3H7p0qXi7OwsxYoVk3bt2omVlZX88ssvSRc4GcyXdUZEpG/fvtKgQQOJiopSLnBHjx6VokWLyuzZs2OU15Y5ceKENGvWTLJkySLu7u5iaWkpP/zwg87dQUr9bt68KQsXLtRZ1rBhQ+natauIfLpw7tixQ7JlyyabN2+OsQ9tmS1btkjVqlXF3t5eWrRoIZaWljJs2DCdmaspbYitx1GePHlk7ty5yuvIyEj5+eefJXv27OLr6xvnviZMmCD29vZSrVo16dy5s9jY2Mivv/6aJHGTYd2+fVs2btyos4y5DaVEzMEpIZh/kz6Yg5M+mIOTPlJrDs7BntIpb29vtGvXDk+fPoVKpYJGo4FE3yiBs7OzMjaddqyoPn36wMbGBhs3blSWaWnHIevTpw/+++8/dOvWDdmzZ8eJEycwefLk5D0wSlIXLlxAs2bNdMaX045fmC9fPty+fRvGxsbKRC21atVC8eLFcerUKTx69EhnX8HBwQCAatWqYe3atVizZg2qVq2KU6dO4c8//4SFhUUyHRUlpZMnT6Jq1aooXrw4Hj16hPDwcKXOFC5cGDdu3NAp36xZM+TPnx+7d+/Gu3fvdNZpx7Br1aoVNm3ahClTpsDJyQmnTp3C/Pnzlck5KPU7c+YMOnTogL59++KPP/5Qxr308/ODs7Ozcj4REZiYmGDQoEGIiorCxo0bleVa2t9/+eUXbNiwAZUrV4a5uTmOHj2KESNGJPORUVLSnm9cXFxw//59REZGMrehFIc5OCUU82/SB3Nw0gdzcNJHqs/Bk796wxsAAQAASURBVKS5nVKsN2/eyKhRoyRnzpyiUqmkb9++IvLpLrBGo5EpU6aIm5ubMn6Y9m7htGnTxNHRUSkXHh4uvXr1kr/++ivWHgyUdgQFBcmsWbOkQIECYmRkJDVr1oxxF/nUqVNiZmamjPkUFhYmIiLbtm2TvHnzKo9qioiMGzdO+vTpI69evUq+g6Bk5ePjIw0bNhSVSiU//vijPHnyJEaZNWvWSK5cueTq1asi8qnOrFixQmxtbeX169dK2d69e8v48eM5Pmoa9+TJE+nYsaPY2tpK//79pW/fvlKgQAFp1qyZiERfq3r06CEtWrSQ58+fi8inXgX9+/eXEiVKKMuCgoKke/fucvDgQRH51EuO16u0586dO1KjRg1RqVQybNiwGOcb5jaUEjAHp4Ri/k36YA5O+mAOTvpIKzk4e4ynM35+fnjy5AmmTJmCmTNnYtOmTQgICICxsTGioqKgUqlQpkwZmJiYKLOXa+8AN2zYEH5+frhz5w5UKhXMzMzw6tUrrFy5UplhmNKmDx8+IDAwEMOHD8eRI0dw8uRJnDhxQqdMgQIFUK1aNeUunrbetGzZEv7+/nj9+rVS1tjYGOfPn0dQUFDyHQQlKz8/P7x8+RJ9+vTB3LlzkTdvXty6dQsfPnxQ7go7OTmhcOHCWLRoEQAoM9Z7eHggMDAQjx8/VvYnIti0aRM+fPiQ/AdDyebkyZN4/fo1jhw5giVLlmDp0qWYM2cOrl27hosXL8LY2BiVK1fGs2fPcPjwYZ1t69Spg3fv3uHZs2dQqVQQEVy5cgULFiwA8Kl+qVSqZD8uSlrPnz/H7du3MW3aNMyfPx958+bFw4cPlVnsVSoVSpYsCWNjY+Y2ZDDMwSmhmH+TPpiDkz6Yg5M+0kwOnqzN8JQieHt7i0j0+D/FihWTkSNHiohIRESEiIh8/PhRBgwYIGXKlNG54/PPP/9I3rx55caNG8qyt2/f8s5fOnH//n2lV5O7u7s0bNhQZ7IMjUYjGzduFGNjY50JN27cuCG5cuWSDRs2KMsiIyNZb9KBcePGSbVq1WTs2LFSsWJFcXV1lRIlSkivXr1EJLoezJo1S7Jlyya3b99Wtjt06JDkypVLpx5FRESwzqQDJ06cUCZ60p5fjhw5IgULFpSLFy+KSHQPusaNG0uLFi10xjOcOXOmODs76/SEe/z4MetNOtGhQwfx8PCQqVOnSoUKFaRcuXJSuXJlZSzCDx8+MLchg2MOTgnF/Jv0wRycEoo5OOkrLeTg7DGeDmjHEtPeIS5XrhwAwMHBAW3btsXff/+NiIgImJqaIioqChkyZEDXrl1hZmaG7t274/z58wgICMCRI0fg5uaGYsWKKfu2tbXlnb80SltvtAoVKqTc3Rs9ejQOHDgAb29vZb1KpULLli3Rvn179OrVC3PnzsWLFy/wxx9/IF++fGjSpIlS1tjYmPUmDdLWGfn/8eQaNGiADx8+YMeOHWjXrh1+++039OjRAxs2bMDIkSOhVqvRvXt3lC5dGh06dMDmzZvx9u1bbNmyBcWLF0e1atWUfZuYmLDOpFGfn2uqVauG+vXr66zX9jwpVKgQACBTpkzo2bMnfHx8MGjQIPj4+ODt27e4dOkSqlWrhpw5cyrb5suXj/UmjdLWG+2/bdu2xfnz57Flyxa0bdsWv/zyC8qXL4+ZM2diwYIFsLS0RI8ePWBiYsLchpINc3BKKObfpA/m4KQP5uCkjzSZgyd7UzwlGV9fX7l69ap8+PAhxrqPHz+KyKdxnbT/ent7S/78+WXGjBki8qnHikh0b5ZSpUqJs7OzZM2aVVxdXZWeLpR2vH//XpmB/su7cyEhIfL+/ftYt6tQoYJ06NAhxvKQkBAZNGiQuLi4iL29vRQtWlSOHj2a+IGTwXytzgQEBCivly9fLqdPn9Yp89tvv4mDg4PS++DVq1fSpEkTcXZ2luzZs4uLi4ucOnUqiY+Ckpu/v788ffpU5zqj9eU16nNdunSRrl27isinMTAjIyPF09NTcufOLa6urpI5c2YpU6aMXL9+PQmPgAzBz89Phg4dKteuXRORT+Mxi0T3QPn89YwZM+T8+fM6248bN04cHByU8xJzG0oKzMEpoZh/kz6Yg5M+mIOTPtJTDs6G8TTA19dX2rdvL5aWllKyZEmpWLGiHDt2TFl/6dIlMTIykhMnToiI7kkvKChIRowYIXnz5lWWqdVqpZJ/+PBBLly4IBcuXEieg6Fk8+TJE+nRo4fY2dnJkiVLRER0Hs0MCgoSGxsbGT9+fKwXym3btomZmZncvHlTRKLrlfaCKSLy7NkzuXXrVhIfBSWnhNSZz88hWtp69PHjR1GpVHL8+HGddXfu3FEmAaK04969e9K6dWvJlSuXVKxYURo0aCD37t1T1sd3jfL19RUHBwfZvn17rPt++/atHDt2TGdyMUpbBg8eLCqVSjw8PETk0znHx8dHMmTIIKtXr1bKBgcHx9j+3r17YmxsrPOY5sePH5nbUKJgDk4Jxfyb9MEcnPTBHJy+R3rKwTmUShqwevVqPH78GJ6enli2bBlsbGwwcOBAnDlzBgCQMWNG1K9fH9evXwegO+lBpkyZ0Lx5c2g0GixfvhxnzpzBmDFj4OvrCwCwtLRE2bJlUbZs2eQ/MEoy9+7dQ9euXfHo0SMUKlQIx44dQ2hoKIyMjJRH8DJlyoS+ffvCxMREeQT4cy1atEDhwoWxePFi7NmzBz179sShQ4eU9Xny5EHRokWT7ZgoaSW0zmhZWloqv2vPPRs2bEDWrFmRIUMGnXVOTk4oUaJEMh0RJTWNRoOdO3eiVatWMDU1xX///YdRo0bh0aNHmDZtGt68eQMAsLGxifMadejQIVhZWaFp06YAAC8vLyxduhRA9ON7tra2qFmzJipUqJDMR0fJISIiAufOncPw4cPh6emJu3fvKhM42dnZoW3btnj79q1SPmPGjMrv2vPS5s2bkStXLp3zUoYMGZjbUKJgDk4Jwfyb9MEcnBKKOTh9r3SXgxuyVZ70p72bFxkZKQ4ODjJlyhRl3aNHj6Rp06ZSvnx5EYm+sxPbHRytp0+fSvXq1UWlUolKpZKOHTsqj2hR2hQRESE//vijXLt2TRYtWiTly5dXJuf5/JGYz3//UmRkpPzwww869ebdu3dJHTolM+25Jjw8/LvqzOvXryUqKkr27dsnVapUkREjRiR98GRQGo1Gxo4dK+PHj9d5tHflypVSrFgxnUl7QkJCYmwrItKtWzcZNWqUXL16VapUqSIqlUratWvHyXzSqM//rhqNRvz8/KRx48ayd+9eqVGjhnTp0kVEPvVY+byX5Of8/f1Fo9HInj17pHLlyjJ16tSkD57SDebgpC/m35QQzMFJX8zBKaHSew7OhvFUZP369TJv3jy5ceOGMhbUq1evpGLFijJz5kylnEajkcOHD4tKpYr1sZjPHT58WJycnMTCwkImTpwogYGBSX8glKwOHjwY69hh2pPZs2fPpGnTptKhQwedR/Lic+vWLXFxcRETExOZOHGiBAUFJX7gZDBbtmyRpUuXyrVr13SSJX3rzJs3b6RNmzZSunRpyZgxo4wbN45f/NOgz69R2npz+fJl5VFebV05cOCAZMmSRSdRj42Pj4/yxd/c3Fz69+8f55irlHr9888/8vPPP8vp06eVv29kZKSIRF+/KlSoICIic+fOFRsbG2W78PDwWPd3584d6d69u5QuXVqsra3ll19+iTN5J/pWzMEpoZh/kz6Yg5M+mIOTPpiDf8KG8VTg4sWL4uzsLI6OjlKpUiWxt7eXQYMGiUj0eGJ16tSRIUOG6CRH7969k3r16kmzZs1E5FNCtnHjRp1eBZs3b5bffvuNd/7SoC1btkjRokVFpVLJvHnzRCRmTwLtRXL27NlSoUIF2bNnT6zlNm3aJJ6ensrrW7duyZo1a1hv0pi///5b8uTJI4ULF5Zq1aqJvb29/PjjjyLy6RyS0Dqj3W7ZsmWybNky1pk0KLZr1ODBg3XKaDQapY4MGDBAWrRoEeu+Pr9GXbp0SRo2bChz585lvUmDbt26JaVLl5Z8+fJJ3bp1JVeuXMoYhlqrV6+WH374QUSix7osVaqU1KlTR1q0aCFnz55Vym3atElu374tItFjF/7666+yaNEi1hv6bszBKaGYf5M+mIOTPpiDkz6Yg8fEhvEUTFuZxo0bJ3Xr1pXQ0FAJCAiQ1atXi4mJiaxatUpERMaOHSvlypXTmfggMjJS5s2bJ87OzvL27VsREXn48KHY2tpK586dk/1YKHl5e3tL1apVpX///tKxY0epWrVqrI/XaROsW7duibu7u/Tq1SvW/VWvXl2KFSvGnilp2N69e8XNzU0WL14s4eHh4uvrKwsWLJBcuXIpFzuNRpPgOsMecGnX165R//zzT4yyHz9+lMqVKyuPAH/u0aNHYmtrKx07dhSRuB/Ro9RNWxfmzJkjbm5uEhISIqGhoeLp6SkmJiYydepU5bzRv39/Wbp0qYiIzJo1S6ytrcXIyEhGjx4tERERIiISGBgoRYsWlTp16hjmgChNYg5O+mD+TfpgDk4JxRyc9MEcPG6cfDMF005+sGbNGjRu3BgWFhbIkiULunXrhsGDB2PChAl4+/YtBgwYAH9/f+zfvx+hoaEAABMTE0RFRcHKykoZ/D537tyYM2cOunTpYrBjouRRrlw5tG3bFpMnT0bLli3x/v17rFmzBkD0ZBla2gkUihYtikqVKuHWrVs4efIkAODp06dKuQULFmDOnDnIlClTMh4FJbdmzZqhc+fOMDU1hZ2dHSpUqIDs2bPj2bNnAKLPSQmtM9bW1sl/IJQsvuUa9ejRI52yt2/fho+PD9zc3JT9hIWFAQCyZ8+OOXPmoFu3bgAAc3Pz5DwcSibaurB582ZUq1YNVlZWMDMzQ40aNTBt2jT89ddfuHz5MqKionD//n2sW7cOWbJkwbJly9CnTx8UKFAANjY2MDU1hUajgbW1NebNm4eRI0ca+MgoLWEOTvpg/k36Yg5OCcEcnPTBHDwehm6Zp7hpH3upUqWK8timdsyfoKAgMTc3lwULFohIdI+VsmXLysqVK5XtBwwYII0aNfrmcesodYnr8ZQvlz9//lw6d+4stWrVirW8tn5cvnxZ6tWrJx4eHtKyZUsxMjKKd8IoSn3ie6QptvEG79y5I5kzZ5YnT57oLGedSV/iO9d87Rq1ePFinW169eolrVu3FhGRu3fvSs+ePaVnz57smZKOaM8fzZo1Ux7b1I5VGBERIfny5ZPRo0eLiEjXrl2lbNmysmbNGgkLC5Pw8HAZM2aMmJqaGiZ4SjeYg1NcmH+TPpiDkz6Yg1NiYg4eN/YYN7CQkJA416lUKkRGRsLNzQ3Xr19HUFAQTExMEBkZiUyZMqF9+/ZYt24dAGDgwIGoX78+evXqhS5dusDd3R0bNmxA//79lbvLlHb4+/srd/y+9PlyjUYDe3t71K1bF69fv8b27dsBxOy1EhkZidevX8Pb2xv//fcfVCoVzp8/j4wZMybpcVDyeffuXZx1BgAsLCwARNcZrX///RclSpRA7ty5dZazzqQfFy5cgL+/PwDd8wbwbdeo9evXK+XfvHmDCxcuoHTp0mjVqhVcXFzw5MkTjBw5kj1T0pizZ89iyZIl8PX1jbHOyMgIGo0GNWrUgLe3N969ewczMzNERETA1NQUbdu2xbZt26DRaLBo0SKcOHECnTt3hrm5OczMzNCkSRMMHDgQ79+/V3rjEumDOTglFPNv0gdzcNIHc3DSB3Nw/TBbM5AdO3agUqVK6NixI0aOHInHjx8DQIwKZmFhgZIlS+LDhw/YunWrzrp27drhxo0beP/+Pezt7TF9+nRs2rQJuXPnRuHChXH16lU0adIk2Y6Jkt6ePXtQtmxZNG/eHL1794a3tzeAmPVGS5uEVa1aFS4uLlixYgUAwNjYWKfcggUL0KhRI3h4eODFixfYunUrypUrl4RHQsllx44dqFq1Ktq1a4cffvgBZ86cARB3ndFeMNVqNQ4fPowmTZrAxMQkxpf7hQsXss6kcXPnzkX58uUxatSoOMt87Rp15coVBAYGAgCuXLmCa9eu4ZdffoG5uTkePXqEw4cPw9nZOUmPg5KPl5cX3Nzc4O7ujrt37+L58+exljMyMkLJkiVha2uLZcuWAfjUINCjRw88ePAAL168QKZMmWBpaQng0zmrSpUqmD9/PjJnzhxvQwNRXJiDU0Ix/yZ9MAcnfTEHp4RiDv6dDNVVPT379ddfJX/+/DJhwgRZs2aNlCpVSqpWrSp37twRkU+POGgfnXnx4oW0a9dOatWqpTwiIyKyYMECcXJykocPHyb/QVCyO3bsmNjb28svv/wia9eulVKlSomTk5NcvXpVROJ/RE9EZOnSpeLk5CQnTpyQqKgoOXr0qLLu7du3fPwujXn27Jl07NhR8uXLJ+PHj5fVq1dLyZIlpUqVKvLo0SMRib/O3LlzR3Lnzq1zfrl+/bryO+tM2qWtF23btpWmTZtKtmzZxNfXV0REZ1iAb71G3b9/X0Si68/8+fPlw4cPyXUolIxCQkKkWbNmMmTIEGXCwdiGkdDWm3fv3snw4cPF0dFR5zHybdu2ib29vVy4cCF5Aqd0hTk4JRTzb0oo5uCkL+bgpA/m4N+PDePJRFsJfX19pUiRIrJixQpl3c2bN8XV1VVatmwZ5/a7du2SAgUKSP/+/eXRo0cSHh4uHTt2lC5duiR57JT8YkuWWrdurVNHfHx8xN3dXapWrfpN+7pz547Uq1dPChYsKHZ2dpIrVy4JCAiI8/0odfnyb7h//35p2bKlnD59Wll2+vRpqVKliqxbt+6r+xs9erS0a9dORKKTq1y5ckmuXLliNBpQ6hbb31G7rEaNGvLXX39JpUqVZPjw4SIiOkn353iNSl9iqzebN28WFxcXZTb7PXv2yOnTp5XrTGwJ+vXr18XZ2Vk8PDzk9OnTEh4eLj/88IM0b948SeOn9IU5OH0r5t+kD+bgpA/m4KQP5uBJgw3jSSgkJETOnj2rDGgvEt3roFixYnLw4EFl2fv37yV//vyiUqnk3LlzIvKpwn/+7+7duyV37tzi4uIi2bNnFycnpxjlKfX7cgIW7Ymsbt260qdPH511Xl5eYmxsLLt27Yp3n8+fP5fhw4eLSqWSYsWK6XwppNTv48ePyu+fT8rj7e0tIp/OD69evZJMmTLJsWPH4t2fv7+/FCpUSAoWLKgk48uWLUua4MlgYpvsScvLy0tq164tHz9+lPHjx0u2bNmUdZ9fb771GkVpx5f1RlsHxowZI3Xr1pVHjx5Jvnz5xNXVVQoVKiQuLi5Kz8rYnD9/XsqWLSuFChWSnDlzSsGCBcXT01Nn30QJxRycEor5N+mDOTjpgzk46YM5eNJhw3gSCA4OlkGDBomlpaU4OTlJ5cqV5c8//xQRkYcPH0qRIkVkypQpEhISIiIihw4dkhYtWkjx4sWVu8NRUVE6+9RWzDdv3siuXbvk0KFDyXhElBzevn0rw4YNExsbG1m9erWIfKoHHz9+lD59+kiTJk2UR+e0daJJkybSoEEDEYn9bqCIyKRJk6R06dKybdu2pD4MSkb+/v7yv//9T1QqlcyZM0dEomeU/pK2rly4cEEKFy4s9+7di3e/jx49kty5c0vZsmXlv//+S/S4ybDiO9donT9/XmrUqCGRkZFy8+ZNcXJykgkTJsi6devk8uXLMfbJa1Ta97V6s3LlSilSpIi0a9dOpk+fLsHBwXL27Flp1KiRuLm5KY8Cf05bbz58+CDHjx9XknEifTEHp4Ri/k36YA5O+mAOTvpgDp70VCJpbDrRFGDt2rWYOnUqVqxYATMzM/z1119YvXo1Dhw4gJo1a2Lq1Kn4448/ULBgQbx9+xYPHz7EjBkz8OHDB6xYsQI3btxAhgwZDH0YlIzu3LmDH3/8Ef7+/jAyMoKNjQ32798PIHoyBCMjI8yaNQs7d+7EhAkTUL9+fWX55s2b0a1bN7x8+RKZM2fW2a+2TGhoKOtUGvPkyRP89NNP8PHxgZmZGV6+fIk7d+7EWlZEoFKpMHPmTBw9ehQHDx5U6kZsAgMD8e7dO+TLly8Jj4AMIb5zzedGjhwJY2NjzJw5Ew8ePEDbtm1x5coVlCxZEhs3bkThwoXT3qQrFKf46o32/LJ582b8/PPPePfuHTw9PeHi4gIAePr0KfLly4ejR4+iZs2aMfat3Z4oMTAHp4Rg/k36YA5O+mAOTvpgDp48Yj8jU4JpZ3IFgMWLF6Nu3bqoUqUK3NzcsGzZMjRv3hzDhw9HYGAgRo8eja1bt6J8+fLo1q0bHj58iKFDhyJDhgzIkyePzr4obVOr1QAAR0dHODo64vfff0efPn3w5MkT7Ny5EwAQFRUFAGjZsiXUajX27NmDyMhIJaGys7ND3rx5cfv27Rj715ZhUp52aM8POXPmhKOjI6ZPn46ff/4ZgYGBWL16NYBPdUZLe8FbsWIFPDw8AEAnIf/ynGNjY8OEPI35lnONWq2GRD9JhoiICERFRaFt27YoWrQoRATZsmVDr169UKRIEWV/lLYl5BpVtWpVFCxYECEhIShcuDAAIDIyEnnz5oWzszO8vLwAfJrZXosJOX0v5uCUUMy/SR/MwUkfzMFJH8zBk1nyd1JPO3bu3CnTp0+XS5cu6Tw6Vb58+RiTJPj4+IiRkZGsWbMm1sftoqKipFmzZlK/fv3kCZ4MJq56o31E8/Hjx+Lh4SFNmzZV1mkfdZkwYYKUK1dONmzYoKxbvny55MmTJ9ZHZCht2L59u4wePVoOHz6sPP4tIsrvgYGB0qtXL3F1dY1zH/v37xcHBwdlEo6DBw9Kly5d4nz8l1I/fc41WrVq1RKVSiUeHh5y9uxZ8ff3lyFDhkjevHmTLX4yjO+5Rq1bt04yZswokyZNUtZduHBBihQpIocPH06mI6D0gDk4JRTzb9IHc3DSB3Nw0gdzcMNhw7ge7t+/L1WqVJEcOXJIlSpVJHv27NKlSxeJiIiQyMhIGTx4sFSvXl1JyLX/Nm/eXEm6Px8LKiQkRBYvXiwlSpTgJAlpWFz1JiwsLEbZxYsXi5OTkzLWk7bMs2fPZODAgWJqairjx4+XJUuWiIuLi4waNSrdTZCQHjx//lzq1asn2bNnl3r16km2bNmkfv364uPjE6Psvn37JGvWrLJz504RiTlz+c8//yydO3eW7du3S/HixSVDhgwyePBgiYyMZN1JY77nXKOd1OXBgwdy+fJlnbqxe/duKVSokNy8eTN5DoSS1ffUG+0Eh0FBQTJr1iwxNTWVDh06yPz588XNzU08PDyUpJ7oezAHp4Ri/k36YA5O+mAOTvpgDm54bBhPAO3JacGCBVK6dGkJDAyU4OBgOXbsmFhYWMj06dNFo9HIypUrdSZa0VbWnTt3ipmZmTJ79evXr2XKlCmSJ08eyZEjh/zxxx+GOTBKUl+rNzNmzFB6HWgnUbhx44Y0bNhQOnbsGOs+J0yYIC1bthRnZ2eZMWNG8hwIJRttnVmzZo04OzvL69evRa1Wy927dyVPnjzSv39/8ff3F5FPdeb169fSpk0bqVy5coz9ffjwQXLkyCEqlUqyZcumcyeZ0o6kONd8vt8vZ0KntCEp6s1ff/0lvXv3lgoVKvAaRYmCOTglFPNv0gdzcNIHc3DSB3PwlIMN41/x5SNOYWFh0qBBA+nTp49oNBqlMo8dO1bKlCkjJ06ckFevXknDhg2lVatWOtvu3btXHB0d5eLFi8q+Dx06JJs2bUqeg6Fkk5B64+bmJnv37tXZTqPRyJw5c8TJyUmuXLkiItE9mz7HC2Ta8vnM0hqNRiIjI6Vv377SuHFjnUepFi5cKOXLl5c///xTRHTr2tatW8Xa2lpOnz4tIiIvXryQqKgoef78uQwePFj+/fffZDoaSi7Jca6htCc56g17wdH3Yg5OCcX8m/TBHJz0wRyc9MEcPGXi5JtxeP78OYYPH45evXph4cKFeP/+PQDA3Nwc4eHhCAsLg0qlQnh4OABg0KBBUKlU2LFjB3LmzIn27dvD29sbS5cuVfZ5/vx55M6dG66urgCiJ96oW7cu2rRpk+zHR0lDn3ojIjh69CjCwsJgZGQEjUYDlUqF2rVrI2/evJgyZQp69uyJMmXKwM/PT3kvCwsLQxwiJbLnz59j4MCBaNeuHSZOnIinT59CpVLBxMQEgYGBEBGYmJgoE3B06NABuXPnxoEDBxASEqLUGQCoWLEiqlevjlGjRqF3794oXbo0bty4AXt7eyxYsADt27c35KFSIkrOcw2lHclZbzihD+mLOTglFPNv0gdzcNIHc3DSB3PwlI0N418IDAzE2LFj4erqimfPnsHc3ByTJk1Cly5dlMrbtGlT7Nq1C0B0cqRWq5E7d25UqVIF586dg6+vL9q0aYMBAwZg6NChaNSoEdq0aYPff/8dnTt3hqmpqQGPkJLC99SbypUr4/z583jz5g2ATzOVv3v3Drdv38a2bdvg4+ODVatWwc7OziDHR4kvJCQEkyZNQunSpfHmzRs4OztjxYoV6Ny5M27evAkAaN26NY4ePQo/Pz8YGxtDo9HA1tYWVapUwcuXL3Hjxg0Any5+9+7dw8OHD3HmzBk8fPgQ69atQ8mSJQ12jJT4eK4hfbDeUGrAHJwSiuc20gdzcNIHzzekD9abVMJwndVTpv/++08qV64s+/btU5bdvn1bVCqVXL16VUREzp07J3Z2drJkyRIR+fRInbe3t5iamsrTp0+Vbfft2yfjxo2T3r17y/Xr15PxSCg5JXa9+f3338Xc3FxatGghd+/eTcYjoeRy7NgxqV+/vmzevFlZ5ufnJ1ZWVsrkPS9fvhQHBwcZP368iHyazOfBgwdiZWUlZ8+eVbb9999/xdbWVho3bsw6k4bxXEP6YL2h1IA5OCUUz22kD+bgpA+eb0gfrDepAxvG/592HJ5Hjx7Jb7/9pownFhkZKcHBwZInTx5lbLD379/LoEGDxN7eXmdMspMnT4qNjY1cuHAh+Q+ADCKp6s3jx485xlgapa0zT58+leXLlyuzTWsnCCtQoID8/vvvIhI9ltisWbPExsZGHjx4oOzj8ePHYmFhIYcPH1aWvXz5Ut6+fZtch0HJjOca0gfrDaUGzMEpoXhuI30wByd98HxD+mC9SV3YMB4P7QD3Fy9elNy5c8vz58+VdY8ePZIcOXJI9+7dlUk2+vfvL02aNBERDnifnrHeUEJp/+73798XBwcH5e6xiEhERIQULVpUmjZtKtu3b5fIyEgZOXKk1K5dWz58+GCokCmJfcu5gOca0gfrDaUGrKeUUKwzpA/m4PQl5uCUVFhvUi6OMR4HEVHG8Dl06BAKFy6M7NmzK5Nv5M+fH2vXrsWdO3fQqVMn5M+fHzt37kS/fv0AcMD79Ir1hoDoerBr1y74+Pgof/v4ymr/7hcuXICtrS3y5csHAFCr1TA1NcWaNWtgYmKCgQMHokiRIlizZg0GDBgAS0vLpD4USkYigjNnziAiIuKr5wKea0hLRLBlyxacPn0awcHBXy3LekMpHespJRTrDGkxByd9MAcnfTAHT0OSvy0++X38+FEmTpwoKpVKVq1aJSKf7tbER61Wi1qtlvLly8u0adNiLRMcHCz79u1TxiOjtIP1hhJKrVbL/PnzJWPGjJI/f37Jmzev9OjRQ16+fCkicd/p1S5v2LChDBo0KNYyUVFRcubMGTlw4EDSBE8GExYWJr/88ovY2NiIi4uLlC9fXqZPn/7V7XiuSd/Cw8Nl0qRJSr3JmzevNGzYUB49ehTvdqw3lJyYS1FCsc6QPpiDkz6Yg5M+mIOnPWm+Yfzp06fSp08fKV++vJQuXVpcXV2/aTvtRfLs2bNia2sr7969ExGR58+fy4YNG+T169dJFTKlAKw3pI/r169LqVKlZO3ateLn5yc7duyQPHnySM+ePSU4OFhEYibm2te3bt2SrFmzKhfU58+fy/Lly+XOnTvJexCU7JYsWSJlypQRT09PuX//vixfvlxUKpUsWbJEGY/uSzzX0Jo1a8TV1VWOHDkiHz58kFOnTom1tXW8iTTrDSUn5lKUUKwzpC/m4KQP5uCkD+bgaU+aH0rF0tISuXLlwqRJk7BkyRLcvXsXu3btAhD9OENctI8q7N69Gy1atEBAQAA6deoEBwcHbNy4Eebm5skSPxkG6w3p48KFC3jx4gXc3d2RLVs2NGvWDD///DOuX7+OVatWAQA0Gg2AT/VIW2eOHj2KmjVrIjQ0FF26dIGDgwN27NgBGxsbwxwMJYv379/j999/R5s2bVCjRg04OjqiT58+cHd3x5w5c3Dy5EkAn+qNFs816dvHjx+xZs0alClTBtWrV4elpSWqVKmCbNmywdTUNM7tWG8oOTGXooRinSF9MQenhGIOTvpgDp5GGbJVPrF5enrKtGnT5OTJkzqzub5//15Eoh9daN++vbi5uYnI1wewf/36tTg6OopKpRIjIyNp1KiRXL9+PekOgAzi2rVrEhAQEGN5YGCgiLDeUEwXL16UU6dOxVg+ceJEqVmzps4dX19fX+nVq5dUqVJFmfX+S4GBgVKpUiXWmTQutmuUWq0WBwcH+eOPP5TXIiItW7YUW1tbGTx4sM717HM816QPceU2tWvXFnd3d7ly5YpoNBrp27evlC5dWjZu3BjrNU2L9YaSAnNwSijm36QP5uCkD+bgpA/m4OlHmmgY9/Pzk2bNmomNjY3UrFlTMmXKJB06dJC7d++KyKdESqPRyPHjx8XIyEhOnjwpIjHHrDt37pwcOXJEeZ03b14ZOnQoH21Ig86ePSs1atQQlUolv//+e5zlWG9I6+LFi9KoUSNRqVTSrl07efXqlYiIREZGiojIoUOHxNzcXGdGexGRv//+W8qVK6fzeNWFCxdkw4YNyusqVarIiBEjWGfSoLiuUQ8ePBCR6BnHc+TIIefPn5eoqCiZM2eOuLu7S5MmTaRmzZry8OFDZV8816QfcdWbmzdviojIqVOnxN3dXWrVqiXGxsbi5uYmP/74o+TOnVsaNmyoU09YbyipMAenhGL+TfpgDk76YA5O+mAOnv6kiYbxf//9V4oXLy6PHj0SjUYjp0+fFmdnZ+nWrZsyNpQ2kQoJCZEGDRpIvXr1RCRm74OKFStK1apVlZNgXHcJKXW7e/eudO7cWbp37y7t2rUTFxcXpYdKbFhvKCgoSEaNGiWdOnWSUaNGSdGiRWXPnj0xyjk4OMiYMWN0lt27d0+KFSsmy5cvV5Z17NhRnJ2d5fLlyyLCOpOWxXaNcnJykm7duklkZKQEBgZK+fLlpXDhwmJhYSG5c+cWLy8vOXHihJiZmYmvr6+yL55r0o+4cpuuXbvq9Hzr1q2bDBgwQHl9//59qVWrlowaNUpZxnpDSYU5OCUE82/SB3Nw0hdzcNIHc/D0J9U3jGs0Ghk1apRUqlRJZ/nSpUuldOnSymzm2rvJIiK7d+8WlUolN27cEBERf39/ZfD7bdu2ybp165IldjIcPz8/Wb16tdy+fVuePHki5ubmsnbt2ni3Yb1J38LDw+XYsWNKEu3q6iqDBw9WHpfSfvGfN2+eZM6cWa5du6azfdasWZVH9USiH83avHlz8gRPBhPfNapUqVLy119/iUj0+eTcuXNy6dIlpYy3t7fkzp1b6XkpIrJ9+3aea9KBr+U2K1euFJHoL/wuLi5y4cIFnXJly5aV/v37Kw2TrDeUFJiDU0Ix/yZ9MAcnfTAHJ30wB0+fUn3DuIhIp06dxMPDQ6fHwfPnz6Vjx45KDwORT70MAgMDpXr16tKoUSMZNmyYFC1aVDw9PZM9bko5unfvLmXKlJGPHz/GWYb1hj43d+5ccXZ21nk0SqtQoULSoUMH8fb2FhGRI0eOSLFixeTs2bPJHSalAPFdo+rWrRvndl27dpUGDRqIWq2O8fg4pX3fUm9CQkLExMRENm7cqJS5evWqlC1bVv7+++9kj5nSH+bg9D2Yf5M+mIPTt2IOTvpgDp7+GBl68s/voVarAQANGzbE4cOH8fbtW2Wdvb09KleujMDAQJw+fVpnu3v37iE0NBT79u3D8ePHMXXqVNSoUSNZY6ek9eTJE6xbt+6r5bSzTI8cORJXr17FkSNH4izLepO2BQUFfVM5bZ0ZMGAAoqKicOjQIQQHBwMAIiMjAQDLli2Dv78/GjRogNatW6N58+Zwc3ND6dKlkyZ4MpjAwEBERETEuu5brlFBQUHKNSoiIgJXrlzB1atX0a9fP5w5cwYDBw6EkZERjIxS9eWavuDv7w9fX99Y1yUkt7GyssKQIUPQtWtXdOzYEQMGDEDNmjVRqFAhNG7cOFmOhdIn5uAUG+bfpA/m4KQP5uCkD+bgFJsU+7/85s2baNmyJQ4fPgwAEJEYZYyNjQEArVq1gqmpKTZt2qSzvnLlynj9+jU+fvwIAFCpVNi9ezfc3d1hZmYGb29vXLp0CR4eHkl8NJRcLl68iPr16yN//vy4du0aQkND4y2vvdC5uLigSZMmmDdvHqKiomKU27VrF+tNGnXz5k00btwYlSpVQufOnbF27VplXWznHSMjI6jValhYWKBDhw7Yv38/bty4AQAwNTUFANSpUwfr1q3DggULUKRIERw4cACrVq2Cubl58hwUJbkrV66gRYsWqFKlCjw8PLB48eIYZRJ6jTIzM8Pu3bvRunVr3LlzB2vXrkWTJk2S/mAo2dy4cQNNmjRBmTJl0KJFC4wdOzZGg8C31Js3b94o9Wbu3Ln49ddfYWlpiZCQEOzevRsbNmyAra1t8hwUpTnMwSmhmH+TPpiDkz6Yg5M+mINTvAzbYT2m4OBg+fXXXyV//vyiUqmkSpUqIhJzspUvTZgwQXLmzKkzE/WrV69EpVLJ8ePHlWVPnjyRp0+fJk3wZDBPnjxRZirv27ev3Lt3L8H7OHv2rKhUKjl9+rSEhYWJt7e3vHjxQkREHj9+zHqTBp08eVKKFSsmAwYMkF27dsnQoUMlS5YssmjRonjPOdpH6vz8/MTR0VFmzJgh/v7+cuTIkRjjGlLa8vbtWxkyZIjY2dlJ3759Zfv27TJ06FAxNjZWHtuNTUKuUdrzDqUtx48fFycnJ+nfv7+cOnVKfv31V8mYMaNs2bIlzm2+td6I6I7jTKQP5uCUUMy/SV/MwSmhmIOTvpiD09ekuIbx169fy+DBg2X+/PmyY8cOMTY2ljNnzojI1xPzggULSuvWreXgwYOiVqtl0qRJUqNGDXn79m1yhE4GoK0Tly9flty5c+vMAPzgwQOdMQu/ZXywGjVqiKurqxQuXFjy5cvH8ejSMLVaLf369ZMmTZook2OIiHTo0EEKFiwoBw8eVMrFtb2ISP/+/SVPnjzi4OAgGTJk+OokUpS6PX36VEaMGCEnT57UWZ4xY0ZZv359vNvyGpU+aTQaUavVMmzYMKlTp46EhoYq63Lnzi1Lly6Nd3vWG0ouzMHpWzH/pu/BHJz0wRycEoo5OH0rgzeMnz17VplZXOv69euiVqslIiJC3N3dxd3dXURiJuXai6J2+fHjx6V58+Zib28vRYoUkSxZssjq1auT/iAo2V2/fl3CwsJ0lvXt21caN24sU6dOlapVq0rZsmWlfPny8uOPP+qUi4qKirG/wMBAmTt3rmTJkkWyZ88u48aNi3ciIEp9vjzPiIiULFlSfv75ZxGJnkBDJPrusEqlkvbt2yvlYkvMg4ODZd68eWJvby92dnYyYcIEnYstpQ2x1RsfHx+d69GOHTukYcOG8uzZM51yvEalX7HlNtWrV5eOHTtKQECAiERPCFanTh25efOmTjntNYr1hpIac3BKKObfpA/m4KQP5uCkD+bgpA+DNYwvWrRIbG1txdHRUYoUKSKzZs2SoKAgnTIajUZ27twpKpVKqbRfJuYRERHy6NEj5XVoaKgcP3483sciKHVSq9UydepUcXR0lGLFiknp0qXlr7/+UtZ7enoq66ZNmyb79u2T0aNHS6ZMmWT8+PE6PRIiIiLEz89Peb19+3YpWLCgTJ8+PVmPiZKWWq2W+fPnS7Zs2WTy5MnKlzltsjRq1CjJnz+/PHz4UESiH49q2rSpNG3aVKpUqaLTYykiIkKuX7+uvPbz85PixYvLlClTkvGIKDnEVW++vP48f/5cqlatKsbGxuLs7Cx58+aVadOmyatXr5QyvEalL7HlNtokfMOGDWJvby/NmzeX8uXLi7m5uZQtW1bs7Oxk4MCBcuvWLWU/rDeUlJiDU0Iw/yZ9MAcnfTAHJ30xB6fvYZCGcS8vLylZsqSsXLlS7t27JzNnzpQcOXLI2LFjlTLai+a7d++kQoUK0qFDBxGJeVJs06aNtGzZkuNBpXEPHjwQDw8PKV++vGzZskVOnTolQ4YMESsrK7lx44ZSbu7cueLp6amz7aJFiyRLlizy5MkTZVnlypVlwIABEhgYKCLRPQ8obQkICJAxY8ZIxYoVpUyZMuLi4qIk31p+fn6SP39+cXJykrJly4pKpZLBgwfL7t27xd7eXo4cOaKUHT58uFSqVElu376d3IdCyehb6o3W7du3Ze7cuXLnzh15+fKlrFy5UhwdHWXBggVKGV6j0o+4cpsxY8YoZV6+fClDhgyRatWqKcMN/Pfff1KpUiUZOXKkUo71hpIKc3BKCObfpA/m4KQP5uCkL+bg9L2MDDHh5/HjxxEQEICOHTuicOHCGD16NPr164eDBw9i165dAACNRgMAyJw5MwYNGoRNmzbh5cuXUKlUEBGEh4cDAMqUKQNLS0vONJ3G+fv749WrV1ixYgVatWqFKlWq4Pfff4eVlRXOnz+vlOvbty9q1Kihs2379u3x4cMHPHr0SFlWsWJF+Pr6wsgo+r9AxowZk+dAKNmoVCrkzZsXo0aNwv79+3Hv3j0cOHAAarUaAKBWq5EtWzYcPXoUkyZNQtOmTXHnzh0sWLAAjRs3xvv373X2V7JkSRQtWhSZMmUywNFQcvlavfmcs7MzfvzxRzg5OSFXrlzo0aMHMmbMCF9fX6VMuXLleI1KJ+LKbQ4dOoSdO3cCAMzMzHD16lX07NkTBQsWRIYMGdCiRQvY2trC399fmeWe9YaSCnNwSgjm36QP5uCkD+bgpC/m4PTdDNEaP2jQIPHw8NDpJXDnzh1p3ry5NG/ePEZ5X19fKV68uAwePFi8vLykb9++MWaCpbTv7t27Oq/fv38vrq6usnz58ljLa3s2LVu2TOzs7MTLy+urk0dR2vL5OaZHjx5SsmRJef78uYjEP5HY0qVLxcHBQe7cucM6kw7FV2/ic/PmTcmXL58sXLgwKcOjFCq+3KZZs2YiEj2eroWFhU4OExwcLBUqVJARI0Yke8yU/jAHp4Ri/k36YA5O+mAOTvpgDk7fyyA9xl1cXHD69GkEBAQoy5ycnFC9enU8f/4c3t7eAD71WLG0tESFChWwaNEiVKhQAS9evECxYsUMEToZUJEiRQB8qhfPnj3Ds2fPUK9evRhlAwICoFKpcOzYMWzYsAHdu3eHm5sbVCpVssZMhpUxY0all8GUKVNw7do1HDt2DBqNJkZdCAgIwPv373Hs2DGsXbsWXbt2hZOTE+tMOhRfvfnSmzdvEBUVhRMnTuB///sfSpQogc6dOyd3yJQCfC238fLygrW1NRo3bowePXpg4cKFOHz4MFq1aoWwsDB07drVgNFTesEcnBKK+Tfpgzk46YM5OOmDOTh9L4M0jHfu3BlBQUE4cOCAznI3NzeEhYXh8ePH0cEZGeH69euoVasWVq5ciZEjR8LX1xe7du2Cra2tIUKnFEBEAABbt25FxYoVkT9/fkRFRSnrnz59inHjxsHNzQ1NmzZF6dKlMX78eEOFSwZmbGwMtVoNe3t7NGvWDMuWLcPbt291yogIdu7ciZYtW6JRo0YoU6YMxowZY6CIKSX4lnoTEhKCn3/+GdWqVUPjxo1RqFAh/P3338icObNhgiaD+lpu8+TJEwDAsmXLUKxYMaxduxb9+vVD/vz5cfjwYbi6uhoibEpnmIOTvph/U0IxByd9MAenhGIOTt9LJdosJ5n169cPx48fx6FDh5AnTx5luYWFBf777z80bNgQAHDhwgVcuHAB3bt3h4WFhSFCpRRIrVajWrVq6NChAwYPHqws12g0MDIywuLFixEREYEBAwZwfCiCWq2GsbExbt68CVdXV2zfvh3NmjVDUFAQ1Go1smTJguvXr+PevXto0qQJ6wwBiL/eaDQaZM6cGZs2bUJAQAB69OjBekPx5jbbtm1Do0aNlGUvXrxA9uzZYWpqaohQKR1jDk76Yv5NCcUcnPTBHJwSijk4fQ+DNYwHBAQgf/786Nu3L4YOHQp7e3vs27cPw4cPx7///ovSpUsbIixKJTw9PdG+fXvcvHkTNjY2mDt3Ljw9PTF9+nTWHYqViEClUqFOnTpQqVQoVqwYDh06hP/973/o1auXocOjFIr1hhKCuQ2lBqynpC/m36QP5lKkD9YbSgjmNvQ9DDKUCgBkzZoVc+fOxZEjR1CnTh3069cPnTt3RvXq1fkoA8VJex9n3759cHFxwV9//QU7OzssXrwYbdq04QmP4qTRaPDq1StYWVnh6NGj2L9/P0aNGsXEiuLFekMJwdyGUgPWU0oo5t/0PZhLkT5YbyghmNvQ9zBYj3EgOsm6f/8+tm/fjtu3b6N169Zo3LixocKhVCIsLAx58uRBQEAASpcujQkTJqBZs2aGDotSuFu3bqFy5crInTs3Fi9ejFq1ahk6JEoFWG8ooZjbUGrAekoJxfyb9MVcivTBekMJxdyG9GXwhnHONk36WLRoESpWrIhy5coZOhRKJUJCQvDmzRsULFjQ0KFQKsJ6QwnF3IZSA9ZT0gfzb9IHcynSB+sNJRRzG9KXQRvGiYiIiIiIiIiIiIiSm8HGGCciIiIiIiIiIiIiMgQ2jBMRERERERERERFRusKGcSIiIiIiIiIiIiJKV9gwTkRERERERERERETpChvGiYiIiIiIiIiIiChdYcM4EREREREREREREaUrbBgnIiIiIiIiIiIionSFDeNERERERERERERElK6wYZyIiBJNvnz58Ntvvxk6DCIiIiKidIM5OBGRftgwTkSUAnXv3h0qlQoqlQqmpqbIkSMH6tWrh5UrV0Kj0SRoX6tXr0bmzJm/Kx5PT08lnrh+PD094e3tjT59+nzXexERERERGQJzcCKi9MXE0AEQEVHsGjRogFWrVkGtVuPNmzfYv38/hg4dii1btmDnzp0wMUm+U3jlypXx6tUr5fXQoUMRFBSEVatWKcuyZs0KMzOzZIuJiIiIiCixMQcnIko/2GOciCiFMjc3R86cOWFvb48yZcpg3Lhx2LFjB/bt24fVq1cr5ebNmwdXV1dYWVnBwcEBAwYMQEhICIDoXiY9evRAYGCg0qtk4sSJAIDw8HCMGDEC9vb2sLKyQoUKFeDp6RlrLGZmZsiZM6fykyFDBiU+7Y+ZmVmMxzhVKhWWL1+OJk2awNLSEkWLFsXZs2fx4MED1KxZE1ZWVqhcuTIePnyo8347duxAmTJlYGFhgQIFCmDSpEmIiopKzI+XiIiIiCgG5uDMwYko/WDDOBFRKlK7dm2ULFkS27ZtU5YZGRlhwYIFuHnzJv7++28cPXoUo0aNAhDdy+S3336DtbU1Xr16hVevXmHEiBEAgEGDBuHs2bPYsGEDrl27hjZt2qBBgwa4f/9+osY8ZcoUdO3aFVeuXIGzszM6duyIvn37YuzYsbhw4QJEBIMGDVLKnzx5El27dsXQoUNx69YtLF++HKtXr8a0adMSNS4iIiIiom/BHJyIKG1iwzgRUSrj7OwMHx8f5fWwYcNQq1Yt5MuXD7Vr18bUqVOxadMmANG9TGxsbKBSqZReJRkzZsTTp0+xatUqbN68GdWqVUPBggUxYsQIVK1aVefRzMTQo0cPtG3bFkWKFMHo0aPh4+ODTp06wd3dHUWLFsXQoUN1eslMmjQJY8aMQbdu3VCgQAHUq1cPU6ZMwfLlyxM1LiIiIiKib8UcnIgo7eEY40REqYyIQKVSKa8PHz6MGTNm4M6dOwgKCkJUVBTCwsLw8eNHWFpaxrqP69evQ61Wo0iRIjrLw8PDYWtrm6jxlihRQvk9R44cAABXV1edZWFhYQgKCoK1tTWuXr2K06dP6/ROUavVXz0mIiIiIqKkwhycOTgRpT1sGCciSmVu376N/PnzAwB8fHzQpEkT9O/fH9OmTUPWrFlx6tQp9OrVCxEREXEmsCEhITA2NsbFixdhbGyssy5jxoyJGq+pqanyu/bLRGzLNBqNEtukSZPg4eERY18WFhaJGhsRERER0bdgDk5ElPawYZyIKBU5evQorl+/juHDhwMALl68CI1Gg7lz58LIKHp0LO0jnFpmZmZQq9U6y0qXLg21Wg1fX19Uq1YteYL/RmXKlMHdu3dRqFAhQ4dCRERERMQcnIgojWLDOBFRChUeHo7Xr19DrVbjzZs32L9/P2bMmIEmTZqga9euAIBChQohMjISCxcuRNOmTXH69GksW7ZMZz/58uVDSEgIjhw5gpIlS8LS0hJFihRBp06d0LVrV8ydOxelS5eGn58fjhw5ghIlSqBx48aGOGQAwPjx49GkSRPkzZsXrVu3hpGREa5evYobN25g6tSpBouLiIiIiNI+5uDMwYko/eDkm0REKdT+/fuRK1cu5MuXDw0aNMCxY8ewYMEC7NixQ3n0smTJkpg3bx5mzZqF4sWLY926dZgxY4bOfipXrox+/fqhXbt2sLOzw+zZswEAq1atQteuXfG///0PTk5OaNGiBby9vZE3b95kP9bPubu7Y/fu3Th48CDc3NxQsWJFzJ8/H46OjgaNi4iIiIjSPubgzMGJKP1QiYgYOggiIiIiIiIiIiIiouTCHuNERERERERERERElK6wYZyIiIiIiIiIiIiI0hU2jBMRERERERERERFRusKGcSIiIiIiIiIiIiJKV9gwTkRERERERERERETpChvGiYiIiIiIiIiIiChdYcM4EREREREREREREaUrbBgnIiIiIiIiIiIionSFDeNERERERERERERElK6wYZyIiIiIiIiIiIiI0hU2jBMRERERERERERFRusKGcSIiIiIiIiIiIiJKV9gwTkRERERERERERETpChvGiYiIiIiIiIiIiChdYcM4EREREREREREREaUrbBgnIiIiIiIiIiIionSFDeNERERERERERERElK6wYZyI0i2VSoWJEyfqLPP29kblypVhZWUFlUqFK1euYOLEiVCpVInynt27d0fGjBkTZV+JxdPTEyqVCp6enl8tW7NmTdSsWVN57ePjA5VKhdWrVydZfElBG/ecOXO+az+bNm1C1qxZERISkkiRAfny5UOTJk0SbX9jxoxBhQoVEm1/RERERN8qtnw7ufejUqkwaNCg744hqSRnfM+ePYOFhQVOnz6dLO+X0kRGRsLBwQFLliwxdChElEKwYZyIksz169fRunVrODo6wsLCAvb29qhXrx4WLlxo6NBiFRkZiTZt2iAgIADz58/HmjVr4OjoaOiwUp29e/cmyheglE6tVmPChAkYPHjwd93s0Gg0sLOzw+zZsxMxuk+GDRuGq1evYufOnUmyfyIiIkqflixZApVKlWg34A2dQ545cwYTJ07E+/fvDRZDUps8eTIqVKiAKlWqfNd+WrVqhUaNGiVSVNF8fHx0OuDEpmbNmvDx8Ymx/MSJE2jWrBkcHBxgYWGBnDlzokGDBjFuAJiamuLHH3/EtGnTEBYWlojRE1FqxYZxIkoSZ86cQbly5XD16lX07t0bixYtwg8//AAjIyP8/vvvhg4PABAaGoqff/5Zef3w4UM8efIEI0aMQJ8+fdC5c2dkyZIFP//8M0JDQw0YadKqXr06QkNDUb169QRv6+joiNDQUHTp0kVZtnfvXkyaNCkxQ0yRdu3ahbt376JPnz7ftR8vLy+8ffsWjRs3TqTIdOXMmRPNmzf/7t7xRERERJ9bt24d8uXLBy8vLzx48CDWMl/m2/GJL4dMyH70debMGUyaNCnNNoz7+fnh77//Rr9+/b5rP5GRkTh06FCi5K5RUVE4cuRIjOVhYWE4fvw4gOhG79gasY8cOYKoqCgAwL1792BkZIR+/fph8eLFGDFiBF6/fo3q1atj//79Otv16NEDb9++xfr16787fiJK/UwMHQARpU3Tpk2DjY0NvL29kTlzZp11vr6+hgnqCxYWFjqvtXF9Ga+JiQlMTNLu6dLIyCjGZ/GtVCqV3tumdqtWrUKVKlVgb2//XfvZu3cvHB0dUaxYsUSKLKa2bduiTZs2ePToEQoUKJBk70NERETpw+PHj3HmzBls27YNffv2xbp16zBhwoQY5b4lT/zw4QOsrKziLZMW881vOe7EtHbtWpiYmKBp06bftZ+TJ08iODg4URrGX79+jZEjR6Jo0aIYNmwYgOhhHgcMGIDGjRujRo0a2LFjB/r27YulS5cCiG7g/+mnn3Dv3j1s374d9vb2+OGHH/DDDz/o7HvAgAEoUKAAfvvtNzRo0EBZnjlzZtSvXx+rV69Gz549v/sYiCh1Y49xIkoSDx8+RLFixWI0MgNA9uzZdV5rx9Vbt24dnJycYGFhgbJly+LEiRMxtn3x4gV69uyJHDlywNzcHMWKFcPKlStjlAsLC8PEiRNRpEgRWFhYIFeuXPDw8MDDhw913lf7uGb37t1Ro0YNAECbNm2gUqmUR/niGmN87dq1KF++PCwtLZElSxZUr14dBw8e/KbP58WLF2jRogUyZswIOzs7jBgxAmq1Wlkf17jfsY3prR23/OnTp2jSpAkyZswIe3t7LF68GED0kDa1a9eGlZUVHB0dY/SOiOu9/vjjDxQsWBAZMmRA+fLlcfLkyRjH8WU83bt3V95XpVIpPyKCfPnyoXnz5jH2ERYWBhsbG/Tt2/ebPrtvceHCBbi7uyNbtmzIkCED8ufPH2fiqz1Oc3NzuLm5wdvb+6v7DwsLw/79+1G3bt0Y60JDQzFkyBBky5YNmTJlQrNmzfDixYs4x8bcs2fPV79Y/P333zAxMcHIkSOVZf7+/ujSpQusra2ROXNmdOvWDVevXo11zHdtnDt27PjqsRERERF9zbp165AlSxY0btwYrVu3xrp162It92X+o82rb926hY4dOyJLliyoWrVqnDlkXPsBonPYcuXKwcLCAgULFsTy5cvjnRto+/btKF68uPId4vOexBMnTlTyrPz58yvvH9uwHfrQ5usPHz5Eo0aNkClTJnTq1Omb49O6fPkyGjZsCGtra2TMmBF16tTBuXPnvimG7du3o0KFCrEOAbh48WIUKFBAJ+//cm4hrT179sDFxQX58uXTOTZ9vovkyZMHFy5cQN26ddGxY0d4eXlh+vTp2LRpE3799VcAwNy5c7Fx40ZMmzYNXl5e6NixI+rVqwcvL694O6hYWlrCzs4u1icA6tWrh1OnTiEgIOCbPjsiSrvSbhdIIjIoR0dHnD17Fjdu3EDx4sW/Wv748ePYuHEjhgwZAnNzcyxZsgQNGjSAl5eXsv2bN29QsWJFpSHdzs4O+/btQ69evRAUFKT0MlCr1WjSpAmOHDmC9u3bY+jQoQgODsahQ4dw48YNFCxYMMb79+3bF/b29pg+fTqGDBkCNzc35MiRI854J02ahIkTJ6Jy5cqYPHkyzMzMcP78eRw9ehT169eP91jVajXc3d1RoUIFzJkzB4cPH8bcuXNRsGBB9O/f/6ufVVz7bNiwIapXr47Zs2dj3bp1GDRoEKysrPDTTz+hU6dO8PDwwLJly9C1a1dUqlQJ+fPnj3N/K1asQN++fVG5cmUMGzYMjx49QrNmzZA1a1Y4ODjEuV3fvn3x8uVLHDp0CGvWrFGWq1QqdO7cGbNnz0ZAQACyZs2qrNu1axeCgoLQuXNnvY79S76+vqhfvz7s7OwwZswYZM6cGT4+Pti2bVuMsuvXr0dwcDD69u0LlUqF2bNnw8PDA48ePYKpqWmc73Hx4kVERESgTJkyMdZ1794dmzZtQpcuXVCxYkUcP348zobv169f4/Lly5g8eXKc7/XHH3+gX79+GDduHKZOnQogelzypk2bwsvLC/3794ezszN27NiBbt26xboPGxsbFCxYEKdPn8bw4cPjfC8iIiKib7Fu3Tp4eHjAzMwMHTp0wNKlS+Ht7Q03N7dv2r5NmzYoXLgwpk+fDhFB6dKlY80h43L58mU0aNAAuXLlwqRJk6BWqzF58mTY2dnFWv7UqVPYtm0bBgwYgEyZMmHBggVo1aoVnj59CltbW3h4eODevXv4999/MX/+fGTLlg0A4tyfPqKiouDu7o6qVatizpw5sLS0/Ob4AODmzZuoVq0arK2tMWrUKJiammL58uWoWbMmjh8/Hu9Y75GRkfD29o71u8bSpUsxaNAgVKtWDcOHD4ePjw9atGiBLFmyIE+ePDHK7927N8ZE8d/zXUSlUsHI6FOfzS9vigDRT7hql8W2XisoKAgRERF4+/Yt/vnnH9y4cQPjxo2LUa5s2bIQEZw5cyZRJ70nolRIiIiSwMGDB8XY2FiMjY2lUqVKMmrUKDlw4IBERETEKAtAAMiFCxeUZU+ePBELCwtp2bKlsqxXr16SK1cuefv2rc727du3FxsbG/n48aOIiKxcuVIAyLx582K8l0aj0XnfCRMmKK+PHTsmAGTz5s0620yYMEE+P13ev39fjIyMpGXLlqJWq+Pcf2y6desmAGTy5Mk6y0uXLi1ly5aNEcuxY8d0yj1+/FgAyKpVq2Lsc/r06cqyd+/eSYYMGUSlUsmGDRuU5Xfu3InzuLXvFRERIdmzZ5dSpUpJeHi4Uu6PP/4QAFKjRo144xk4cKDEdnm5e/euAJClS5fqLG/WrJnky5fvq5/dt/rvv/8EgHh7e8dZRhu3ra2tBAQEKMt37NghAGTXrl3xvsdff/0lAOT69es6yy9evCgAZNiwYTrLu3fvHuNzFxFZsWKFZMiQQam7IiKOjo7SuHFjERH5/fffRaVSyZQpU3S227p1qwCQ3377TVmmVquldu3aMf4eWvXr15eiRYvGe1xEREREX3PhwgUBIIcOHRKR6Pw3T548MnTo0Bhlv8x/tHl1hw4dYpSNK4eMbT9NmzYVS0tLefHihbLs/v37YmJiEmMfAMTMzEwePHigLLt69aoAkIULFyrLfv31VwEgjx8/ju/w9aLN18eMGRNj3bfG16JFCzEzM5OHDx8qy16+fCmZMmWS6tWrx/v+Dx48iLE/EZHw8HCxtbUVNzc3iYyMVJavXr06Rt4vIvLo0aMY31G+57vI8+fPpVy5ctKhQwfx8vKSGjVqyLFjx8TZ2VlGjhwpIiIjR44UZ2dnOXbsmNSoUUO8vLykQ4cOUq5cOXn+/LlOfO7u7sp3SzMzM+nbt6+EhobG+DxevnwpAGTWrFnxfm5ElPZxKBUiShL16tXD2bNn0axZM1y9ehWzZ8+Gu7s77O3tsXPnzhjlK1WqhLJlyyqv8+bNi+bNm+PAgQNQq9UQEWzduhVNmzaFiODt27fKj7u7OwIDA3Hp0iUAwNatW5EtWzYMHjw4xvvE1bsgIbZv3w6NRoPx48fr9G5IyP6/nPSmWrVqePTo0XfF9fm4epkzZ4aTkxOsrKzQtm1bZbmTkxMyZ84c73tduHABvr6+6NevH8zMzJTl3bt3h42Njd7xFSlSBBUqVNB51DYgIAD79u1Dp06dEuVvA3waI3737t2IjIyMt2y7du2QJUsW5XW1atUA4Kt/C39/fwDQ2RaA8sjrgAEDdJbHVheB6B43tWrVQoYMGWKsmz17NoYOHYpZs2bFmGxq//79MDU1Re/evZVlRkZGGDhwYJwxZ8mSBW/fvo3nqIiIiIi+bt26dciRIwdq1aoFIDr/bdeuHTZs2KAzNGB8vmcCSLVajcOHD6NFixbInTu3srxQoUJo2LBhrNvUrVtX56nREiVKwNra+rvz74SK6+nQr8WnVqtx8OBBtGjRQme+mFy5cqFjx444deoUgoKC4nzfuHLXCxcuwN/fH71799aZU6lTp04xygLRw6jY2NigatWqMdbp810kR44cmDFjBtavX6/0zq9ZsyYuX76sPHHZuHFjXLp0SRnWxc7ODuvXr8fMmTNjPOE7c+ZMHDx4ECtWrEDFihURERGhTND5Oe2xMTcmIjaME1GScXNzw7Zt2/Du3Tt4eXlh7NixCA4ORuvWrXHr1i2dsoULF46xfZEiRfDx40f4+fnBz88P79+/xx9//AE7Ozudnx49egD4NHnmw4cP4eTklGQTZj58+BBGRkZwcXHRa3sLC4sYj2VmyZIF79690zum2PZpY2ODPHnyxGhwtrGxife9njx5AiDm38TU1PS7J27s2rUrTp8+rbzH5s2bERkZiS5dusS7XUBAAF6/fq38BAYGxlm2Ro0aaNWqFSZNmoRs2bKhefPmWLVqFcLDw2OUzZs3r85rbZL8rX8LEdF5/eTJExgZGcUYpqZQoUIxto2MjMShQ4diHWbl+PHjGD16NEaPHq0zrvjn75MrVy6dR3Djep/PY02smw9ERESUPqnVamzYsAG1atXC48eP8eDBAzx48AAVKlTAmzdvcOTIkW/aT3xD+n2Nr68vQkNDY8174sqFvsz5gO/Lv0NCQnRyUz8/v69uY2JiEuvQJN8Sn5+fHz5+/AgnJ6cY5YoWLQqNRoNnz559NYbYclcg5udmYmKijCH+uT179qB+/foxvmfp+13ExMQk1jl7LCwslPmfatSoEWsnkjp16sSIo1SpUqhXrx569uyJQ4cOwcvLC927d4+xrfZzYG5MRGwYJ6IkZ2ZmBjc3N0yfPh1Lly5FZGQkNm/enKB9aDQaAEDnzp1x6NChWH+qVKmSFOEnOmNj46+WiStJi6sXTlz7jGv5l0lxcmnfvj1MTU2VXuNr165FuXLlYk3yP+fh4YFcuXIpP0OHDo2zrEqlwpYtW3D27FkMGjRImbC1bNmyCAkJ0Smr7+ejHevxe25maHv2NGrUKMa6YsWKwcnJCWvWrMHjx4/1fo/PvXv3Thkvk4iIiEgfR48exatXr7BhwwYULlxY+dH2Co5rEs4vxdbQmZQSOyeeM2eOTm76LWOrm5ubx3jaNKni+1Ji5K4fP36Ep6dnrLlrYnwXyZcvHzw9PeONwdPTM9YG+9iYmZmhWbNm2LZtG0JDQ3XWaT8H5sZExMk3iShZlStXDgDw6tUrneX379+PUfbevXvKbOIAkClTJqjV6lh7FXyuYMGCOH/+PCIjI+OdQFFfBQsWhEajwa1bt1CqVKlE3z/wqefyl7Ooa3t1JCVHR0cA0X+T2rVrK8sjIyPx+PFjlCxZMt7t4+t5kTVrVjRu3Bjr1q1Dp06dcPr0afz2229fjWnu3Lk6ifznj83GpWLFiqhYsSKmTZuG9evXo1OnTtiwYYPOY576cnZ2BgA8fvwYrq6uynJHR0doNBo8fvxYp8f9gwcPYuxjz549cHFxiTW5z5YtG7Zs2YKqVauiTp06OHXqlM4xOzo64tixY/j48aNOr/HY3kfrW/52RERERPFZt24dsmfPjsWLF8dYt23bNvz3339YtmyZXg3f39p7N3v27LCwsIg174kvF0qs9wein4L8fDiRpG7ot7Ozg6WlJe7evRtj3Z07d2BkZAQHB4c4t8+bNy8yZMgQo8OFNu9/8OCBMjQOED1RqI+PD0qUKKEsO3r0KMLDw+McriYlCg0NhYggODhY52+k/RyKFi1qqNCIKIVgj3EiShLHjh2LtSfA3r17ASBGD+GzZ88qY4QDwLNnz7Bjxw7Ur18fxsbGMDY2RqtWrbB161bcuHEjxn4/f3yxVatWePv2LRYtWhSjXGL0umjRogWMjIwwefJkpSd7Yu4fiE5SjY2NceLECZ3lS5YsSZT9x6dcuXKws7PDsmXLEBERoSxfvXp1jIb62FhZWQGI2aiv1aVLF9y6dQsjR46EsbEx2rdv/9V9li1bFnXr1lV+4hvG5t27dzH+DtobGLENp6KPsmXLwszMDBcuXNBZ7u7uDiDm32nhwoUx9rF3795Yh1HRypMnDw4fPozQ0FDUq1dPGRtS+z6RkZH4888/lWUajSbWL6kAEBgYiIcPH6Jy5cpfPzgiIiKiWISGhmLbtm1o0qQJWrduHeNn0KBBCA4OjnU+oW/xtRxSy9jYGHXr1sX27dvx8uVLZfmDBw+wb98+vd47Ie8PAAUKFNDJTZP6yVVjY2PUr18fO3bsgI+Pj7L8zZs3WL9+PapWrQpra+s4tzc1NUW5cuVi5K7lypWDra0t/vzzT52xuNetWxejd/nevXtRrly5GON6pwTaITU/9/79e2zduhUODg7Inj27zrqLFy9CpVKhUqVKyRUiEaVQ7DFOREli8ODB+PjxI1q2bAlnZ2dERETgzJkz2LhxI/Lly6eMC65VvHhxuLu7Y8iQITA3N1caFidNmqSUmTlzJo4dO4YKFSqgd+/ecHFxQUBAAC5duoTDhw8jICAAQHQPjn/++Qc//vgjvLy8UK1aNXz48AGHDx/GgAED0Lx58+86tkKFCuGnn37ClClTUK1aNXh4eMDc3Bze3t7InTs3ZsyY8V37B6LH3mvTpg0WLlwIlUqFggULYvfu3bEmfYnN1NQUU6dORd++fVG7dm20a9cOjx8/xqpVq75pjHHtJKpDhgyBu7t7jMbvxo0bw9bWFps3b0bDhg1jJKrf6++//8aSJUvQsmVLFCxYEMHBwfjzzz9hbW0d66Of+rCwsED9+vVx+PBhTJ48WVletmxZtGrVCr/99hv8/f1RsWJFHD9+HPfu3QPwqSfS48ePcfv2bSxdujTe9ylUqBAOHjyImjVrwt3dHUePHoW1tTVatGiB8uXL43//+x8ePHgAZ2dn7Ny5U/k/8GWPp8OHD0NEvrvuExERUfq1c+dOBAcHo1mzZrGur1ixIuzs7LBu3Tq0a9cuwfv/Wg75uYkTJ+LgwYOoUqUK+vfvD7VajUWLFqF48eK4cuVKgt/78/f/6aeflOH/mjZtqjSYG9rUqVNx6NAhVK1aFQMGDICJiQmWL1+O8PBwzJ49+6vbN2/eHD/99BOCgoKURnQzMzNMnDgRgwcPRu3atdG2bVv4+Phg9erVKFiwoE5OuXfv3hjf4VKKhg0bIk+ePKhQoQKyZ8+Op0+fYtWqVXj58iU2btwYo7x2GE7tEDNElH6xxzgRJYk5c+agVq1a2Lt3L3788UelkXrAgAE4f/48MmfOrFO+Ro0a+O2337BmzRqMHz8eWbNmxb59+3Qe38uRIwe8vLzQo0cPbNu2DYMGDcLvv/+OgIAAzJo1SylnbGyMvXv34qeffsL58+cxbNgwzJs3D9bW1jrDXnyPyZMnY+XKlQgNDcVPP/2E8ePH48mTJ6hTp06i7B+I7mXcvHlzLFu2DD///DPy5s2Lv//+O9H2H58+ffpgyZIlePnyJUaOHImTJ09i586d8T6iqeXh4YHBgwdj//796NKlCzp06KCz3szMTPmy9LVJN/VRo0YNlCtXDhs2bMCQIUMwe/ZsFC5cGEePHv2uiZ6+1LNnT5w7dy7GREf//PMPBg4ciD179mD06NGIiIhQEnILCwsA0V8sbGxsvql3kaurK/bt24d79+6hadOmCA0NhbGxMfbs2YN27drh77//xk8//YTcuXMrPca176O1efNmVK1aFQULFkyMQyciIqJ0aN26dbCwsEC9evViXW9kZITGjRtj//79Ok+6fauv5ZCfK1u2LPbt24csWbLgl19+wYoVKzB58mTUqVMnRh70rdzc3DBlyhRcvXoV3bt3R4cOHb5pUs3kUqxYMZw8eRLFixfHjBkzMGnSJGV4vQoVKnx1+y5dukCtVsfo0T9o0CAsWLAAT58+xYgRI5S8P3PmzMpnefPmTTx58iTROpkktp49eyIgIADz589H//79sWzZMpQuXRqenp5o3bq1TtnAwEAcPHgw1kk5iSj9UYmhZmAjIvp/KpUKAwcOjHXoE0qbhg8fjhUrVuD169c6Y2SnJmq1Gi4uLmjbti2mTJkSb9krV66gdOnSWLt2LTp16oRGjRohY8aM2LRpU6LGtH37drRs2RKnTp1SGt1fv36N/PnzY8OGDewxTkRERGlaixYtcPPmzVjnLyKgV69euHfvHk6ePBlvOY1GAzs7O3h4eODPP//E7NmzMW/ePLx69SpBY7GnRL/99htmz56Nhw8fJvsksESU8rDHOBERJauwsDCsXbsWrVq1SrWN4kD0kwmTJ0/G4sWLERISoiz/ctZ7IDoBNzIyQvXq1QEANWvWxPDhw7/r/b98H7VajYULF8La2hplypTReW9XV1c2ihMREVGa8mUudP/+fezduxc1a9Y0TECpwIQJE+Dt7Y3Tp08ry8LCwmLMz/PPP/8gICBA+Szz5cuH+fPnp/pG8cjISMybNw8///wzG8WJCAB7jBNRCsAe4+mDr68vDh8+jC1btmD79u24dOmSMilmWjJp0iRcvHgRtWrVgomJCfbt24d9+/ahT58+WL58eaK9zw8//IDQ0FBUqlQJ4eHh2LZtG86cOYPp06dj7NixifY+RERERClRrly50L17dxQoUABPnjzB0qVLER4ejsuXL6Nw4cKGDi/V8PT0xPDhw9GmTRvY2tri0qVLWLFiBYoWLYqLFy/CzMzM0CESESUZTr5JRETJ4tatW+jUqROyZ8+OBQsWpMlGcQCoXLkyDh06hClTpiAkJAR58+bFxIkT8dNPPyXq+9SuXRtz587F7t27ERYWhkKFCmHhwoUYNGhQor4PERERUUrUoEED/Pvvv3j9+jXMzc1RqVIlTJ8+nY3iCZQvXz44ODhgwYIFCAgIQNasWdG1a1fMnDmTjeJElOaxxzgRERERERERERERpSscY5yIiIiIiIiIiIiI0hU2jBMRERERERERERFRusIxxgFoNBq8fPkSmTJlSvWzLBMRERFR0hMRBAcHI3fu3DAyYl8TfTAHJyIiIqKESOwcnA3jAF6+fAkHBwdDh0FEREREqcyzZ8+QJ08eQ4eRKjEHJyIiIiJ9JFYOzoZxAJkyZQIQ/aFaW1sbOBoiIiIiSumCgoLg4OCg5JGUcMzBiYiIiCghEjsHZ8M4oDy6aW1tzaSciIiIiL4ZhwDRH3NwIiIiItJHYuXgHBCRiIiIiIiIiIiIiNIVNowTERERERERERERUbrChnEiIiIiIiIiIiIiSlfYME5ERKlGaHCkoUMgIiIioiSg0agREfHB0GEQEVE6woZxIiJKFbb8fBn9rP/Fxe1PDR0KERERESWyP1dXxpTZGRHywdfQoRARUTrBhnEiIkoVdk27DgBYO9jLwJEQERERUWJ7/jI6x7t3f4+BIyEiovSCDeNEREREREREZDD3H+43dAhERJQOsWGciIhSF5WhAyAioi/NnDkTKpUKw4YNM3QoRJQK/fNvQ0OHQERE6RAbxomIiIiISG/e3t5Yvnw5SpQoYehQvllkZCgCg54bOgwiIiIiMiA2jBMRUaqiUrHLOBFRShESEoJOnTrhzz//RJYsWQwdzjf7fakT5ixwgN/bO4YOhYi+IBBDh0BEROkEG8aJiChVYbs4EVHKMXDgQDRu3Bh169Y1dCgJEhj0DABw+94OA0dCRERERIZiYugAiIiIiIgo9dmwYQMuXboEb2/vbyofHh6O8PBw5XVQUFBShfbNVJy4gijFuf9wP8qW6mnoMIiIKB1gj3EiIkpd2GWciMjgnj17hqFDh2LdunWwsLD4pm1mzJgBGxsb5cfBwSGJo6Sk8PyFFz6GBhg6DErDbt7ejGfPzxk6DCIiSgfSZMP4zJkzoVKpMGzYMEOHQkREiSwyTG3oEIiI0r2LFy/C19cXZcqUgYmJCUxMTHD8+HEsWLAAJiYmUKtjnqvHjh2LwMBA5efZs2cGiFwXxzJOmAcPD2L5qgqYv7igoUOhNO7Fq297EoWIiOh7pLmhVLy9vbF8+XKUKFHC0KEQEVESCHwdaugQiIjSvTp16uD69es6y3r06AFnZ2eMHj0axsbGMbYxNzeHubl5coX4TQIDnxg6hFTlzv2dAICwsPeGDYSIiIgoEaSphvGQkBB06tQJf/75J6ZOnWrocIiIiIiI0qRMmTKhePHiOsusrKxga2sbY3lK9uDRQUOHkKqIsIc9ERERpR1paiiVgQMHonHjxqhbt66hQyEiIgPZN/cmDi64begwiIgoFTA1tTJ0CKkMG8aJiIgo7UgzPcY3bNiAS5cuwdv762ORhYeHIzw8XHkdFBSUlKEREVEyCX4bhg0jLgIAavxQGOaWaeYyR0SU4nl6eho6hARzLdbe0CGkKuwxTsmFdY2IiJJDmugx/uzZMwwdOhTr1q2DhYXFV8vPmDEDNjY2yo+Dg0MyRElEREkpJCAc715+Gn9co+YXKiIiit/hY+MMHUIqw2srJRfWNSIiSnppoivdxYsX4evrizJlyijL1Go1Tpw4gUWLFiE8PFxnAqCxY8fixx9/VF4HBQWxcZyIKBWLilBjoO1GQ4dBRESUpmk0akOHQOkEe4wTEVFySBMN43Xq1MH169d1lvXo0QPOzs4YPXq0TqM4AJibm8Pc3Dw5QyQioiQU5BceY5lKZYBAiIiI0rD7D/cbOgRKN9gwTkRESS9NNIxnypQJxYsX11lmZWUFW1vbGMuJiIiIiIgo4RzyVMLN25sNHQalAyIaQ4dARETpQJoYY5yIiNK2yPD4H92OrXc4e4wTEVFs1OpIQ4eQalmY2xg6BEonOJQKERElhzTRYzw2np6ehg6BiIgSSUQoxzQlIqLEodFEGToEIvoK9hgnIqLkwB7jRESU8n2l1xB7hxMR0bcSjl38HfjZfSkw8Bm27/4Br32vf70wfTP+PyUiouTAhnEiIkrx+DQtERGR4V29sc7QIaQ4G7a2xsUrK7D0rzKGDiVNYY9xIkopTp2dgzUbGiNKHWHoUCgJsGGciIhSvq+1jLPLOBER6Ski8qOhQ0g1oqLCDB1CivPqzRUA3z5Ej9fFpbh0dXXSBZRWsFcEEaUQB46MxL0He3H95gZDh0JJIM2OMU5ERGmHXt+N2FhORESx+eKi8uGDL8wy5zNMLJTqqRPQgzAk5A127RsAAChZvBOMjU2TKqxU5WNoQIxl7DFORClNJG+kp0nsMU5ElIKs7ncOP5XYiYgwTjb5OXYYT15vHgbj0o6nEPbWIqI0iGMXk6G8D3qq/K4R5npaoaH+MZbx/ykRpTQq8EtnWsSGcSKiFOJjYASOLb+H59ff4/LOZ3GW838agkMLbyP8Q2QyRmdYokn4l6P02Fj+7uVHfHj//WPfjSr0H35v4Ylr+14kQlRERCkLe6KSoZibWyu/G6mMDRhJyhLbjXj+PyWiFCc9fsFMB9gwTkSUAvg9Dkb/zJ/GLIuvIXh8mT1YO8Qb/464mByhpQjsMf51If5hGGa/BQOyJN7Ydw/O+iXavoiIUowvLyp8Ooa+0YtXF7FpWwe8e+8DAAgKSuANZNa1WMXWO5wN40SU0rDHeNrEhnEiSjEC34Ti4van0KjTXyJ8dv1jndfxfW8K8Q8HANw4+DIpQ0pZ+EXyq55de6/8/vhizEeSiYgoGodoIH0tW1EO129twMatbQAAb/yuJ2j7z+se6+Fn2GOciIgMhA3jRJRijHXZgQUtPXF02T1Dh5LsVF92eWZDsI6vfhzsMo7POzD4Pgw2XBxpwPOb77F98lWEhcQ9XNGF/55iw8gL0OgxzE9aotEIHpzzQ/jHKEOHQvTtvriosIFS16QZFvhlKq+r8Xnrf1e/DT+ve8z1FLH+H+TnQ0QpDb9zpklsGCeiFONDQPTYyFf3cFzjbxGjMT0N43ejhDEyirtuhAann7Hp9fVT8Z34b8JVbB57Kc4yCz08sW/OLXhv9km+wFKgY8vuYkqlfZhd75ChQyH6Zl/2RFWp+JVIKyTkDaLU0U+mvfZNWG/odOX/c7CETlLNmzCxi613OHuME1FKw6FU0iZmgUSU4qSj9t5P2GE8fl/5QNJlnYlPHJ/HwQW30c/6X5xY9SB540mlHnl9fUiady9CkyGSlMvzz/sAgAdnOB49pR5fNk7yi+4nF6+u/PRCz2Tkxu0tOHzs5wQ3Gqcm4eFB+m0oHEolNrE2jIMN40SUwvBLZ5rEhnEiSnnS4fXmy8k20/B3Sb3w8/i6z/O0uHK2dUO9AQArep5JhohSl6gINa7sfo6PgREJ2i69D6VClCp9cVFRa/gkjVZQ0HPldxMTC+V370t/4Oadbd+0j41b2+D46Wl48OhAoseX2rExPHbXbqyPsYw9xokopeGN9LSJDeNE3+na/hfYNPZSupwwMqmkpyFCtIL+j73zDm/a6sL4a2fvkJAEAoS99957770KpVB2oaVQSktb6C6FUvjaUmjZUCibsvfee+9NSEICZO9lf3+Y2LIl2bKsZfv++vBUurq6OpE1rs499z2vsowLOHiCneo0WTgfmnzyoUmFDCRYz9aZ1zC/+xH82vmwvoxLtKPpoBaBQFA+pg63C5cXMda7eWcj7j7YIYVJisHHJ1S/7KJ2AwAkJDzGjj1jsX5zX6vaSkuLE9Q2h4DyXklNdaIk6hZ4EXWWVhZauKoMlhAIBIIZnOoD3HkgjnECwUZ+7XwYu3++hVOrn8htisNwbVeU5UoOhjMOBliDJf/k/v/dtXofR8bFlVxP1nJqle4Z/uisZUmQnKx8/fLNfc7j2MhIzkHM3SSjMvLsItgjmVmJRuspqfR+R3r6a2zcOhD/buyJfI3zJJd98HCXflnt4obb97bi75WN+DXmFM8H/hrjV2+swvFTPyEzM9HMHs6BWu1CK3N185LBEvnQaPItVyIQCLLizBHj+fm5DiuRRhzjBIJAxEemy20CwZ4xecfSIsg57OPIWHoH7/75ljSGKBkrHRAbPrsskiH2iTWnL/p2kn456aXzaIxPLr4Z06vswPOrlrXXCQQls+rfjkbr+fl0CaWs7CT9staJHFZ+fsX0y2q1K9Zv7ouMjDe82nJmBwIbmnyDbM+xk9/h0LEvsX3PWBktUgaMTmEHdcAwcfnacnw/2wePnxyS2xQCgWBCTOxVw4pTDPjSSc94g1m/BmPTtiFymyIKxDFOMOL5tQRsmHbZao1VAsEckdcTMKf9QTy+wO/DyhnR5DnPxwAnnOjjSAi4nK49c27j4+KbiUb2W1RqekeXREMbk5Wmi5q94URR8gTHJDkl0mj97v1t5ndwomdB/ToGJ61aRY/iJdjG38sb0MqePj8qgyXKIjcvg1bmTBrj23aNRF5+Nv7d3FtuUwgEggmr13WS2wTZuXp9JbJzUnHz9jq5TREF4hgnGDGz9i7s+eU21k+9JLcpdocTfTNZzc9tDuD2oZf4ruEeuU1RLM8ukQhMcxC/uGX4PIMSozPw/Aq59gBAZaFH9PxaAt53X4Ob+6OlMUjBkPcdwZ7RcHS2GU0XdqKXENUZaXOiSCd4WFiaVv4i6hz+Wt4AkS90Sa+ZzimJrAeiYy7SypzJMV4AuRYIBOWRkW6QWXTGezQt/ZXlAAI7hzjGCYxEXidad1xIfcNB7oKA9AQyA8ESWam5liuZ4EzRrHx8Ei/vJQtviIKhXg4Fkb1cMJXtyUozXIuZydZfl/aKmiFiPOqm4V04s/Yu5OdqMLfTYVo9Z8OZnj0ExyM1hdvg1q27m/TLNjuI7QiNVjjZmITEx4K1Za8sXtkY0TEXsWRVU/ZK5JnKiDPdd0Kz9+AUHDz6pdxmEAgOgdGzyAmf17PnhyEy6jTjtpycdIfQHSeOcQIz9n9ti87VnS8wMWSj3GYQHAQmGQcCBR4v3LNrn4pgiH2wZw53zfUHp14ZredlG5wi6Yk5+LL6Dqwcf04w25QK0z2Yk8niIHLSSFI95HFFcAIOH/vKsOJE97lRlC6Pv/vBo7365aMnvrHdIAXB9PGvMjPdKCk5knWbURvkocqIM0aMC0FKSjTOnJ+PE6d/wpOnR/DkGZHqIRCEwlme1wkJj/E88pTZOrGvbuL7Ob7YumO4NEaJCHGMExhxov4/b7bOuCa3CQQHQu1i/JJ1hJFXIeFzOpxZOzv1dbYVddlnvlzaGomoW0k4+tcDIcxSFFu/voZ/PjyvX9c68fViLWzBMneOvJTWEAJBIpwpctXWRKOOPN2aKZrenGM8KuYCt4adMAKRE87YFxbgWqAmE16xti1WrGmDzKwkm9uVm4SEx8jXcJ8RSSCIgpM8r+cvLIelq5vj1es7tG1xr28jLS1Or71+7eZqqc0THOIYJzBCnHKWIadIWPLznDsqxBrpiwKc5L2sg8/95mz3KOWC0ORz/+NfP00zWn/zPF2/rM13zPtSq9Vi+3c3cGjBfcQ9SgFg/HdbxKluPh1G/QLq309ZnN32oHQGEQhS4kSdPqrzl+uAwH8738fKtR2g0WqMnHKOBpPT39Qx/vTZMcOKE103YuCMEeNiRaNmZdq3TOrtu1swf2E5/Luxp9ymEJycpKRncpsgKbGvbtDKFvxdDbP/VwSpqTEyWCQOxDFOYOT5lQSz248teYCLm59LZI0yyctxvs6amNzY69wJ7dj0sB9feINvG+7Bg1NxElukLPgM1jndAB/l77Um+tlUQuTcuqes2xwF6vmx9CxPS6BH37+4YfjAzM12jndB5DVDv8AJxwUIDgSf6G+nihjnIaVy5foKPH56ELGx1xzaMR736qbR+tNnx2iOzOVrWuuXuV43zjI131qc6b4rICvbufLjcOXM+fkAgAeP9nDeJzsnzfm+BcyQn5+LI8e/QRRDoltA9920ZkN3bNs1SmLL7IvMLPN+MkfDWd5PxDFOMMurJ6n4rddRPDpryMT75nkaVow5hwX9j8tomfyYOjJZtWgJnMhzEucSVwr6cd813IMnF97gx+b75TVIZiz1a0vVDWbYSRxb7AFrIsZNZXwc1RlOhS34mYnU11m0DytqUs43z9JMd3FIstPJ9GUCnVmzZqF+/frw8/NDaGgoevXqhfv378ttFsEGbJFS0Wo1iHt903JFOyUvL9Noffma1rhyfQVrfWeMeLYWrVaLPJbBFHL+6CQkPMbFK4tZzxkrdj6irYV110Js3A38MMePOHkp7No3AUdPfou/lzdg3B736ibuP9yFy9eWSWyZfWFOPsshsfNnB1ec7FclWMuC/sdxZfsLfN/EkEgnPdFxI0FsYffPtzCtwn949STVqDzuUQq+b7oX13ZFyWSZ/fLk4huc3/hMbjNEJe5RCnNiQyd26jJiwTNeoVkorSwtnrvOtiNgdIooK5mpufiq5k5s/vIq437mHOOOOOCXk5WPY4spmukcOnx3j8aKaJHy0Gi0uLrzBZJiMxm3qyjnTOUkHWYCM8ePH8eECRNw7tw5HDx4ELm5uejQoQPS062QJpIYby+GgVRLOFHUIVVKxTRC2iIqlfX72BE5OfTr+sbtf9l34HrdOMBzNDMrCfsOfYqXcdet2m/pquaY9SvLPelE9x1X5i8shx17xuLU2V8AAC9jr+HM+fnIz881u5+9R31aO0hy4szPAIAr15eLYY5dcunqErPb8/Kd67uJL2qVq9wmSIqzDAQ4169KsJrXT+iRcA7Qd7MaTb4GTy7Go1SdILi6u7DWi3uYirWTLmLyzjaIuZuE5aPP4uFpXbT9/O5HsEo7TCqT7Y5VH5ynlX3bQDddLrSML0rXKyy1SZIwu+1BxEfSP7Q4JY50opuRz7dRDIs8jTOQkWz4QDq+5CFe3Eg0kv+gYuoYVzt4xPiO729g508Gx42l20ilUiEr1fwHp6NxfOlDrBx7Dt6B7liUOIhegXLOXr3VaCc4J/v27TNaX7lyJUJDQ3H58mW0aNFCJqvM4+7uY/U+ziTpQHVA3X+0i0N9w7mxd+ebJdIzXluuRCE3j3lw0RQVVIh8cQaZWYmoWL4rH9NkZ++Bj3H1xiqcPjcX33/F/X6JjDrNuo1EjBvIykpGapohwfWTp4fRqtmXWLi0NgAgNzcTLZt9odvogN8H1s5kieaa+Jagx/Qc5+Vlw9XVQyZrlItKze4LckQc/b1egHO4/wnC4oAvW0ts++4Gvm+8F38NPWWxbn6urhP3e5/jeqc4wcDu2bcYy1NfZ7HuE/swlXWbvcPkFCfQsaSZHfeQ7pwr3yRELHPsitws8x8TphG/jh4YcOuAcaIYixHPKkBj8m3+/Kpj6wsWzHDKSGKeIUY9ZdRBGAIhOVk3IBkUFCSzJQLjRJGrVOeIJcfk0+fHcf3mGv26o0eWJSY9sW4HzteNCktWNcWaDd2QlGSfOZxiYq8I3qYzDUhZYs5v4fj9r8r69afPjxptP3TsS/MN2Pn3u7WDJMnJkSJZ4hgwaa/nawz9uWMnf8C3P3vi6XPnkM5NTHyKsxd+Q05uhsW6apWTOcYd/L1egHP8lQTeMOnU2vl7lRd7594BAFzcZLmzWhB9mfKKW5SIs7Hxcx4dZyf6INXD4U9+eS8ZmU4SyWrqmDSFyVHpbJcN9e91dTe83vPzzJ880+e8o2uM064LDn/uH32OGa17+rkJZo8Sccb3PMF2NBoNPv74YzRt2hTVqlVjrJOdnY2UlBSjf/aAqYMuLz8HWVmOOSuJ6oDSWIjSXP5PK2zZQZkN6eAPDzdXb071MjITEJ/wCNt2c9M3Tkk1yC3uPvARL9vkRowkhy9jr1otzeKIpKW/Qi6Dwy493XkCsDRWOsb9/YuLZIljwDTQoNEYcskcPj4DgE6X3BlYsLg69hz4GIeOfmGxrlrtZKIbDv5eL4A4xglmYZo+Tr03NPnOMcUtJ4N70rECpxLRXeXO7cMvLVdyMpg+MOa0P0gbcDmy0DmSnGktPGuSXtIHoixFmTsCTy/HY9+8O7pnMeWaoTq7NXnmz8PN/SYR1A7vGDcZCODx54ZXChDIGmVi6f1VsN1Z+gAEbkyYMAG3bt3C+vXrWevMmjULAQEB+n8lSpSQ0ELz5GvM9PVMnhvzF5TBj3MDkZHpeLNHqIMAGnPnhAFHn3L9+s0dTvW0Wg02bh3I6xj3HuzgtZ/cvHrNPCPUHLl57LNFAeDS1cVYuKQWcvOydAMNu0bhTfwDRL44g4yMeL6mKp7cXOM+LZuzbv/hTzm3ae/3JtWRGxPLnDPHuL7jfwNYIj8/F+cv/YnXb+7RtjHNxmCSq1E5SXR0Tq5uBveTZ0ct1DSWUklIeIzzl/5EXp7j6rPb+7ODK8QxTrAeygfz7HYHZTREmRRIqRC/ODdysvIxx9J15IQnM+0N/QV7+9BLWsR9brbjJUdkwlLEOBPO0Cf+pt5urPvkkn5WSwFGjnGGmT9U8nM1Rpr2jq4xTvsWsOgEppels0iMOAyUvzmHSYrn7fYjfz2gbXp84Q35IHVCJk6ciF27duHo0aMoXpw9Um/69OlITk7W/3vx4oWEVprnTTz7QLOpEyElNRoAEPmCXR/ZbqHcv1qtlX0MB++vubv7cqqnUqmRkPiYVh73+rbQJkmORqvB/Ye78DL2GmLNJFrNy8u2GOV74vQsTsfMyUnDyrXtcPnaMvy2qCKWrGqKeX+WscpuJZGbm4n7D3ezyjb8u6mX0XpGJvMgQEpqDGM5EzFxlp3JysbwXFq0tI6MdtgPZy/8hl37JhpJ8BTA5ATXMDzvLclobN89BnsPTuFvpB1ClVL5/e8q2LVvIo6d+kFGi8SFSKkQCCxQ+7z3jsXJZ4hC0UdfOvjHgS0UOE2u74nCaK+1jHXm9zhC3UEKsxTFwT/oo/sAkJ5o7JCz5PR0FHj9nc5xagCYlyiyJKUCAI/PGabjOnr/x3QmgcVHNUOF40seCmiR8nj1yJDXYbTXWsSaaPirVEBeTj62fEn/0P6u4R7WXBIEx0Or1WLixIn477//cOTIEZQuXdpsfQ8PD/j7+xv9Uww8+hqOOKWaOghgNoqeAUePLMvO4ZbzRgUVsrLpUjsL/maWGLInrt/4B2s2dMfCpbXx5+IajNGo2Tlp+GluISxe0chsWzEvL3M6pgoqJCUby1lmZ9uHDBMTO/eOx5oN3fDfzhGM2x8/PWS0zuaYMpXDMDcQcfX6SuuMVBjWDriTmdtAZNQZ1m1MUipMA6FqMx8FiUnPcOnqEpw5Px/5+c4h7QkYv/fz83Xf5U9M7llHwlnuJQf//CXYQnY68wPO0afZE8SnwDE1r+sR1jrXdkaxbnMWmCI1TV9OziAXAgBaHo5xZ4taZftzY+5Y1sEtGHiIuZuELV9dE9Aq5WF6npykv2cVbl7GU2dXjT+HVMoslozkXPze+xhr4s1N0+09Mo3AlQkTJmDNmjX4999/4efnh9jYWMTGxiIz0/7yrJhL7rZ+cz9G2QdHc4xrtBrs3DvesG6lY9zRH6jZHHXlHTlp5P1Hu43WX0Sfo9W5cetf5OZlIjrmotm28vLoz4n+vdehetXBthmpQK7eWI1V/3ZEZlYSrt5YBQC4dWcjY13TZxFXx/jXP7LLXqjV9i2JYfq3pme8sVDfce9B7rCfA6b3HdNAqEqlhlarxcvYa7R3YIFT2NlgupdMn/nWauIrGRIxTnB6Vo4/z1ju4H1eUYm+kyS3CYqA9FW4waSrbXr/OdB71yx8tIyd7jpj+XtvHbA81bbgXH1RbaeABikT2scSDykVRyc4wse4QAtc22UYrNTka3F9TzSvtjUaLfJyneTB5QQsWrQIycnJaNWqFYoWLar/t2HDBrlNsxqtVoP1WwZg36GptOfE0+dHcenK37R9HO2Dcfuu0UbrmVZqqDt6xDiT1AAT6RmOnBTRdNYV/R7YsWcsp5aSU+hSSl6ehRzuvgKArTvew6MnBzjLx1DJY9FiZzp/ABg7wPauyZ6Tk2a0Hh9Pl3IzhioJxdxBjk94iN37JyE5WTmSXkJibrCXMWKcQV4l+uUl7N7/IRYurY1VazuwH8wOO8tarZaXA9tS0tvnL07j6x9dMOMH+zsnzozjvXUIgnHmnyeM5aYRq0f/tvRicj6ibicxln9R1T4T6giN0zks+cLUyTApcpbkd84iGSMGeTmWr5F1Uy4BcJIZCCRi3Go0Gi1OLHtkKLDhIf5D072YVHQTcjKtjEQlKBKtVsv4b/jw4XKbZjVxr27i9t1NOH3uV0anQWZmIq1M7WCJya5cX260/ujJfusaIA9UAMDviyrJbYJoaEycZ5ac2NkmDk0q8Ql0WbKsrCRam44UgZ/NILFjiaho5mC1hMRHtDI2J/DT55aTCiqRgijm5JRIo/J1m/tg5dr2AIA797fh7+UNGa8ngP36WbKqGc5d/B3rNvdh3J6dk4bDx2biZdx1vubLirmoeaZ3HNtAy/lLfwIAnr84idt3t2D1ui5IT39t9/fl+i398dvCCkaR8FxkQ46f/tHs9qWrmumXmfoN9kBOTjplzTne68Qx7oRs++46Dv3JrF9sibtHY/FZxW1GZSvH0afQOTtfVtuB1NfmM607Ig9Ov8LnlbcjPpK9EwyAeMY5wugXNyl0FocxP41x5zg3BdgybfTZZfuOJLIGWsC4BXkwaqS002Jyzmy5tR6fe4O0+Gw8Pmd+GjSBIDWxr27olxkjNN++fzMoUdSR0Wdx6coS0W0Tgrz8HKzZ0B2nzs7lvI+XZyGrjuHoEeMEIDLKOOGspd/81Jk5VrV/9cZKWpsFjjlHgE80PFvEOBMzf3Qc987TZ8fwzU9ujJG3aelxePz0EKJiLmLdpt6IirmAzdvf1W+n9onZIqfT018B0EVF5zHIghw+NgPHTn2PhUtq2fiXyAV7Z23XvolITX1pVMZlpsv6Lf3w8PFeHDjymcmhlP3NpdHkY/vuMXgeeUpfdufeFiQkPsbDx/v0ZQXXjUaTj7Ube/J6v3u4++mXdx+YZIPV8kHN/0A0xgkOSeyDFPz39XX8M/ECr/1/bnNAYIsIjsSPzfbh5b1kTCm5FYAu6d+aSfRrTeHvTuXA8CIy7U87y8uKTyTzy3v2m5iJD+S+4obpAIKlW2jtJPMaqQ6JBUe4Nffjtd1RuL6HPrhA9D8JSuP0OYPD+ODR6bTtBc66m7fX6csOHf0C2/eMwZNnyo/GvHl7Pe4/3IX9hz/lvI+3d2HrDuIkfRJnpsCZqMfCb26trIwng5TK0RPfWNWGklExzDK5duMfs/tYm8sgLz/bciUFc+7iAmzePgwb/xtksS41KStVLoYaYW5OUqSAs+f/RyvjmhxWiWRkJuD+w12s26/fWoMtO94DAJw4Mxtnzs9HUKGynNu/cn2FXX14rNnQHZeuLsHS1c1p29Zt6k0r+21RJdx7sAPb94zh1H52diq27x6LJ0+PoHSp1vryl7FX+BstI/kaQw6hpKTnZmo6DsQx7mRs/fqa3CYQnIRjSx9ipMdaHPydPjvBjt6jioOWfNNJTiafiPEHp15ZruRAPL0obgTuxs8vY3rV7chMtfPM885xywiK6XOGqyRjVlou5nc7gnldjyAzxTmTNBHsk1imqfNv37+79k2kbUpIfCy2STaTk5Nq9T5cHEpUHDlinCmilADEUWZaMGPdS9fHuzDnoI/nL05brqQwTP+2rKxkbNkxzPw+VibO/P2vylbbpSR27/8Q12/+g7T0OIt1X7+5q1/WavPx5NlRHDr6lXElDt9KBQlRTXa0uJ/S0Gq1OHBkOmb9Gmyx7qs3t3H+0p84eORz7D04hcO9bOa4CjtX0TGXsPfgJ8jK1gVJPXy816r9mWSKzPH6zR1curoYK9a2NRnYs893IjXx9uETM2W0RDqIY9yJSHmdhfPrn8ltBsFJWDH6LHtUoZXO3PRE5/wYYfouSH3jfBI9AJCfp6wOlxK5sFHcEf3ds28j5k4yji9h1nC0F2jPJRLhaBmTU6bhGDGelWboWB/4zXiQ1EnG9AgKpWzpdma3R8fQZ4qY0xNXskM4Lf0V9h361MiBxBWrHeMMMhGr13VxiEH8DAsJ15yVk2dmm91+6cpizP29JF6/4Sbj6eUVzFluZOmqZohiuFeVjfGzYuVa5mdResYbnDr7C1LTYgVLRvr6zT1EvjgjSFtK4chxg9MuMekpVqxpQ9OApjptMzITMG9BWRw4Qp8VZIo9PrcePt6Hk2d+5lQ3NTXGaKD3zPn5Vh2Lel7/+Ksq4l7ftmp/MflreX2cOT8PBw5/ZrkyhXyOA6DRMZdsbkPJZGYZtNGt7QfYK8Qx7kTkZJhPdBX7wLlkBwjywSUZIJW0ePueEigkdw7HGq0/Pv+Gs5PKnnEWLXWbkMgvY+8JX2ka4ypd7g0CO7SPQx4fiy/vJRs/q+zwg5PgOOTmZprfnkffbjZqU8EDbFu2D8Ppc3ONdJrz8rj1qxKTnlp1LKYBgoeP9yIvLwv3H+7GzTsbAQBHTnyLzdveVZzjKTHpGeJe38bc3yNw5/422ezQOJAjQgstklMisX03N0mC4uH1rZJfeRFlX45e04jx6JfMDraNWwdh/+FpWL2uM12+hie//1UZS1Y1RXIyc5JFR4Xq2Dt38Q8kJj2hOY+ZkqJqYX/3IZcoezFISHyEBX9XQ1qaPMdn45WVzvo8hnc/E38tr8+67cGjPZTj34JGk49nz08gJzfDKlvk5PAxw6yLjAznyAnkEI7xWbNmoX79+vDz80NoaCh69eqF+/fvy22W4rDU9zRNqkkgiIWLm3WPHmfR0TaFy/fig5OvcHjhfRxeeA/X90aLb5RM8NEYdzac9T6xFlNHTOT1RPz3NXGMG2FyKdE1xi03kZOVj8v/GTQ+M5JzMMLFvI4qgSAVpgkEuWAuYvzq9ZU2WCMuTI7DLAYnUHaOhcTpNrJmQzds3DoQaWlxOHriG1y/tQaRCnJqvol/gHkLSmPB39WQnPKCUXdWKhavaCTbscVCo81DckoUHj89bLZekbBauPdgB+d2tVoN9h/+DA8eWSeVIB/c+mpPnunOU2zcNcEtUIr007PIk1i9rgviE6yTrbCat52YnJx0XL66lLFKSqpjfENJOXspO4v+Htm6c7hkx2fi+q1/sfyfNvp1a7+NkpKfIz/fWDIyPsG2mbInz8zGsn9aYu2G7voypUtzWTso7gg4hGP8+PHjmDBhAs6dO4eDBw8iNzcXHTp0QHp6utymKQuFRWUQCJwh/j6zrPnwAlZPuIB5Xcx/bNgz8c+FeZ7Hv0hHfp79RYAQBMTkVZiRSGakWAuXGRz/Tr6I1R+c169f32380Um6JAR7w9z06OcvTkpoCXcePzmEbAZtcSYn/xMLDksuPIs8wVhOnXKfmZ2kX166qhlSUmNsPq4QPHqyX24T9DBJ+QDAhct/YcHimsjOtl4vXm5UUGHu7yWwcm07s05scwNQTFy5vhKnzs7BP+u7YOmqFoiN46+TLA0KePkpJJBi2eoWePh4LzZsHSDqcWLeJkDce3AyUlLpycCpGAVP2GFHRUqt78UrG9PKXsZelez4TGzeNgRPn1tOhm1uttLtu5uN1rfuGG6TTRcuLwIAPHl2BABw/eZafDvLA3sPTsHte1ttalssnEU+hYpDOMb37duH4cOHo2rVqqhZsyZWrlyJyMhIXL5sv5mExcAOn+0EAgDF9N94k52Rp7jpwvbG/v9Zr40KADt+vIG4x7oPyHsn4jAlYgt+bnNASNOcDnu/lGnSQ/b+gJECHhrjJ5aaj7Cx9+uI4HzE2pCYTC5W/tuesdxUFiYt/RX+3dTL5uNlZMZbrGMa0bjv4Cc2H9eR0Wg1+j7kzr3jEffqBhYsri6zVdbzIuqsfnn/4U9Z66nVrla1m0SJbHz+4iRWr++sX9dqtbhzfxuSksTNwWId8vc5lJYTISXFvLPaVpatbgGA7vA0Zff+j/DrH6WQmZUEgO4czMiIx5v4B6LYKBT5HGWyRENxfWpme8wNILyJN1aeyMhMENSizduHAtBpuq/f3BcxL68I2j6BHw7hGDclOVk3rSMoKEhmS5QFmxTB/v/dwbpP2BMI2ELqmyxc3xtt95q0BHlRqZX2kuVO/It0jPH5F7/yiObOSlH2NCspcfPg97ra8tU1zKy9CwBw7G9dZ/bBSWG0GpUGtS9avVO4fIYoHeKQtYjp1FPTgT0ibUSwd0qXbG31PmGh1fEi6pwI1kiPqWNs9vwwQdpl0mYHYDQS9uDRbqNN2TlKyXFkvq8pdQRdYtIzXLi8CL8vqoTFKxoZPYeTkpXk6OWmiU51RJnT+LfWMW7qiEunaBzfvrsZ6zb1xq8LSlnXpogoQvZOCTZQkCLKmYuu+rmLfyA5JRKXriwGAGi0+UbbZ80rjN8WVURi0jMxTBQEuXXR09Ji8esfpRST5JXtftNq8hnLAeDoyW+N1t/Ec0sczBdTR7wSKBRYWm4TJMfhHOMajQYff/wxmjZtimrVqjHWyc7ORkpKitE/Z4AtOuvfyZewb94dm9qOvJ7AGBH7dd3dmNflMI4utk2bieDc2LMT5sw/TwAAN/dZP1VY7epwj2hevH6aipf3jZ/TW2ZcxXuq1Xj9zLImalZqrsU6jkBijCGpS8Xmwjg5HBGm5JsEYzKSTAblaBrjtj+TNUTSiCAjPj4hVu9z+NhXjFPH2cjITMCzyJOKnDEmliPq1Nk5zMejOE73HpxislUZD+HsbPbvwdy8LPy7WVrN8d8WVcTOvR8gPuEhomIuIC8vS9LjW8Odu1usqp+bm44sBn1iAHD38LPNGMpLnYukgvTIf72rVMr6vpAiud+qdR2tfu6lssg8RUWfZyyXmqTkSESZyC4pQQIjKfk5Vq3rKPlxNYzObvr9lpOTLsh5Yj4eDxT4IUI0xh2ACRMm4NatW1i/fj1rnVmzZiEgIED/r0SJEhJaKB9iOhdn1NqFs//Sb6D4SJ0uMDUBF4EArdaqD8UCPduLW54j+k6SSEaJA9VZCRgiLxOiM3B6zROz+/KNknY0ppb5j1a244ebum2luWuzvXpif5qc1pAUwy2Tuq3wGeRRFCbPHgX2R2Xn9qGXRuumj+v8XA7PbwsnlqnPQCBIRXq6+DOHFvxdDctWt8Dte9Y5DSVBJGd9DksCz3/Wd2XdxzSCXA6OHP8Gh459ybr94uVFiHkprUSnOU17pXH+0gKr6ufmZuDHuYGM29QqNVo3/5pzW+YGNEyT6CkBoSLGA/wjbLDB+b4vXr/hLslYcH78/FhmXyqk4/jrHyXx9/IGuEtJVqsExzgAWQbydu//iFaWmZWA2yYDd9nZKYhPtD3hq1CSVkqTNoqKviC3CbLgUE/FiRMnYteuXTh69CiKFy/OWm/69OlITk7W/3vxwvLUGkdA7ICVtZOYE8UAinl/WIVGo0Verobm2CQY0Gq1WDbyDLbMsD7RxqsnliN9C/jv6+vYPecWFvQ7ji+qcs9UrwQO/2mYHrVs1BlMr7wdOZl5+KLKdix+95TZfXOzldG5kYK0hGycWv0YWWnWf8Tc2Mctk/zjc+JHpDgDd4/Gym2CTXDRx7aWh2deISHKkCA2Lycf++bfQdTtJMGPJQemA+tcEtjm55qvkxwrzUAOgcDE0+fHRD9GappugOnu/W2iH8tarI2crFd7jE3Hs5Sc9LEAiT9twXTqvClp6XFmt0uCgj+m2JKussGUEJaKhw1R41Qn0+s3ts2IVjLFwuvz3ldpjjjJ4OgM0Q9esNRX2vn7d2NP/XJSsjKCEannKDLqLK7dXCP6MS9cXkgri427jvVb+hkXqlRISbHd/8d1sIWa8FVJM8hy87Jw49Y6pFNmbCQkPMbfKxrKaJV8OIRjXKvVYuLEifjvv/9w5MgRlC5tXhPHw8MD/v7+Rv+cAhtvxN/7HDO7XZOn0TuTHYEZtXbi4/BN2DrjGm0bV0eco/PiZhJOLH+kj961Ciuvx42f2V9iioxk42ifE8se4eX9FFzaGonMFMsO4AnBG8QyTXHM63IYS947jdUTrJ+e+GtneT+olYjYHa89c28jLUHmBD98MT01Ajgbfmi6D5NLGCJS9s+/i3VTLuHLavY1kMeVE8tsj7TR5Cnn44DgfPDRGOeL0pwoAKzug7m5eYtkiI6Va9vh+q1/RT0GH1LTdAPBSow8JrBAeadLoV1tPUI9D2z42xQ4yLJt1yjRczhkZTPL99DRnZ+YWJZvTwWevwJOn5vLWP7suXWDV0KyZGUTbNn+Ll4oRIIGAFQyuUGfv2AIipPpejpweBo2bXsHK9a01Ze9fHVdFluUgEM4xidMmIA1a9bg33//hZ+fH2JjYxEbG4vMTBKNRMW0D2yt44SLHMo39XdjcvHNyM021lxSu9jfpRZ1Mwmpb7IReT2Rtu3fyeIkK7U3cjPzeO9rzwk1uZCRnIPxgcySTpYiKZ2Rx+d1o9UXNjwTpX0+kej2jNgBCRs+vYwl750W9yAiIUWwxqNzr8U/iIQ8vRQveJuOMohOsE8G9t2ICuW6iNL2us39sHqdoW0lyhYUOAzz8nM4JU60OiEiDzZvGyL6Mazl9WtdxLESEiYyDbBotBrExt0QTuvWATA6TwqJzhQjcWqSDQkgMzPjcfz0LMVEFwPA5WvLrMrhICYvos+a3a7IwU4LLPunpdwmICHB9qAKofDzLybLcbMZBmfkup5u3tb5KeJe3dCX3b6zSRZblIDyemo8WLRoEZKTk9GqVSsULVpU/2/DBueJtuQCk8a40FGFz68kIOVVFl7cMHYmK/CbgDN5OfTO5st7XEecHRvq5fPyvnXnxNEd48+vJLBuO7eOaOuykZutwdzOhxB5gz4gZQtXdxhPmbu0VZgPE6VzZYd4UmHX9yh/5kx6Yjb2/+8Okl4aJLFo7z0B34PZ6W8HYJTxLa5oSMQ4QU58vAvj3UHCa1tfvb4Kd+5twcPHewVvW1C0WuTkpOPneSFYtqq5xepqtYsERimQtw7xgshxpXHo6Jf4c0lN7D04WW5TFAk1Yjw19aWZmuKSrzEEZ2RlJdnUlp9vUQBmopk5sGX7MBw6+gWWrW5hky22cPAou6a/3Ny+u9ns9thXN7D34CfIyGT/1nN6mAYTFTDACOgc0WqVPO80Jt9b9Et5Ai6ZZtTcvMOep9HRsWN3pQHt20R+pv+GDx8ut2mKgskXkJ4oTWIXJURa8CXqZpLcJigSrVaLtHiDlMLnlbZz3jc7Ix9qF/u9JmwlM1n66OVHZ1/j8Xn7iGK9uS8GP7fej7jHqTi44J4gbd45bPxR+0ff44K0q2RuH36J33oeFa19rUaLJIXrRC8Zfhr/Tr6E2W0P6stMk5RqBAxcPrvuGQBlaQgqlfw8DfLzNDTJKQLBntm6czitTIl9YC20eBZ5HNnZKYiMOmOxvlplPmJciohyudBoNbhxa63cZjAm1Tt55mcAwLmLf0htjsjYcM+omCPGl/3Tin+bHLh0dSn+WlZfP4hy5/42zPhBhVdv7holUrVVlqhyxd427Q8AGZm6WWBCRa/z4cTpnxjL8zX8ZyNLxbGT3+HM+XnYc+BjuU3R88tvxbF7/yS5zTDiwJHPcenqUrnNYOTRk/2yHHftxh60slNn5yAh4bEM1hCoOIRjnMANpohxTb40H+/2HDFOYObPAScwv9sRXvtmp+c5fMS4OcdYUAkf0Y4bcy8Z87sfwZOLhkQaWWm5+L7JXnzXaC9N5kippCfkYFq5/7DmQ2EyY0fdShKkHXvBN8gdTy6In2x00SD5NAst8epJKq7u0CW8ibnLPqPl7hHhoshWjNZNv+WgTOD05OdqMLPOLowPXG8U0U8gEPjzOv4+Zvygwvezfc1XtHLwTqV2QeMGH7Nu1wjkzEpIeIx7D3YK0pYpd+9vx/lLf1q1jwoqPJE5MWgBt+7KP8X9lp1Ns6dGRMYnPBD1WNt3j0b0y0s4dPQLZOekYd0mnQP7j7+qQEPRqL/3gHsgkSmD+m1BVIxydJrF4J914khcWYupxBTTd11s3DWJrLFMSmo0zl38XW4z9OTn5+DkmdnYvnu03KbQiIm9bHFWgNQ8enpAbhNsYkBv+480J+5KJ4fJWS4G9qgxTjDPxc38owx8CrlD7cSXRK3uxUVre16Xw7i2KwrfNtijL8ugRKjnZNqHY1xopHASKwm1i5omaSUG947HiX4MPmi1Wnxa9j9OdY8vFV7zkESMWybqZpJ+Rta13cqX5SEQ+EJ9HkS+OINzFxeI9oz4fVElAEBObjqiY9inZ2uhZYxAZkOtdkVgQEmb7bPE/IXlsHZjDzx6ctByZSv5d1Mv7No3Efcf7jIqz8pOYd9JpUJeXpbgtvAhNTVGbhOwYesAUdtv1vhTALbNspBbYzwnNwPJJtrdVCkVW1Cp1KLpyccnPMTN2xtk7788fir8vc+HjHTjWbavXt+m1VFi/giCZf5Z35U5CaazQbnXueQaMUf1qgNttUZ2HHfeG4EG7T2n1QoaMW7uParAWaRmMdcpSIgWLrItKy0XUbeSULZhYUVOtRULrRbITHHsZIg5GewdVzF/6tdP08wfjzjsnAYpHONKRfbLXO7j2xuy/2AEgnhQ+3dLVjUFAHh7F0aNqoNEPe5fy+uzbjt55mfcvb+Nc1tqlYtgUeFceBF9DuXKtBel7b0HP0HF8t3069RoXlNUUCmmf67RyhfYoNVqJTkPEcWbvl0S5ljWDP4Ixa07G3DrjnGes9jYa4K1by5KOTCgFJKSn/Fq938LKwAA1C5uqFqpD682HAqT6z01jT67MDbuulTW0MjOoX/vKR2qpBDBFHnfM9/O8kCXDv+T1Qa5IcNcTgRj8k0BI8apjs57x4z1fO1NNsPcN/rfQ04KdpzvG+/F94334tQq59KVykrJwdl/HTsB5cUt7BH1597qEBMIYsEn4ifyugMlEZLZ0aox824tyIOiZIpW9Jf0eAo/HQSCTbyIPkcrO3riWxksMXD2wm9W6Qvff7hTUse4isVJkCeAY0WlUiMvL1sfecuUgIxS2ebjCcXhY19Jfsyk5EjM+EGFmT+qcfrcPNGPl5srQPAR5Tcz+9tKyKp1HQVri+3eAITJZxDF8LxyRkzP89Nn4uXs4YOQgy1S8d/OEfh5XqjcZigSc/e1NWTnpOF55ClOEeDU56NGk4dd+yYKYoO9QhzjTgTTh6dYGuMbpl1BXq7hhrS7mUZmvtIjr9nmPNJqtVj0zglsmHZZr3t8dq1jO4lNmVJyK7Z/d0NuM0Tl3tFY1m039korG8CSh8jpyU5njhLLyczD0cUPkBCVLrFFwqHVAq7u1j14lSqLwgdz13lYOT/pDDFBq9Xi+yZ78X2TvYp2jnv4ukl7QOWeCgLBZt7E30dionE/T612kckafvj7F9dHWduaPJAvd+5vw7ezPHDh8l82tZOfn42ffg3CgsU1dAUWnsVxDBIKTHh4SD2gKO6DU6vV4tc/DPI5+w59IurxAGES4lEdTLaeI0vOpaysZBw6+hXna8RWVFBBxfLs6Nj2FxQPb2h1m6bSQnJHrioF0+hmc/e3rTIU5tBqtfhnfVesXtfZ6HoWSp5HatIzXiM3N1NuMxyWFf+0xtLVzXHpyt+WKyv4O0QO7M1dSbAB0+hwrRbIzxPvhjiy6L5+2d4ixs1i42h85PVEnFv3DHt+MXSi1C4OdH4IyoN4xhnJTGWOftsy4xpWjj2HGbVMPxbsCK0WTYeVtWoXR3pOm7vMXdwk6PqwHD8tPhuPz73B43NvkPJKGbq1TORJnKRXyYMEBIIQvI6/Z7TOpFdrLW/iH+DRY2kSdt1/sBNhodUwecJjTJnwRPTjHT4+g1a2fpNO3mHn3vFWt0d9xiQmPUVubgZev7ljXl8cOkdkzMvLnI6RbaEtoZn5o7jvstv3tojaPhNqtU7l1abIZwv7JiU9x7LVLXHHgpTQvkOfYs78Ikgxo+2+79AnOH76Ryz4uxofS60mPz+HsYMzY1oamjWeyksKYc2G7ti+e4x+XSnSQXLzy+/G+aDYZHliXl7Bz78WtjqxL1f2H/4UDx7twcPH+xAVbUi8umPPWN5t9uq6VAjT+PP2Gsu3cRZSVMxFbN0xAqlp7MFo9sLdB9tw6coSm/+W6Je63CJXr69k3J6REY9lq1viyrUVNs+oKRRYxqb9lQZxjDsRpu/RnIw85OeKN8JZEA0NALH3pe0s2oqY3+h5OfRz7kgOKYIOJfl5iF+cGbYEsPt+vQNA58RUMpp888/vZ5firWrPob6FZL7QM5KZp/tTnfJM7wKlQH1/SwF5LhEcAWtlPq7fXIvfFlVCTg6/2Um/LaqIVes6IirmIq/9rSEvX/c+DCpUBu7uvqIfDwCeRxonR7PlI55t3x9/CTDbblLyc9y+u4lWPmzwPlqZt3dh3vYpkbg46Wd2CpHMkOrAZHJmbt8zBs8iT2Ddpt5m2zl9bi7SM17j1NlfWOtExVzgbygPbt/bzHi9urv7AAA8PQN5tXvp6hLKmiN1BoWDTeN/687hyMxKFE2G4vS5X/XLi1c2xrmLCwDokqXyxdXNy2a7bEEFFa5cW4HvfvbCw8f0ZylX/l7eAFdvrMS2XaMEtE4eHj7eh+17xmDhklqCtJebxxyVf/Tkt3gWeQL/7XrfZs33xCTxB8mlhDjGnQmTL8/Xz9KhyZPmw7yIxHqltmI2kaiNd00igzyDkiMHCfxQUgQkcYwzwzQgdXjhPYaayuTwoges27RaWK3jL5a0lhzIfZ0/PveGsZx6L8Y+sK8BY1GR+wcjOC2VKvQQrK2Tp39m3ZaSEkUr27x9KN7E38fs+WE2HfdF1BlJ+xxCOC+5cPfBduEaM3N+zp7/H+u2E2eYf9MA/xK0siAHiZ7LzdN9k8ihz61S2S4xRNUpZ3KMp2e8ttImZkexRpOPuFc3rTPORiwmexQwwiEm9ipWrGmLF5QoZQBITX2J5OQXFvc390w6Y+aeUyrPI5lzjGVnp0pqx6GjX3AehHVxcWcsl3p2CxP/7XofGk0e1m7saXNb8Qns30P2Rlq6ZVlLLtfcm/j7jOWZWUn6ZUFyOjgQxDHuRJi+n7QarahSKq+fGG5aF1c7u9TMvMxtnWL2z0R6dMGzy9ZFdhIIvCEOKD1MjvHVE6SN/rGGmwdicHLlI/369V10R0sBfH7mtZPEjzqUitsHX7JuS0+QbyYA9Xe5f8JxNN1tRaPc4HmCg9O35z+CtXXkxNes27bvGYN/1ndl3JaTa1s+iz0HPsbMH9WiOseDCpUzrHDoBwuht3363FwG/WN+sMkgAMCJM7NYt716fYuxvEDyg0pwcEXGup9Psc4Ry5dYASK8r91cg+9+9sKlK0tk6S8WaO8LN/hC/xusv0+Yr/cz5+fzsMc23sTfNxsVLkQCv4TEx9ixZzwWLa2DJ8+OYPGKRsjOSQOgGwyY81s45v4RgRwzTrWrN1bj53khiIw6y7h978HJNtspNY+fHmQsT0p+JqkdubkZmPdHKU51K5TrwlgeGBAhoEW2IcQ1q1K5KCogTUzu3t+OH37xx6FjdLkxKmGh1QEAmZmJuHF7vf5+TUh8ZG43q/DzCxesLSVgZ95Kgi2YTtvOTssVV0rlZpJhxYFmZdk6GJ/0kiScsJXnNiZAlQQlvZ8dSiPDeZnb8RCWjjiDG/t0yVvTE22bAueo7J5zC/O7H2Hdnhwn3wwdar89N0taHW+usMnAEAiOiKeECRMfPNrDus2cjrEpGZkJWP5Pa1p5evorXnZxoVmjqfplU0eGq4sHrb67m48gx12zobsg7ZhzjPPBy7MQraxLe2ZHqY9EEit/LqmJ1yxRglzZsv1dALqBHDkixt30141t/dYjx78BIO7szUtXF4vWNhu+vkXQvjX7QI4Q/f3bdzfh4hXjBLePHuuSoublGfpP6Wnsg/tbd7yHjMx4rNvcx2Z7nImUlGj9jA02NNp8pKaxB39QaVD3A8ZyT49Aa00Tjbz8bMQn2OasVanUePL0sEAWKZtd+yYAAI6f+sFsvYLZAms2dMOm/wZjz/5JAIDMTOF8KD7eoYK1pQSIY9yJOL36sdH65i+vQSNixLg9y4OY7UeJ5GR8eT8ZWWn2mWFaambWVn5SxIQo5UxPIlIqzORk5iP6TpLcZljNr511nb8nF5jlOgDlOl2lYONnV+Q2ASVq0J0mAIxuQDEHpm1hTjvmqChRIQ8mgpOTmZXIue6xk9/h6fNjtPINWwcIaJExXt7B+mXTaN5O7efR6qtUatStpRzdV6Ed4z4+IRjYZ6NRmTflHMlFVNQ5o/X4hId4GXuN076mTmS2aHkxqV1zuCDtHD35LXLeJlilQ3/fHDjyOc5e+J2xLbaZwnJEqFau0Au1a7wn+XF542Tv9sgXZ7Bx62AcPfk9AOD+w11YtroVEpOemd0vPf011mzogV9+Ly5oItdyZdozb5A5YMp00O1/C8sjPZ3/zJrXb+7g1RvbE1rbGzv3TsCGrQMZn0UFA9iRUWcAAJevLUV6xhuBn1uOdX8Tx7gTkWwSqXz/RBziHkuji2VvAatmNcZF+ls+r7QdY/3WidO4A0KiGi3zU8v92DLjquId43k58jhxv2+8B19U3YGrOy1rJdob8c/T5DZBkdw6yD0q0xZcPZi7V9T7T6nJN59ambRVCAT2WREIguLmKn6iMk0+98CIzExmJ/qzyBNCmWMVLmo3WplKpdZP5baVf9Z35f0x//T5caSkRIsS/VytSn+EFK4seLu2YJog8H8LK2Dh0tpIszCb4OjJ72la9/ce7BDcPksUzDSwVbYSAFat7UAre/X6Di1iMu7VLZw8Mxt7Dkwy217kizPYtW8isrKS35ZI36H28Q5h1Y0G2GUpKpbvjupVBvE/8Nvfw+g+4vAbpaXHISPDeeRCl6xqipt31uPI8ZkAdDNenkUex7ZdI83u9/P8UNx/uBOATspGbISQLxGa1/H3oNVqrU5iXcCeAx8La5BCod6DFy4vxK07G/E6nlt+rJ/nhUDI55bFnAd2BnGMOxHX90TTyrZ/K80FLUQHR1LMaoxLaAeBlfGB64lz3AL3T8Rhxw83FR0yvmzUGYz0WCvLsRNe6KL6T//jWFm1AcX9zIrhlw6HJDkO6zuP8sMo1TEuB1qtFhs+u4xPy/2H9ET5NOAJBCY6s0hkCMnCpbVFP4ZNUJ5dKrVxgkQmve3sHOECbx482kOTZMjKTsH/FlbEvkOfsu737PkJLP+nFX75vbigL8X6dcbpl4VIFikkd+5tgebtSOOTZ0f15UnJz83ud+T4TKuTUoqCgL9TZNRpWtkff1dFcoohGGLvwU/w6rWlSFPd+3zJqqY4f+lPHDz6xVtTpe9olSnd1uw3NZs2e+/uyzGgj+3BV6v+pQ82WGLxysY2H7eAjm3nCNaWlKRnsM/wlANfH9sSPttKHoNcjAoqrFzbDt/O8qAMPjkneXlm+sEMzx2thnuAmS2zp8qX7cR7X3uAOMYdnLhHKWalAuIeSZRJmTiTCSLw9KKyOhpKRYl+8fw8DdKTcnBimXBJQPiidlH+Ayot3n6lqQgGqPdfvsIc44cX3sN3jdk1kMVEqwX2zLmNV49TcehP2zRyCfLw559/olSpUvD09ETDhg1x4YJyExlbi79/MblNMOLeQ+kjeakf02oT51v1qvRI1KysJEGPf/f+NqP1y1eXID7hAU6fm4vrN9fin/Vdac4UqtyMkLqqHdrO1i+r1cpyjD94tAdr1ndD9MvLWLGmjb5ciRGiTOTl6xxCUkUZnzk/Dxv/sy6SOj7h4dslaTvUI4YeQemSLc3WYXOaC6Fzr9Vq8YIlmaY5DOfLdqzJxSA3VPmUuFe2J8YVkkKFSst6/J/mMssNPnmmyw+0YetA1n3T018jO1si/5VMFAy+McE4+4nxvmeTgOL/7dHBTgemuEIc4w6MVqvFtPLb8EXVHfixxT65zbErru2KktsEAgfyRdTId1SU4hj/pt5ufFBovdxmAABcXJX/KlzQX54p8gR+cAgYR0JUujTGcGT1hAt4fE6ewca8bEO0iyZfIQ8pAmc2bNiAKVOm4Ouvv8aVK1dQs2ZNdOzYEa9eiZcM0hFJY0lmt2hpXcz4QYWNWwcjIeGx4E5nTpiJUnVzY5aaKV2KniBUKDSUCLnN24fiwaM9OH76J9b6c/+IEOzY1IStbBG6BTSq/xHrtg5tZiOieBPB7Crg4eO9iI65aFzI8vtlZacg7pX0WuJs5ObqZvJdvbFSVjs0FOeRqWO3wPksdcR4GRHvJ0us39wXazZ0MyqzZrDlyPFvzEfBciQq+hzq1R5jcztSMG+BvM5nu4PyjHr0RJfs9dWbu9i9fxJS02IB6GTEfp4fih9+kS5pthxcv7WGdVva23NBpeBevHV3s74sMuo0jp2kJ+jUWBFdborp7LDgoPK821IiyvcGEHij1Rhe2A9OyvtxolbbR6RCAVtnXJPbBEWwe84trBh7VpbpglwgDhSOKFD/J/I690RjYpMcl4mfWu5H7IMUuU1h5e5RekfIHPePMztYxODGvmj8r+cRJMVmWq7sBGSmmJF4ojxL7xy27je1FY1Giwen4hSZ5NkogEWh7xsCO/PmzcPo0aMxYsQIVKlSBX/99Re8vb2xfPlyuU0TBEvOT6HYvP1dWll2ThpiYnUJhW/eWY/5C8tJYosQiKm/zRQ1l5mZYKRPK4aueLPG04zW1RakVNq1ojsmCmjeZBpat/hGCLNomEYFsjkxf19UCQsWC6MFz5VCgWWM1mtUfUe/7O9fHADQrtWPktpkChdpgiwrEuY6Ag8eGc8o+3VBKfxvYQXEvLSc8PzoyW9x4Mjn0Gg1nJPBMlGz+lD06PIXpk2Kga9vEd7t2AtZ2cr9LpGChUtq4dzF37F521AA8mtaVyjXRZLjpKe/wus33HTDAei/8zds6W9UfPj4DIbK/N+Lpu+RMqXasNS0T4hjnCANyvPLmSUvl32aiTN9s2/87AqOLX6IJxeUKVmiyVOWFIFSyaI66pzpAubI7YMvcf9EHD6ruI22beW4c9IbxIEHp8w7vqNuJUljCIBfOx/G1R1RWDvJcaQT2ChdL9hine8a7cXj88zPTDlvv8N/3sOPzfdjdtuD8hnBAnXwlTyi7IucnBxcvnwZ7dq105ep1Wq0a9cOZ8/Sp91nZ2cjJSXF6J+SKRJWExHFm0pyrMSkp0brGk0+fpjjJ8mx7Y1TZ+lTul+/uYtvZ3lg935dEkVbpowzUbF8N3SkyKgAdL11U9Qu9MSkRvuL9IFk7m8/ePRL/L28IXJzM5Ga9lKU45ujbi3jRISBASX1ywUO6epVB6Fe7dGS2kWFev4yTLTXX0Tr+oVZ2crXQfbyLIQpE8TLoxOf8BCLltVFzttIfwB49PgAY92zF/6HI8e/timfQt1ao6BSqeDnV9QpOgtZLImWHRGmZ2H+24HOmNjLAIwHO6NjLkljGAUpZyv8/pdhYDlfk4fT535FTOxVxrrWvEdsei/SAu3szMFnAeIYd2AubjafaEVKMpOVF6FmDoH70nZPTgb/aTdiQqRUuLF37h39shP0IwXl6N8PkJOZJ6sNTMf/sfl+GSwxz4WNynnniMXTS5Z1T2PuKvNj+fhSnZ6/Egc6jWb/kGeUXfHmzRvk5+cjLMw4mVdYWBhiY+mzImbNmoWAgAD9vxIlSkhlKisd2/7Cuq1+nXHw9AyQyBLji1/IBJZyIKauNZNmeEGyxXMXfxflmO5uvrQySxHjLmrzjnExotoB3SABlRu3DYkXT5z+CVExF3Dj1r+iHNsiJs4VFxd3/XJuXubbKir07LoYtWu8Z1RXKme5Rmv47omMOoOEhMf69ezsFKN1ITH9e21ur+YISfSkT57+Wb9cMHDAxPFT7DMozNGk4RR8/5UWrq4e+jJf36K82rIHNmwdCK1WC1cWmSqHxFxS2bfvkmeRBlnJv5bXt9ykwO8g6rNKCi5fXYYjx7/BxcuLsO/QVCxaWoe5ohUzw21555ieT3OJgO0R4hh3YBYOOim3CXqU5KTnQkYiuw4aVaJGDOJfKEN39tx6Q+SSUqVUcjLkdVjaC6dXUzrwCv0tFY3ML35ncDhLwbyuh+U2gXb7JcZkMFcU49giv7tsgWrb/v/dNVOTYO9Mnz4dycnJ+n8vXryQ2ySzH7tCRx2bwx4d4dWqDJDbBEZevb6DbIFlCJgkdVQWHOMWk3OK1Ce7cHmh0frpc3NpdfI18gQtmTpXqNdQgZRKAabfHx4e4g9SabQaHDwy3ajMVMJozcYegh+3basfGBPZ2gNUHXYxBnuYntED+2wQ/DhK4dadjUhNe2k3SXPFJvOtbJHpc80SAZTZKMIgbT962+5ROHryW+zez56rwlqE7NN4egQK1pYSII5xAoGBDDMR7qlvbE8eYg6l6GYvGqycgRU2ds++LbcJdkFuljIj/u0FuQfE84lkkCBc3xNtcxuhZa2XNbh/kiJ7Y/KR/3GxzYh7JI2UhEbRjnHDclaqfc0wc3YKFy4MFxcXxMUZyzvFxcWhSBG6BqyHhwf8/f2N/smNuagnKR3j6emvkJj41HJFe0HGl+eSlU30iRyFgkk2xaLj+y3164xjLBcrYlwuPD0DLVcyuS5CQ6pg8oTH+HJqElxMkrt5eQWZ7Cq+62L2vFCLsw5ev7ljdjtXqlUZqF8+fOwrqFhcMyWKN+bVvmQRndTjiDDYw+QYLxxcAT27LBb8WEqBi869IxHz0rI0irXvY6GfF4+eMMsEyY3air+TKXknV0yfJ82bfIYypdqiV9elvNtUEsQxTiAQ7Jbo20lym2AX5GYbOhIkYNx6EqOli+ot4Pbhl3hPtRo/ttgnu2OeYKDF+9Ynvnv9NE2/zHT/CeGw54KSJcKUMiBMsB53d3fUrVsXhw8bZmRoNBocPnwYjRvzc+YoCaYPcTc3b9GOt2JtO8z4QYUZP6gwb4H4EghMlC/biVZmGrno7V0YAFCxXDfWduSMdszKThZ8UIPJ+VC75ggAQNEi5nWTAwIiBLWFD3N/j8Cb+Af69fOX/hT8GB7ulge6mK6LoEJlGCWLWjWfAR/vEMO+EjjGMzItS6YJReGgCvrlwICSKFGiCWM9by/L+U3k5ObtdfrEt2IM9rBJ6FSq2FPwY0lF3KtbOHlmDlJTmXX+Ndp8nDk/X/Djdu+8SPA2heDkmdkW61j7TE9Msl1f39+vuOVKDIiZfNqUfI1UM+iNn92engEYMfQQ6tYeyVLfviCOcQciPSkHj8+/RnpSjuXKBCOOLn6AXzoeRFaa/JFqpk6wbAXIhRBnqnUoVXpGKTw699pyJQXxadn/JD/mnHa6BIkPTr5CYkym5McnMNPhY+s7ulTNcaZHg9pFGueRmFIqKrVtf4PprIiYe8lIi8+yqU2CdEyZMgVLlizBqlWrcPfuXYwfPx7p6ekYMWKE3KZxxLqI8c7t5xs564SE+iGflZUkyjEs0ag+fdq2qbPro3F3Mfydg6hRfYhUZvFA2Gcek1O2VvV3Mfb9Cxg1zPwsy0b1P2TZIl1/MTnlBX5bVFG//ur1LcGPoVKp0KvbMoQUrmK2Dle8vYLw3juGKE0pHONSQv17XFw84OHui5mf0YMxundil5BwdfFg3SZlcryz5/8HQDfzRWi8PAsxlvv6hAp+LKlYsLg6Dhz5DHsPfcK4fd6C0jhxZpbgx21Ql3n2ChXz15Q4pKRaDhIRewZX5/b0gYiw0Or6ZbXJjBZzuLv5CGITFyzlshAKX98iGNRvC9xcvTC4v/TfxmLjWG8XJyYnKx8fFFqP7xrtxaQiG+U2x+5YOfYcbh14ib1zlSXN8fjCG4zx+RdrPrpAnK12hJK1fJXA9433ym2C1Uh5/5kObmocWEolITrDrp5tHt7cO8UF+AYbPjCibibStjuCY7zrZ1Vt2t/UtumVt2NCYdKXsRcGDhyIuXPnYubMmahVqxauXbuGffv20RJyKhVrpVTcXL2s+kC2J0a/dxoVynU2KlOrXFCpfHejMh/vwihbpp3ZKdxyJ+bKyxNW+pBZY1yF4uH14e5u3gni4e4LD3e6FJc9vf+4oULdWu/jo3Hmvqesuy6ogzIVynY2U9P+oF5T/n7FAABuJgkXPT0DERDAnqR41PDT4hhnJc9f6AaHNCJo1/MdEKlUQfkR5XfvbZXbBPTo8rfR+rhRlxU5CCW2Yzw4qDytjPquF/qdIhQqqBD98rLox/Fw90XVSn3w1bRUVKnYS/TjSY3yrngCLxIoCRupsgkE67iyXf4kUNTviK0zrgIADv5xDxNDNuLCpmfyGKVwbu6Pxux2B/D6qTISV+XnKfdDx+G+wSRCyufqTy32Ga076m+2b94dTC6+Gf9MvCC3KaKidlHhwak4HPnrPn7tTE8Aamu0NVfE1Bh//STNciUzOOo17kxMnDgRz58/R3Z2Ns6fP4+GDRvKbZIgsEmp+PmFy2CN+AQF0eWiPhp/j+assweu31ojaHs2O4oYBwoc6+HHZTCEWofLOaXKiISG2DYIqzgo56JJw8mMVcqUasu6e7Hw+ihWtK7gZvFD97dcub5C+JZ53nv9ev4jsCX82X/4M+Tm0WfC5eXL72ytW8tYCiMspKqRfvvwdw5KbRKSkiNpZXwSKlvzri5vMigcGFAKWq1B611jhWSJO8NAqJisWNNGsmNxza1hbxDHuKNgJ/2qvFwNNPmGj4zXz9Iwo9ZOnFr1WEarFAalk+TiarhF0+Kz8eeAE3JYpE/emBSbidP/PEaOwpI5zu10GHcOxzI6ncSELdJH0Xq5xAPFixVjzkp2rKibSUbre2YLP91ZCaz7RJdo5/DC+zJbIi6aPA1+bL4fq8afZ9wuVVClrc5rc9j6zMtRgGQYwXkx73ShX9tubt4Y0Hu9eAbJCJNEDJcovaBC1udfsDeEjKAsFl4fgCNGjHPB8NLjcm0FBkSgd7flGNxvq+gvzIzMBFHbN4V6TTHNKACAHmY0ocNCqrNu07Uv3ayNuFc3sXnbu6JE9fK59775IhceHn4YMfSI4Pbw4dTZOfjuZy9kZibi4eP9oh/P3IAKDabrxMoBLKFZvKKRIO20bjaTUz0XtRttBtSE0dfg5WlIAFyrxjC4unpyaq9X1yUoElaLs522cPfBdl6DBpZQ4qwBMXGuv9aBsQfHQn6eBp+U3ILpVXboO4J/Dz2JyOuJWKKQaWBKQyXRFHtL5OfqOjmTim7C4mGn8WOzfRb2kIeX94V/KbCREJ2BKRFbsP2HG7RtinaMOzjD/2qEJkPLCN7u47Py6aKLFa0+83wXhJUXNqIhL1eDtATm6JedP93Ebgd18psjP9f880AqKRUxufwfPbLHGo4semC5EoEgGuz3oIZFSiWYIbJayRQK5JbIk8mRxsXRNXTQLqN1pScLZMPVxQO9uzNHvHJxEpjTeqUmnSyIwOT6u9gPlp1pfJy1dWqNQJVKvXlbxZXd++n6+mJCvSYKF67EWMfTi1lfG7B8b7q5ipco2JSk5GeCz9IowMXFeg1ll7cSGGVKtRbaHJv4b9dIrF5HT3AsJNWqDMDAvtzl6JgS4lZ+K0NTKqKlLA7S1LSXJuuxvNpxcXHnVK9Kpb4ADHr2QYXKwtMzAB4ehu+kiOKN8eXUJE7tBQaWwoTRV60zlif7WHTqbcXHjjX8+UAc4w7Cgd/uym2CRV4/TUPSy0zEPkjRS008PC2Ns+nS1ue4vieKcVs8RYZGaSjVYfLssnQZ25XKtm+vIyEqA1tnXKNts8UxXqIGewdYCO4djxO1fbmp2ycCgeHCT/nOy3E8iaqyDQojT2Cn+4xaOzEheAPiI42jk1NeZ2Hzl1ex8fMrikgoLCWWngemUionlj/EvK6HkZNpP+eJDAYS7JnqVQaybmNyPAUGlBTTHFEoHs5f2kajtTxLMCS4otG6vUaa9e+9DnVqDmfcxuVv6tbpT/0yTYee4hD29AwAAISGsCeptEeMZFI4aIk3azxNTHOs5sattZId650B242uKT/fIoz1zJ1HS47xJo2m8DOOIBpPnh4S/RhNG02Ft1eQ5YpvYRqs8vYOxszPMzHi3SOco6TFJDOLnqOHC6aJo01RQQVv78Jo1/pHAMCo906hVvVhGDZYFwRo+tx3deWWmJTLe1PpdOu4QG4TJMU+ey0EghWkvMrEH32PY17XI4waq5+WNWTVjbyWiKTYTCnNMwtVSoVAp1xj+pTflFfS/H7mEtlp8/k7G9tOqGi5kg3cPvTSciUAudn5+KrmTiwbdYa1TuqbLEVOAxYjYtyRHOMtR5fHgJ/rAADiI4UdGIy5kwwAuLLDeCAyO91+nLxCk28heaqpY3zZyLO4vicaS99nv/cA3f0nFJHXpZ0+TiAoCS8rIzK9fXR9j7Kl24lmk9B07fg76tQcATdX6weOtRrrP/Dt1THu6RHAuk2lsqyrWrf2KIx9/wI+HHcH0z8xDiIZ0n87PD0C0Kf7SlvNtFvc3IwjmNu3/kkmS+SncoUeNrdhyTHu6eFv8zEIwpKdI34+LOpgyuj3rJuVT01A6ebqCbVKjWLFGqBKpT5o2ugTtG7+tWB2WsONmzwHrSx8p44efgafTY5DUCHdt2NoSBX07blKPyusQrmuAIwjzyeMoc8Wpx2Wx3tTaQT4syf9dUTss9dCsH8kdKYlRmfol6/tikLcI2O5jQKZkAImFd0kiV1cUErEuIQSdVZRo3MxWmTqh2GbkJcrvBPz4pbn+F/PI0hP1MlEPL3IHjVvS/Skq7vIj+W3piVEpePiludGmv9UbuyNxosbiTix7BHj9mu7ozAxZKOk2ttccfMUPilIXo79d3AAnRP2/cWN0fWzauIeyOQZr6E4h11cFfpAEQmNhWS8KrUKafFZtEHZ8+ufse5zeNF9TAzZiJ0/3eRl0/IxZ40GtVZPYNY/54pvMLcIGgJBqbi6MF/DBY6niOJN9GUFkcC9uy0X3zCB8PEJQe/uy1Eyorm+LKQwt2hlrpFv7u6+hhWldhxtICPjjcU6KpUKxcPrI7RwZZpTslTJFpg+NQG1a77Hun+7Vj/abKecUBNIskVqZmYaIj8dNYmboJi5l8w5xrlKSBAcjwI5EACIKNEEVSv3s7hPzWpDAQAD+9AlWNQqNQb324JO7eaiTctvBLPTGo6f5vdsrFqlv8U6ptriVCqU64yRw05g6kcv9GVFQs1r+wPWJepUKvY6wM0X5/prnQglRnFSkdK8I38ZtEt/63kU08pvk+7gfFDgb6dAk3SogOQ4etRkdlqu4Ida0O84ru6Iwn/fXAcAvLjBPqUr34IjzBzmItGFoGDWxLRy/2FBv+M4sZzZ8U39zZmi8AskZI4vZd5fLjx8XGkRuEKQL0HEeOqbLHzfZK9o7Xf/ojpmP+glWvtUTAeHqPeE2slmwrANPlGZUHgjJhXdhCyOz67VH+gc2Zu/5KdfeHzJQzy9ZBjcs1XWLDNF+GcugSAlKhYHXYHjKYAin+L2dlp5QIB9RFP17bGasmZ4P3407jYmjL5ucX+ukW8hwRSNZMV2HC1gxgn56OkBm5s354ABgFrV37X5GHJSv844/TJTtKEKKqOIVKeH5Xor0DsG+EupMO3XsumXVhjnuJQs0UxuE0QlKKis0XqX9v9DyRLNMKDPBtZ9+vZcjRnT0lC0SC2RrZMWTw9/9OvFHm1uSWoFAEpFNIcvB71tX58ww4oDDA4TxzjBIfilo/j6VVZDee5I2V++uS9GuoMJgEYg/5tWq+XkkGHCVHddbGet0Ih5fV3d/sJiHVsixsV2MBVEoRYkdLy5n/n+oL7PXz1Oo21X4jXx5alO8PB2FaUvIoWUyvbvbuCRiEk+231YCWFlhU22yUZWqnGkBHVmjlqEgQslY81AWYKEOS9ys4SbBWE684pAsDeoH4B1a43UL3u4656ZbM4pLpF4cmPOERkcXEG/3L/Xv4x1uEaMd24/X79sKpnhCHCJGHd2qBHg7w7ag3JlOmD0cIMsmBZa1KrxLvr2WI2Pxik/P5bYVHwr0+DtXdionHoezSUr1cK6dy+XRLr2TIEUkjmHXumSrdCkkTjJCpWKv38xjHrvJKpXGUDbVqv6MAC668zd3Udq0yShZrV38P1XzH3xYkXrCXacvj1Wo13rn9ChzWx4UGdQ2RElijcGADRv8pnRfeQMM1BcLVch2CO3D3LTEZaS2IcGCRMpnWqpr4XTYZUC6rmxJfL/zwEn8PDMK8y+3wuevtZl8943746xTVpuUY9ywHiKRPSMp7zOtljHFsf4yRWPee/LlSvbIy3WseRcVlow2Kw7PRBeORCAOIP0oRI4lLlGC/NFyueuqQyUxoLOtj1QtBK79qw57p8wn/BWLUCIglarxePzb1CsSgC8/Ll1XjOTLV9vLUaWY5VTMqVckxA8OiNNQm0CQWjUFP3oHl0Xw8cnDHGvbqJB3fFm9ytZojlu390stnm2QU2IaPKCdHP1xBdTE6FWucDDw/Ce691tOf7b9T4AwN+vGKfDeBhJhzjXAKgtqFUuDpGozZTQkCp47539jNtq1eAZGa+0zqeNhIVWw+QJj40jTQEUps6+MIO1jm5HvM6ovP/uMew//CnasWjXFwosgxFDj+BNgmE2eZlSbeDpGYg797ZKZaai4BIxba9QJWXYcHGxzkdSQLvWP+HQ0S/0619NS4WHuy/Kle3Aqz2l0Lr51wgJroSAgAjEvTLINao55Niwd0jEOIFG5dbMWbFt5d6xWMOKVqvXai5gZt1dyBEwgq0Ae4tkozqvbEmMd3HzcyTFZOLyNssRzqa8vJdMs+l9d+kytXMlMSqDZisgfL+ZOkCRk2FZM8wWx3hetvid1t96HTOssJlqwbusNLkm/1BKxnQRPOM1unBzDNiCuaggIbDmJ6vWoahNxzJ1jBfMUACAnEzhdPfuHY9FDMMzQAzKN6Un++VClBnZJQDIz7X9Xjq37im+b7wX3zbkLsXzz0SdHIs5/fyIWkGc2/MJdPxoEoLjQo2MUqvUaN/6RwwduANubrpklQWJNk0jx8V+bgsP3V4vz0AjpzgA1Kk1AuNGXsLwIYcQ4F+cU8uurob3sNZOHXDhRepIfswqlQ2yGQX69fZCYEApq+qbkwVxJoYN3qdfDipUhhapW75sJ07tWOsY55N8V2zGDD+LRvU/tNnxFlK4MooWqYXhQw6ieHh91noqlQohwRX1656egTYdl6BcMrPM979tIbxIbaN1tgjx+nXGimaDGJQt3Q6BgSWhUqmM+kVscnOOBHGME2i0GiOO9tu1nVH65ZTX2Yi8bvywen4lARc2PhP8uEEl7GtaENWp6uqujIeQVqtM6Yyjfz/AEiuzbRcwp/1BvKdazcnBa62jW2uDY9wWfXJesHyjUOUuUt9k4erOF0azBpQ2G9M32PBBLkQErimWEigKgtjfizIOZlB1/5Ne0jXr+RD7MAWzWh3A9MrbBWlPLKiDAkysnXTB5mOc/ucJAPqgpjnePNcNvD65wC4PYM29JIa2P4EgFZa0NGvVfA+D+m7GJx8+N91TPKNEwBpHfrGidVG2dFvO9amSLQXnc/on7InKlYinJ7+ZQULh52fboLTSceToVGsoX7ajIO1oOOr/F6BEiaPgoPLo2vF3RJRoalM7lSr05FCLXH8EYVCrDZHmg/uxzzbo0HYOwjgk61QKxjJOhn5RiWKN5TBHUohjnEDD1V2cy+LlfYOUytTSWxmdjWJEd5dpWNhyJYFpPa4CPj/aAT1n1rB63wIHB2B5Cj4X+AQzmX44+QY5XiTg7UM6uaEji+5brMtFXzo7Iw/HljxA0ssMm2Rn5JCcuHs0Fj8234eo20mGQsol8L8eR/G/Hkdx4Pd7+jKlRYwbIUIEX74DSIFY85O52JggMyM5x2idOuAj1KVzc1+00fqhP+9hToeDwjTOgFiBoRlmJE2O/GX5+QTY9u4093tY9VuJdH6eX0vAzlk3kSvBbBqC82IpGkqtUqNq5b60hJv2EDEuVZSu8bnQLXt70WedDOi9XhJ7bKFAW55gmSJhNSU7lqljvcJbjW5no0WT6XBRu6Fd6x+t2k+JGuN5eTrJ0/z8HAs1mWnW+FP4+xVD04ZTeO2vu9eV/xwnKAuq5naVSr1Z63l6+KN750W08ojitg0ESQG1X9Snx0r5DJEI4hgn0FBbcIjwnU5uSvxzhoR+IvjaJIn0NKH/rDqo3KoIenxlvWP88TlhNVq5frM9Ovca++bdgUajhWngVKFiyoswMIc11xF1wIaNxKgM/XJQCeZzsX7qJawYcw7fN9lnm5SKDNI/P7c5gAenXuG3nkf1ZUzXzeWtFG1yC39iQnQG/vnwPF7el0bmwggRHiRiSzJF3kjkrOXMF6ZZH6XrBTPWrdK2KOr1iUDfH2rxOtauWbeM1qmDS0LNPlnz0UVDm1ot/pl4QdT8Gl4B0g8Qrhp/nl72wTla2Z3DsbQyrvz1zknWbdRnWe0exREQ5slYz83ThVNS1YiahdD4ndJW2Tez9i5s/uIq9v16x3JlAoEnzRp9CgCoXJH9A5cZe3OoyG9v9aoD5TbBMjIOeLi72ddMV6qEjpRUrdzPLgamqHh5BaFIWC2b22nf5ifM+DwDYSFVrdpPkY7xfJ20arHwBrz279h2DqZ+9AI+Ptb5J3p1XYpiReuhfetZdncdCYqSA50E5p3+2wRry6pklAzneOigXShmRvJHSvr2/Iex3EVlkPbyYhjkdjSIY5xAw9K7Yeq+doIcZ9nIs/RCER7OJWpYTrwgNAXTz3m9Z4U+BRyN+L7xXqz75BLO/vuUNiX+walXAhvFTNGK/pYrccGK64hLNPhnFbfplztOrsLQRj6OL9U5Nd88S7NJDsUWGRY+UDuDidEZ1A1m97Pk3FzQ9xgOLbiPbxvsscU8xWDNAFtCVLrVEfUzau601iSr8QnyoJWxmanJ1+DDLa3Q40vrB/eYyKfcZ/eO2z4TxpSoW0mCt2lK56nWfYDyYXqVHbSyM2ufGK0fWfSAVscWEigDf6bUpGjr1+0dwXq9qFTg5G/77mo3+BamX4dceHyeJPYkiEfTRp9g/KgrGNBH+dHMtmCcIFM87N3RVKu6LjlkieLiTx9v3OBjAEDlir0AAHVqjRT9mELiouaXvM5WPD0ClT17kYFpH7/E+FGXBWnLxZIePcM9qMTkm76+utxmzZt8xrsNrs8b6vVSt/ZIjBt50a7li7y9jWfFlyvTAa2azZDJGuVTqUIPjB91Bd06/WlzWyGFK3OuyyQh5eUZiPfeOWCzHUJQs9oQNKg7Hp3a/WpU7upGyUlgZ89aPhDHOIGGpZeLp68bfo/tL8qxM1PYp5TzpVAx8RKNvLeoIVqOKkcrL3As84kcvnMkFs+vJdhsG1/uHaVHHp5e/YShpvD8fK+XIO1Y8+y2VrokliHCfHyhDUYRxWs+4q8ZLLnGOBXKibPk+NZY2P74vE63WIx72pSyEsgllWvCLRLl4IJ7mFxiCzZME+bDR0i8/Ogfr1J9VFITPL5+ksq7jVOrHyP+BT0p8abpV3jbxhXvAOPz5xciTZTc30NPSXIcU9qMr4CwcgYnmkqlYn225mTmc4oYV6lUcPfinjvj2NKH+uXbh/hHxRMIllCpVAgvUhuu1kSB2Qk5OYYZmp3a/oJi4fXRp/tK+QwyQ9XK/WQ7NlV/uWO7uRjYdxPeHST+4H5E8caYPuUNRafWvhwQPbr8DV/fIuja8Q/xD0Z5Cdnj4IurizvUFvIZAEBQobK8j9G4wSQAQIc2s2nblBgx7v72vvP3C2fc3qvrUpuPUZDUlm2gy94GWAoILmTsg3jvnf1o2+o7maxRPgXv+UoVegCwTTLL08Mfn09+hS+nJvFuw0shiV9VKhW6d16Ipo2M5Yj8/cLRtNEnaNn0S30ickeGOMYJdDj0MwLCxLk5xJA9YUoIJsQLsErbImgzriLeX9KEoX3b2p5Ze5dtDVAw7TemJWQjJ4s9YuDEcrqcg711GOIj6Y4zNrhEjFOJpupwvyUnI89o/cFJ/hH2lVsX4b0vH3Iy8xjLLQ3q8O1bp8Vn8duRhZnnu+CzIx3M1qFGvfLF08SpnBafhRm1d+L6niij8rVvB0X2zuUu+xD7wLKcj1hUahnGWB5SWlh9VWoCSr4fs3vn3sGS907ji6r0qOrru6MZ9rCNUnVNZGZM7GaTVXIUBsyua7SuUsPsyy0wnFu/ILxyIGcbVow2zCwzfc4SCEpAbSlqUybq1xmrX36TYJhl4u9fDOPev4DaNd+Twyw9H46jvyM/mfgMA/pskMEaHVRnpJurJ6pV7ieZ48LbO9guHb0AEBpSBdMmxaBR/YkSH1llt+fMEr4+ofhg9DVM/sB6ib3O7edjysSnaNzgI9o2JTrGLRER0czmNiaOvYWWzb5CdwEihZWELb9nwfPOLqStBCbAvzimTYrBtI9tk1/08QnhlbC5wDFvD3RqNxftWv8gtxmS4FCO8T///BOlSpWCp6cnGjZsiAsX+EdtKpF98+7gm/q7kZ6YLe6BKN+97SZWFPdYpocWwQHL5BifErEFW2Zctaldc8npXNx029w8XDD0D36aaYDwEYmpb7IwIXgDpkRsMVvPtJ9pZ35xRud+AfEv0vHorGFKvrWO8fr9SvK2iws+Qe6YsqetqMegwuZQZIoYp0rq8NWJfnTuDa/92CjboDA8vM07JpqPoM/qsBqTm2Bmnd2IvJaIeV2PQKvV4uLm54h9kGL1vRJ1O8lIqkdqBvxcB6FlxUkyduD3u/rlXMpgXHgV6zuRAHDjbbLNrFTxZyEA9Odgwfr04x1Rt3cERq1QfuIcS5h755rOMFCpVawzRfxDPdHn+9oIjrCsjevixt+R8fSSsM8PAsFWpEpsaS1Uh4laxX2WhnCYPy+hhStj3PsXjcoCA0tyiqYVi/AidS1XkgRlXlNUundeBHc3H/TvtRaAfNHb9ha4Yw1Fw2oiKMj6yHGVSoVCgaUYt2k1ypFSad7kc3wy8ZnFepp82/t8IcEV0a7V9/DyYpZXzc8X2beiQD4YdRXjR14WJIFtSGG6zKgSqFd7DOs2P7+icHeXKJ+DyXNqyIDt0hyXYBUO4xjfsGEDpkyZgq+//hpXrlxBzZo10bFjR7x6JY02shSs++QSnl6KtyoSkQ8hZXz1y6XriS9RYMrUsluxbNQZUY+REJWBHT/ctKmNSq2YIy0BY4dK+4mVEFScX2ShJp/fSPB/31xjtKXAsZn62nzUrmk/M99K57HsUOzPycxDzD1DAsgpEVvwfZO9+nVLsxRMHUH5eRrkWym/Yg1tJ1RCzc7cI5y/PNVJFDssR4zz+xiR4tvJ9Pqt1zdC8DbdPA2Ohuu7o7Gg/3GrHdxPLr7Bl9Xo0c9S4urugl8eWZtsDqjTs4TFOmsnGZwe1GdI0Ur8HOOSw+IYr9QiDB9tbQUPbzmcTXRsSXCbnpjDua5KrYIvg049AJRpUBg+ge6YsLGFxXYsJfg2x8UtkZYrEQgEI2eHSkZnszmKhdeT9HimerymlC7VWiJL7J8Gdcfhy2kpiChBnzUrJlTNW8mcWg5Elcp95TYBAFC31kh0aDMLgYGWg418vK1LqsmHZo2nsW4rXbKV6Mfni6ur4X7w9go2U5OOh4cfwovWsXlQq1unPxEYYPt3llBQk2IGsgwQEQhMKLOnxIN58+Zh9OjRGDFiBKpUqYK//voL3t7eWL58udymCU62yNOJC6KdAcDNU40RS8RPPFPApulX8fpJGk4ss37qmNSUbcj+ojaNUu/+ZXWr29dotEhPoDstLEVHxL9Ix7Zvb1CMMdjC15n59FI8r/24YKrbKwRUZ/b3jfdieuXtuLmfOTKaqg3O2JaJE/zCxueiRvhGWJksNqCIcLJG1EsrsKj5dvno59tKp0+4RSSYXudiRDJREwg+ucgvinVBv+NCmSM4ljTk31/K7b1QoC0efSfJ0DbfgSWRL7meM80nGjV9rueakaSSks8rWY48GR+4jrE87hF3vfes1Fx8uLUV4zYuDvECXFz534+7f75FK1s5/hw2f2XbDDACwdEoVpTidJYhmleJEhf+fsXNbq9ZfahElnCnaaNP5DaBFTmi+90pOvCFAsso8jpTMuFFaitilkuvbtx0w0cMOQxfX/ZANKEw53wfNnif6Mfni1bmZKqFAsugYb0PoJRZLq4uHnB1MXyfKeFaB5iTbxKUh0M4xnNycnD58mW0a9dOX6ZWq9GuXTucPXuWVj87OxspKSlG/+yNHT/ewE8t95vViuYL9aO1eqdiaDWqvODHkBQzzyJLzh9zUPuDdXsbj5TSp+Bb/2Ce1+UwY7klh+ST88ZOOuqhOSd2lOj57R3ojoxkEWQRKB7eyOuJAIDT/zAnELUkpaIx2fzkwhu8fpLGXJkn5RrrOmRUvefJO9sY1VmpeRcLXg/Qr0fUKoTvrnSF2kW4lz71XFhKkGfLvcMH32APDJ7LLbpMjJm1pm0+OmOQ47m6/QXndl4/TcWB3+8iOyNP1JkHtuLpa16exq8wN5mn5LgsPL+WgGOLDUkU98y5zcsmsadM9/6mptntpo9xV3dlRIxzge05m/aGu+b/9d1RKFG9EFZq3jUqX6UdBncv3fVCHVhnw5aIcVMiryfg6F8PsPPHm4LnLyAQ7BkNxWHy+OkhGS1RDrFx1+DuRo8ynjLxKb77UmPR0evlaV3gAl9CQ6rql1s0mS7JMe2Jvj3/QY1qQ1Cv9mh4SvSbOBKFCpWR2wTOlCndxnIlATA3q8bVlXmmnBLQajVo3uRzAECXDr9JdtzB/f9DaEg1vDNgm2TH5IL27X8FsCVblZqiRWrLbQIr8kitKROHcIy/efMG+fn5CAszHlEMCwtDbGwsrf6sWbMQEBCg/1eihOUp4YpCC2z56hrun4jDmX8eC948k6Otfn/dVKf2H1US/HhCs2/+HVzbZUiIZ86ZMr0yf40navTg6FXGWrM0PzgP3+XN/TGM5Rajvk2OlZNp+Dh6xjHyWyrNvmJVzUsqRNTk1+FlykXCNjjx5IL5aN/sNPH1jD/e0RrvzK+HCZta6stqdTOObFKpVPANNnTOvjzZCSVrByMzRRq9ZVOkzt/DlCuADR8WuQcAqNiCZ+SJmXuiYPCFC19U24m1ky5i8xfKjnCt3sn2hKUFXNlmLH9xaavtchhiDCpYGsA0vQZNk02aDmbZBVYM2hb8/ebOU8naQRbbsSVi3BTq8y/6Dn9JGQJBLJo0nCzLcTUaw+zStDT6txDBgKuLB6cAFqmcsJXKdzda79rxd0mOay/Uqj4U/XutgaurBzq2nYNSEdxnLBEITCjBOVij2hCr99FqNejQZhamT3mDmtWt358vVSr2wodjb6JIqPUz4sXGz7eofrl0yZZmakqHp4e/3CawolSpNTlwyjMxffp0JCcn6/+9eME92k8JHPiNOaGZUPiFUvTb3ia1G7OqKT473B6DfpE2MU12Rh7un4zjrLX94PQrrJtyCfO7H9GXmXMkxz7gP1ugdH2DViFTkjIqQibRtBQx7upufFvv+smgpS5nkppCxeg662UamNd7DLAg58EG09+p1Wix/fsbtPK0ePMJV6RwtvgV9kTHj6vA3+Q6WZz+DqYdbIflubrpvSqVCgteD8D8qH7w9NVdc2LJOVi6VPjK8vCl4JuVGpEaEMZ8X/kEurNGvPsUcmcst4TpbIvS9a3T8isg560U1t2jynVUvL+0MdRWDESYQ6VivpZsfRYdW/zApv35YMlxYjqYpRQSotJZt728y/35xuU9xsW5xMV5bg5Nvgb3T8YhOyNPDoUIAsGIShV7mt3euf08iSwxhhoZ7e8n3ECnJYqF1wcA1K45gn8bRcXTHmea0m5pmvu7g/YgvEgd6aIjTR5sfr7h+uUenf/Sn2N7wtMzEABQolgjQdv18y2CkcOUK0tXvmxnuU0gcMDPL5yx/OMPmPuaVLkOoWhQdzyPfT4AAHh78/smEQoufT+pZE3e6b8NpSJaYMTQI5Yry4CLWngJWYIwOIRjvHDhwnBxcUFcXJxReVxcHIoUKUKr7+HhAX9/f6N/9oo1UZRccfd0wW8x/fDby/5wfeuEcvdyRZU2RY2mjs973odx/+odmV8u1hJ1KxHzux3BTy32Y88v3KbeR15LoJUJpYVcs4vxh4W7p7HjjfpbmL4guCSq44qlv8dUMuTlfeud/6XqCP+CLduoME0Pu93ESnoZESbYEr1ZosDnlkJJMnr236fYOvOa9W1J7ACm4uHtiqrtwuFCkR7wK+yJIMoggyXJE75Y+rulHmMpuHaoAz/mZBt+edwbTYeVwczzXYzK+T4zl7x3Gpe3RWL1hPPIzsgTxHEspTZmeBXuCS8rt6a/N22C4Vq5/J/1UePU8/Xkonh5D7gi57PBGv4ceIJ124VNzzi3U4OSFLjfj7ppoUN/t95B4x9mW16E3XNu46cW+zHG518jBxIXGRcCQWh8fUItTpNu2+oHiawxQHX2Vijf1UxNYRk+5BCGv3MQzRp/qi8LL1LHqjb8/cWbydun+0oAxgnaLDlsKpTrjPGjLisiOrJw4UqiDhyIxbj3L6BZ40/Rv9e/oh4nOKiCqO1bw7iRl/BO///kNkNxNKw3QW4TaLi5eWHqRy8wfuRlo+jx4CC6nGy71j9h4lh6vhNbiShuXSLbke8eR60a71quqBDcpEiWq9UiNKQKRg47jjIKTabcoe0cuU0gsOAQXxHu7u6oW7cuDh82aDJrNBocPnwYjRsrQ1tILHTReMJ/nAcW9UaghaR+wRG+jOXegfwiMk35vfcxfVTl0b8fWqitY/0nl/TL++bfASBgkkALPqyildgHWISKvgQsO2MubnrOuo2rIy6giHAR7gUM+V99zIvsi28vGz7QAsI8zf4+ZRqajyhn49RKncTQb72Ocqqfn6fBsSUP8PI+PXpS6c6vglkdQsP2WEkt0CSW2DPuH6q7Jrk6vwKLemPMqmYo+3ZWQkQt3RToFu+X423D772P4fDC+9g79zbyLCRttcSLG4lIjM6wqQ1L1O7BL4LZ00/AaAaVivEddevgS6P1hYPZnbcFZFFkjR6cfGW7bTZCnUUwcply+xqR19ilfh6f4544lvr66P5FdSzLHoL2H1a2uJ/pM8rW8aA9sw0fpLcPMkuOEQhSYkl72tOD+8CkGEg5VdrTwx9ly7SDi9pw3/v4hEp2fHN4egSgWpX++Gpaql6XV4mYOuoLFzbIWIaFVkfZMh2kNslmgoPKo2PbOaInUuzQ5mdR27eGYkXrKlqfWi7c3Zn9B3IT4F8c4UXrMHZSvv0iD21afofxIy+jZdPpCA4y/y0x4zP2mXpsqFQqTJvE3qcpV6ajfrl4sYYoVVKZEkJfTeOe1F1oVGr5JXEsEWYywDpY7sEzMvVSj0M4xgFgypQpWLJkCVatWoW7d+9i/PjxSE9Px4gR/Kfy2QOafC02f6lsrVq+JMcZon3fPEtDTmaemdo6crMNzqp1U3ROcsEc4xZoKVGSUpv+Ho7PPtOEk7Yy7VB7BBX3gaub2mjgROWiRvmmxhHj1IjeliP5OzEB7jIBR/56gBVjzuHzSnTNeaU7xsPK+qHVGGGvvaN/P8CsVgcYt31TbzcAY794droVOud8X8AFUio89YlnnOmMH2/1EETuIj4yHfkcHOOzWu1HeqJOqiflVSY+tyGngTnYBgsaDiqtX9ZwTbwL0CR9bEKrZRxDcfMw7ryeX//MbDP/Trlo5OB99VjYjnfVdkVpZdSBxNkPetG2u1FmDTUYUEpQe4RErGcY1+SjXaZVNVq3daYENZHo1R1RZmoSCNLQrfNCXvu9/+4x1Ko+DBPH3LRc2QL1ao/G5AmPUbF8N3z8wQO4uVFmlrnRpeyUjTjPrAK5BA93X3h7ySs9YA1hIVUxoM8GvDd4P7y9glC5Qk8MG7xPsuN/NO4uxo44r5dwUbI8iLdXsKKixqko5bx1bDeXUz21ygWtW3wj+PFVduh+Uqtd0Lr5DJ3jnAN8n7l+fvS+KKBL3vjeO4Z73tMjkFf7YtGm5XcAgMYNJsGDZeCDbWbO0IG7BLNDCVrxbPTt+Q+aN/kMZUoZ5yOqUrGXPAYRaIgTaigDAwcOxOvXrzFz5kzExsaiVq1a2LdvHy0hp6Ox5qOLgrYXyFPT2QiBBp5Mv53XTLqI9xdbH5UnlFPA0sd8qTq26aZyxRbHOFd/xJoPL/A+himfH+2Ayq0M0gzU30OtBvp+XwsBRbxQt1eE3saCGh4+/CNXFw46gfTEHE51758wyDDl52mMpEuCSkgw9ctGRvzdGMcWc5tVwYWV486xbstK0w1QUX/HH1vsx3eXu+nXzQ1i2Xo/ege6I/WNztnc90fuWb7dvVxRvGqgTccuQO2i4uRovnc8Dv9OvoTRK5ti50+38PKeOHr13gFu+nNCxcPb0EG0JZ+CLajUKpt/85i7Sdg//67lijZQqzt9wKRU3SB9ct4i5ekzgjy8XTH9mC5yr0Dz3z/UEymvsmh1hUCj0XKefUStK1YeAi6MX9ccDQeWQtV2RRnzTLi4qmj6/dZAHWhlyzlAIIhNSHBFq/cZP+oKwovU1icHq1d7NC5dXcLbhp5dFwMAhg7cSdtWLLwB73aFgf25FRZaHXGvbB8Y4IKWkjW8etVB2HNgkiTHtRYmzfPqVQbol1UqFcqX7UirYw3u7r7IyUnjVDfkbcT6yHeP48HjvShXur1NxxaDfj3X4NWbOygZ0RwlijVCfIL0eUgsUaCzLjdMjrjJHzzC/IXGwUgzp2fBRe2K+w93IublZeEMUHiEase2c7D34BS5zTDC1Kkc94qeM0tOihWti5mfZ8LNVdcPq1H1Hdy4TZdNatb4U5w6+4tRWXEB309qF+Xqd9eqPlRuE4zw9yuOlNQomqPembG/ITszTJw4Ec+fP0d2djbOnz+Phg0bym2SXfHJ3rb4+X4vm9sRKnKuIEldASeWPeLVjlAR4x0mVTK7XSplCUtOJrULc4dDk6/B7tkGrXYpEnGqXVRGTnEA0FIDbVUqePi4oeu0aihSQed4cvMUZrT3/IZnnOtG30rSL1/aaqx9LPZpajNemZEtbBQkK6Wel+dXjLX9zZ0z6iCENRT0oyduaYWilQIw9I8GaDasLK+2bMXFVY0YjrMRTq3Syfrk5YjnnDR1ONbsWgz1+kRYFR3f5dOqlivxQKWy/Rn86jG3j3dbaD1Wdx82GlwKAFC/X0kUr25eHgEAKrUsgkotDc+4ah2EybFhytL3T2OEyz+IfWh5gOPggnuYWHgDnl+VX4e90aDSUKlUqNA0FCGlDFFEo1c2xeBf66GsmRwTXFByElsCoQCmwIpwE11yNxGiuqdNisGk8ffhqxApEwDwcPczWmeSealYTjfQLrQEDdUxrlbbf2zYB6Ov8d63b4/VVu/j5uaFqpX6wMPDz3JlialZfQjat/4RKpXKYjJVAp2goLIobDLAVyCHRNXjFwKuSRhdXeUZ7A4qZNts5QIa1f9IkHYA0AYTUtNeslSUDzfK7+XhQQ8mad3iG7Rp8S2tXMj7VckR40pj9Hun0Kbld+jb8x+5TVEMDuUYdzQyknNwfNlDpCXQIwHFoEanYvCyUlt22qH2cH8bNfe/6H749EA71O1VAsP/tj3ruGkUGd8BZiEc42NWN0XVdhYcHhL1w/b/z3zkJJvj/OKWSNZ6tuolm1Kkgj/af1gJ31/vTtsWWs4PpesFo2q7ooyyGD1n1DBa//RAO0FtY4Lq5DQdkLH1+inTwLxO+nsLbb9XpKRoJd2HqrkBGnPb9szhlkjXlALHQkSNQvj5bk+0n2h+oMocM893QVAJ/k4ItsEnuWj6nvEAQc+ZNfHhllZQuxhe8ZZ0wxsPMciumBs0azK0DCZuammVfUzR9dYMzPEdTLGGAmmXkcuaYPLONhi9sgnK8shxUKiYALOuGDi5QjfAsqDfcYt113x4AemJOVg64gw2TBMwyktAmr1XFp2mVJE0AS2BICYjhxnyJJQtbdpvsXydN27wsbAGQTctv3CwsgbfqecJADq21UUPNmk4WV9Wu9YIDB24C5PG3xf02FIEhAgBVbPenB5z0bCaqFtrpBQmORTD3zmI0iVbyW2GAjE8p7hKDX00/h6Pw3B779sy8GMLfPolw4ccopV17fgb5/0bNzA/e8U0j0WDuuM5t60EalUfhiYNJ8PNTZw+cgH2oDHORI2q70h+zMDAkmjdfAZ8vPnlc3NEiGNcwSwZfhrLR53lnEBQDqq2LYol6e+gUssiKBTujWrtw6FSqdB6jPAdcTkd442HlLFYx1KHu8m7ltvgwq5Z5jNhM5mh1Wrx5qlx1KWRjrjAHws/3+uJob83YJSuUKtV+PpCF3x6oB1j56Pj5MroNKWK3iFerX244BraXNFqtfimrm3aZzPOdBLIGmUQWlb3kWbukjG3ja9TWSVgAtuyDQpjfmQ/3vsf/MO6D4GM5BwcWSTetN7gCGO5H1c3+rkKLWM+2ZG536Xz1CoAAHcvF4z9pxnq9yvJ2TatVifrYQsqkQYi/ojrDwDo95MhctPdyxW1uhWHh48bStUJxudHO2Duk96c21S7itutenGDPZGmKdF3krHnF34DUVJB/OIER6FURHN896UGUyY8QatmM6zev1BgKeGNUghFwmrql4sWqWW0rVyZ9vjq0xR0bj9PX6ZWqVGxfFebEjX6eIegZbOvjMq0WoET6IiEq6sHJk94jCkTnlhM3qhUPW0lU7ZMO7z/7lG0N5OoUwzZE28vaSQ3+UL9Joso0ZS1XqFAXSBFRPGm8PGy7FQbPuQQalajyEiY+UiYOPYWWjb7Cl9OTeIlUSUEZUu3R2hINdSs/i7nfQoFlBLFlkF9N6NEsUbo2VUnszVm+Fk0aTgZHdrOEeV4QmH6fR8cXIF1wEHIKO+QYMsJ4ZVIORulsQjCQBzjCiM9MRvZbyNWr2x7AQB4cPKV3UQ5UGk2XB6ZA1NsdYyHlfPjpOtq6ScaudR6fXQ2rHU0ZaXl0a4hrUaL2Icp2PPLLURe5+5s4YKl0XaVSsVax9XdBYN/rYdq7Q0R+uWbyDMN+MhfD4wSuvJBSIeuOT7YIE12cn0eAjMXvLmIcb55DBhmW9sN2769Lmr7preSH1PyTAuXobnrdNAv9fDrsz74O3Ww1bbl5WiYZ9NY8QizNOuCL/6hXlilHYbu06uz1qncqghCSnOfNs6WCFUOuCSItQZRZkoI2KQddpPsnmfPnmHkyJEoXbo0vLy8ULZsWXz99dfIyeGW38PRUKlUKFSoNEJDq9HKnZlWzWegZbOvMG7kJcbt1khzdGr3K6d6Y0acQ7tW3xuVhRetq1/mKucgF0GFyqBQodKWKxJ4Q52lYErDuhMEO06/XmtRtnR7RhkJufhschxGDTuJOjXfR+9uy2nb6bNeDPTpsQq9ui7FkIE7OI1uly3dlvMoeFhIVbRr9T08PYWVUbIGV1cPTBxzA/16cpcbKlTItuA3Nj9P1cp9MWbEWf3AaYnijdC5/TzWBJeKxUwHzdvbtkTIA/ps0C/36sY/T4ecmBscKF2yNQb23SShNc6L/QusORA39kXj186H4equxrJsY4H+O0fsT0dz1PImOLXysXANWnipxtxNYiy3Ofkmx76zpeO4urtgxJLGWDH6rP7/gM7pU5DgjSvXdkWhTo8SnOvn52qwafpVmr2fV9ouWHJSMWnybhloNFqUa1QY06vsEPVY1A/Y1R+cF7Q9MWk4oBQWDjxhuaKNFCQ05asjzjei1p4dC3EPU0U/xvyoftg64yoqNA9DUHFDBHm5xiF4dPY1Wo4yP+vCy98gtaLV0h+3hUvy64Rvmn4F59c/o5VbE3UvVN4BKsUESsRqStGKdF1Fe6fN+Ap4fiUB1TsV41S/+xfVsfMnbsn0hLyvhconQuDOvXv3oNFo8Pfff6NcuXK4desWRo8ejfT0dMydO1du82TD2ysIn34UpdcNL1+2s8wWyYu7mzfNSc2Xpo2mYN+hT3jt26urwWni6RmIiuW7Q6PJg69vETN7KRs+z9AuHbhLPDgyrma0s5s0nIzjp38U5Dg1q72DmtWkl0owh69PKHx9QlEyohnjdhcXw0wF00EkDw9/1K2tk/DJy+Mo92pnI9fW3le29mXUFAmQOjXfx5Xr9MEKe0LKgM4S4Q3x/Vda5Gvy9Lr49obpYDoAjHv/IgoHV4S7uy9UKhU2MOxHEBblhDYR8GvnwwDeRtiZMKfdQUGOUbKOdNO4hHZkWWrumUkCwAJs/Vhm+jsiatGTsnF5B7QaVR6rtMPQalR5vb72pO2tMecR96n6gHnHY7fp9IfrveP0+lqNVhSneOFSwo9iq9UqtBhRDuGVAwVvW2oGzK4jtwk2cemtVr25693cQN6bZ/wSKdpzxPi1XVGitu/u7YqgYt4YtbwpWowwTho07VB7zDjTGW3Gm5+SGlTcBwNm18GwhQ05zZABgHcXWM4kz+QU50JGcg5ysnQJS8V4TonlwBYq+bSSeG9hI8w81wWuHKPhe31dA+0/qoQpe9parEt9vY5f15yviQCAzypss2l/gvV06tQJK1asQIcOHVCmTBn06NEDU6dOxdatW+U2TXb8/YvBy0vXVywUWAqffRyLkMJVZLbKuaFGoapUKgwduAPDBu+x64F3Jka9d8rs9sYNBEwKqEDy822fscI3inXCmBsoFl4fwwbvs9kGOeGanNaS1E8BIYUNEhckOSodN1dD3qOuHX9H4wYfY9SwkzJaZEe8fX7bq1Mc0OWLGDpwJ7p2/F1fViy8Hjw8/Kx6P70/9Ch6dl2CMcPPimGmw2PHrgbHJiOZ30vd1d38T9pypDCZlrlSu0dxwdqy9Fxg226rY7xq+6L0QoYmLZ17U/5MGIT/RfdDYBEvhJW1LsN7dloe6zYmGYWQUj60Mo1IUovfX+smTsMSEf8iXdT2yzcNlUQzvVAx/sklzdHsbaJH0ySlVDR5wl9cUknS2CMFiSOZ8PB2RbnGIZyc3V2nVUNbCw50Ku0m8E+AykSBRFRyXCbGB67HaK+1SHqZgUdnXgt6HOqxhIbroIIj4+rugqG/NUDNzhwizCmnq9Gg0vgjrj+6TKsqnnEE0UlOTkZQkLK1dOXA1zcMLmYiVAmWsUbz13T03pmSLapVLujeeaHZOmJoaCsFN1cGOTkr+GjcXc51K1c0DmwqElod496/gPJ2rhnsojafsN1aalYbImh7joy7uw+6dJjPGs1vj5DBEMtULN8NRUJrWq4IoESxRozlpUu1Qr3ao1CieCPUrTVKSPOcAuIYVyirxp/jtR9TtDkVF3dps/VG1BT+40ir1SLqdhLNsZGWQB9MyEzNxfbvbvA+1tA/GmAgQ4Svpz+9w1CxRRhqdS/O+aPey88NhcL5OS9zs3WRlAd+v4sPgtcjMzVXv40putKVwXF2erWAMjdvmXaoPbwDxP3wK9ckRNT2t864Jmr7arUKEbXEcRrU6xOhX/5fFP/kkuYoVNzyNZufx68DZM75TRyO7FRsyT9BmZIoGMQsmD0FAJPCN3OW5bAGF5GTZBK40WmKcQStf6gXfIO5RaARlMejR4/wxx9/YOzYsax1srOzkZKSYvSPQOBCgD93CUEfk8Sd3t7i5KqQm7Kl29PKtNCiQd3xaFiPXSfbmQYKrCWkMLdB/7DQ6ninv+PMjlFRpmZSE+Y2NqPFbo7qVQahdYtvAMBoUFBlz1NAKRQLry9cYw42a6VBvQ+M1is4uZyY0HRs+wutLNAkAay96q3LiWM8mRyQc+ueidKum4e0P3mdXtw7sVzZOvMavqy2A2snXQAAPLn4BkmxmVj/CT2pz8kVj2w6VvuJleDhY3CCf7ilJUrXD8ao5U1oddVqFSbvaIOBs+vStglNQVK1tZMuIj0hBz82M0zZY3KMazVaBBQxTnp4eOF9we2SQl+3Tk/hrymx6PV1DXqhCggtI07SlM5TdYMy9fpGWKjJn/3z7jCWH1/2EOs/vQSNRosLG59Z3e60g+3w8fbWrNuLVw+0uk2+TDtE/9BUKhM2tnCYQYOC51qDASVFP9bAOfYtaSQ2vb/lFrViKzW7FMdH/7XC7Ae99GXNR0g7s41A5/PPP9cnyWb7d++ecZ6A6OhodOrUCf3798fo0aNZ2541axYCAgL0/0qUsJ93uq106/gHAOidRWyUKNYIg/v/J4FF9oW5BGUFfPLhc0z+4JH9JafjSdEiteBqEiGdlZUEAHB3Z5+N6mjyMWyMG3kJjep/yGtfVxf6IK2/n2EmtJ+v8YziUhEteB1HKYSFGBKRFwkzfL9Uq8wv0GZAn3Vo0+JrAICfn+FceXvZlmxRKbRoMl24xuxMg90SRUKr44upifhiaiI+HHsbxcLryW2SQ8E0uETVqSfwgzjGHYwP1pvX6GSKHAaY5TeEoFQd4V9+O37QRQ8eWnAfTy+9wbcN9mBS0U2M0fJCa9PW61MS31zoirBy8iZY05hE5L64kYjYh7qoK6Z3qyZfi8BwY8d4zJ1kwe0K5BkBbw2evvajIcaU4E+lAso01EW9B4QJe9+VaxyCP98MwMRNLXm38fSS+USwOZn5jOXLR53F3rl38F3DPUg3mb0xs+4upL7JYm3T3dsVVduFo1a34liWMxSefobBqK8vdEGPr6qj62d07XxbqdyaOeFWeZFnJfCl5Shjh+HcJ73RoH8peYwRgT/6HsN7qtV4cPKVqMdZpR2GkNLWyVc5Gz5B0kVt1+0VgSLlDe9Uf5H6IwTufPLJJ7h7967Zf2XKlNHXj4mJQevWrdGkSRMsXrzYbNvTp09HcnKy/t+LFy/E/nMUQ8mIZvj68yy9s8iUMSPOoVqVARjQez2qVOyF8KLGgRaOGvXMmbfO3P6917FWCQyIQFBQWVq5lMngpCY0xHimaoFMSvMmn6FkCWM5hglj+M+itR8MTv+QwpWNdHutgRo1DegihBvWn8haPyy0Ous2e8Dfn1uCbb5O3LYtv0fx8AaoV5t94NSeMB2QIhjj5RkIL89AhIaIm1vDNDmsXWPTgCX3fevXGWfDcRwX4hhXCEJ12BoOLG12e1g5ujNg/Lrm+OG6HehCMzws7h5jT0IJAA9t0KYNESmqVwiYdNM/q7AN2em5rBHjXBOnWUvNroaOlBSRq1LLAdkCk863Sq2CT6A7FiUNwrzIvoIf0zfY06ZIoG/q77Hp+E8vxdPKnl9JwMSQjaz7TD/WQb/s6qZG3x9qAdBFDpepXxh9v68Ndy/hB0QKM2jvA+IkexSClqMrGK07mnP35r4YAMD1PdEyW0IQ631BsA9CQkJQqVIls//c3XVT46Ojo9GqVSvUrVsXK1asgFpt/trx8PCAv7+/0T9nwlyyuhLFGmJgnw0IDNTNmhk/8hK+np6NiWNuokqlvnj/3WMSWakc/PzC9csFDhB++sfKfK8LgaljqGDdyzMQo94zJPArWaI5iti585YLgkVOmvSlK1XoCTUlUrPg233UsJNoUHc82rX6UZjjykSrZjNQtXI/i7NV8vLYA13Mtt/8K4x9/zzc3Zn73vYGlxksbIOZnh4BxgVOMoODjYrlu8ttgjLg6A9k0mzv3ulPs/u0aj5Tv1w4uIKZms4L+fJRCFd3Rol+jNErmzJGcDcaVBqBRcWL9GWLyqQyagVdmsQUpneGJUfsxU3PLbZrStFKAfgzfiB+vtfL6n2lIu4RsybnTy0PQMsgM/9j8/3INpMs0RaYjicmUssB2YK7F73TVHAdewe4w1VCJ/+4tcpN4hJkolve/sNK+PFmd4xba34GjK30+a4WY7lSE31a8DcRONBsOD2SkEBH7arMe4CgLAqc4hEREZg7dy5ev36N2NhYxMbGym2aw+Dq4o6w0GoY3G8zwkKcLzHtsMEGqUDVW4dn+bKdOO/v5aXL6eLIjhdLSUmLFdXJGAzss8GovHixhgCAwsEVUboku5SdvRHgb5ATdHfj/30bWtgQ6Vq6ZGs0bzwN1KjMAjmDkhHN0L3zQnh6Bpg2YVd4egZgUN9NqFKxl9l6+Zpcs9udhVKlWiEstAaqVx3MWqdoWG3GclMpDF+fUEFtsze46voT2ClTuq3Z7bVrvEdZI318JshntkJYNOiEYG15BzInP2z2njwOgfDK5jsKTd4tg6bD+NkmRv4ONw81fIM8JI+Yaz6C+zmIvJbIWP7scjzun6RH0Wen5yHqZhJf01gp27Cw5NG1YeWZo8u+Os39Q0kqmJJsWkqQKyRtxhtGhEPKKDi62GTUS6VSoXi1QqInSAwqbhy1MmhuXYxc1liU6HQhUKrD3pSZ55STZKfFSGP5mWELGshih9rFPn67Apw8eInAkYMHD+LRo0c4fPgwihcvjqJFi+r/EcTB2bTH3d0M7+mCSGhrIk4/GncXwwbvRa0awwS3TSk0rD8Rjep/ZCgweYCPGXEOX32aYqTzDADv9PsPLZt9heHvHMT77x4x2tax7S8YPfwMpk8xL6+nRAqkZJioVKEn53ZcXQ0SlNWqDICLi5vRjExn0WkHgPatZ+mX3U30+1s0/UJqcxSBq4s7Joy+hgG9/7V+Z8q1U7vGcNSrw56w2tFo2mgqrcyWhKwOJTHG45ni4xOKBnXHW5wpUyjQoCpRrkwHMzWdF+IYVwhsur18iKhViHNdMaQcTLGU5HHU8iacJDiYztGzywm87WIjtKw8DkShOlgFcgRS0GpsBWgkdoyXa8Ss/xxRk/t1LxVMv2nsA+ZofzEY9mdDjFrRBB9uaYki5YW5rsOr8I+IyU5njjLxDuAzLVp4Wo2pgBbvl5fbDFbysiWensGBIhWMB6pK1g5C2YbK0Wiv2cVYM9PdW/xBD6YkxFP3tcV3V7qKfmyhcDSZHoI4DB8+HFqtlvEfQRyYojmDCjnwTBjKtUR1iA/qu5nT7r4+oShftpORBIajoVap0an9r+zb1S7w8KA/0/38iqJdq+8REEBPgNus8VREFG8Mb2/7S5RYr84YVCzfHT06/6UvGzXsJJo1/hQD+qwX7Dgl7TzZpjUYDTaYPN+bNpwirTEKgu+3O1X+qE+PFXB1YQ5qdEQ6tfsFI4YcBgCUKVUQ5czfB+Lm5mW5kgPTv+dadO+80GI9lUqF6Z/E48Nxd0TXfbdXlBkWR7CJ2j1K4N5b7W13LxeaQ1ntooImX4uiFf0RXEJ+nS9bokLPrHkioCU6lDbVXqViS6gpv5OsVtdiOLfuqeTHHfBzHWz8/IpRmYePMpyrlpDSualSqdB8uC5iNi0hW5A2bRmA2PYtc9InpURouyhcPiLlVabcJtDwCTJ05pdmDYGLwrSp6/aOQMNBpXB+/TMA0kR4+Yd54eV94wEwnyAPuwrDdnFX1u9IIBDodGgzG0XCaqJYeH25TRENd4pDt26tUfrlqpXFD+yxJ6h6x3yT0Xl4+CM7W7rgDbFwc/XE0IE7jMpKRjRDyQi6pODkDx7hTcID/LO+CwDjGQrMGM5ttcr9bLbVXjCnp800eGKauNR5MXzAu7i4Iz8/BwAQGFASGZn0nEzOQpnSbTD1oxfw9dXJ7VrzzCoUWAaJScL7f+wJqsxTQECEmZrGeHsFwduLPpudoIN8+Tg4i5IHY8TiRliUNEhf9s2lrmgwoCQm72ojo2U65r9QXsfWVS6HAMs7odVY5gQJrx6niWgMN3yCPBBeSXpNvebvl2MsL1xKuISpYkXC27vDyZZAwD2/3GZpUxnRhWqRpVusxdPPeLBH7aIs+wBjR7Obh4skCXitQaVSYdTyJpi8qw2WZLwjyTFHr2xCy60RUsbPyC8eUtrXSOqIiXKN5Yu8DyyqrAgc/1BPuU0gEBTDxDE30a3Tn2jW+FOUL9vRoT90fX1C0avbMvTruYYx6pkgHHwd6vZMUFBZVChHkX+zIJXiTPIpVFRWJjQd+e5xkSxRPsXDDZJ9zRt/BkAnPxMcZJiROrDPRlQo1xUjhwknpWtvBPgXh4taFxjlYiYptSn2ruVvjuLhDeDvVwwlS5jPseXlVQiD+m1B727LSSJNAVHeVzbBZqiaz65uarQaXQHeAYaovpK1gjBhQ0uElWPWahaaTlPYp2tQNX5L11fGdD25nGPVO4YzlvsGMb8sPqu4TURrmGn/oXFyDBdXNWr3KC65HZ6+zBHGQun45mbnIz/Xtsju4tUCGcufX5EnQsBWCYmeM2voFt4+XnwKCTftLz9PGY5xpX3vzHnYCx0+rqxfV7moEBiuc1h2/7K6XGYZ0f/nOgCADpMqW6gpH+5erqjVtbhkMxNCSvvh8yPG+n0+ge5GF1jnT6uiVnf69HUqvb6uIYp9bHSeanhXu3lKlxiYiYG/1DVat0XCiUBwNMJCq6FhvQ+cxklXt9b7qFl9iNxm2A98rwsnuZ64Qz0fyuinygVVA1rL4Vw4svOSjQG91yM0pCp691ipLytbph0+mxyHrz5Ngb+fQdovKKgs3h20C6UizDtAnYV6lNlAzoyrqwemfPgMI4fRB5bcTBIJV63UB3VqjZDKNKeAOMZlJiM5R/Dp8T4sjlS54PqBLfeHeAFyJUmr368kPtlLzygstYa3OQqXFi4i2xbYfiOhpDA2Tb8CTZ5tjvHvr3VjLK/bm/uUJyFxt/H+8its/FyxdeDAqK0c4XIs2ILSklsGhHkZXy9aLea/6Id5z/ug3w/Mme6lplKLMCxOG4wh/7M8ld+vsAfaTqgogVXKxMPbcA+6uqtRpU0R1rqNBpdCQFFv1u228t6ihrSynjMMjngh728+dJla1Wg98lqiJPrwBALBfggOIpFyQmJLAjx7p0TxxgCAmtWG6svKlGKaWa2sfqJUUKVU/HzpyZUtS9A4PtWrDsSHY28htLBxoIivTyhUKhWaOLEWuyVME7qaQymzjMXCRe3KOOhdJNT6YJnwonUtVyLocd43oALIy9VgfOB6fBi2SdB2mwwtgybvlsGoFU0EbZcvd4/Fym2CVcilM6xSqVCjUzF4+Bh//FdsESaLPUwwOaTleD+xOTCFcmwe/esB8nJt+8OoshefHzVEj5pKLNgbBR0SIRxn7l4u8CnkDjeFaIxT+yFlG+mynBcuKW9nnzoD6M6RWKjVKgRHKGOAqgAmff+fbveglWk0WsVpkEsJdZaWVmv+XfP+0iaiDNK6e7lg8s42aDWG7lCi3oemMj5yk5GUo/gcAAQCQVrUVso7OAt8JVGcUUqlgHcH7saAPhvQuf08fVllSqJbT09dfh1nmaVhClVKxd+PPsM5MLCUhNbYJ6YRvwQDbLMQCgasTGnfepaY5igTHs+eti2/E8EQx8V5v1AVQPTtJFHadXVTY+zqZvqke3ITEMasVTr9WAfGcnO8uJloqzkWkVtn+H/RhmQulVsXQY1O4Rj2ZwO0YNHVlpKIWnQdy5K1pde2ZHOAZyTlCNJ+Xo5G0IhJqj6uUjrVg+fVs26Ht3YXDITYOnAAAAsTB+G3l/1l1aV+Z77hPFB/m493tMGwhQ3x3bXucphlgHKaa3Ypxl5PYRSrEoha3Y1lltITcuTL4aA0tFqzA3ke3q6CO8a/ONERf6UMRq1uxRnvOVc3NaYdao8pu9uwSnjJiZo4xgkEAgUvT8fVVpcFhfRP5cDLqxCqVxkANzfDN6tKpUKvrktRp+YIVKvcHwBQsRzzbFBHx1zyTQJBLN4fehTDBu8zKdWiUYOPEFK4ChrU/UAWu+SgXGmd38zNlXsOoDKl2yE0pJrRTBgCO8oI03NSTCODHZUCTdwCJu9qgwrNQo10zwGg2Xtl8eDkK7Ntrf7gPG87qrQpgjtHLEevh1eWVxfNO8Bdb+vUfW2hUqnQ9gOdtneDgaUwt+MhyWzxK+yB1DfZ+vVKDNHrfoU98dvL/pJez2q1CmHl/RD3MNWoPKiED5JecpMm+vJkR/zYfD/jNk2+1mYpFSrFqgSi/UeVZE8g5+bpgtwsnWyJX4h1tsTeTwYAXNz0HPO6HjaKZOZtj4f8He22EyrhwclXqNreeGqof4gn2o7XyX6s0g5DzL1kTK+8XfDj+wZ7IC3ecI+VqhuMZ5fj9YlkqVMGvQKE03WXAo2JdnzZRoWdOmLcFEuDZJYc4zPOdEbcoxQsHnba4rG+vdwVpepYzuNRtS19irRS4JJ8Njc7XxHPFQKBID49uvyFBYuVkW/DEXBmKRU26tYeibq1R+rXAwLkkUOUG2uSbw7ss1FES+yX0JCqlisR9FSq0AOurh40R7BWq4W7mzc+GndbJsvkoUXT6QjwL4Gypdtx3sfVxR0Tx9xQTFCe0iFvQDnh6Vca8HMdxmnOf8YPtNEgcbiw4ZnRukoFmlMcAKeI6AenzDvOzfHBhhZmtxdErzLZJjWfHe6AVdphcHU37ogUKe8nqR1cZVwCi3jBS+Kp93Me9KaVmepgm6NCszAsTBzEet0JrbE79LcG6PGltMn0TKFGqNbvV1K/PGEj870RQtGUP7Tgvn75+p5oEayTB1c3NT7c0gptxpnXvg6vZH7AzJpEieFVAhBSRnduZz/opdcRr9s7ApN3tkb3L6vjixMdAegGafS22lm09Y29xtdJ6XrBNv8NgUW5R0rITYkahWhl9fuXhE+QO+r3L2Vxf0uO8XKNQ1CmQWFOtlhyis+625NTO3KSl205F8HN/TESWEIgEJRAWGg1uU1QJjydIM4spcIV6uCBM81YKBpWi3PdalX6i2eIHePtFYRpk2LwxVTxZ7/bO59Oisbg/v8BAFxcjP0yLZt+IYdJsuPq6oG6tUciMLCk5coUiFOcO/b1le1grBhz1up95j7tg66fVUOhcLpzQIlTnwHgw62tjNartmOOSFOpVFiYOAhj1zQTxQ6/wuYjZH0C3RFYRNlOl5DS0jrGqYny7EHGodt06z6SfALdkcvibBFCKkRpUB1t7p4uGPZnA/T5rhYasDjpWo8lia244O7tis5TuUeCePi44ud7vfBXymD4Bnlg/LrmmH6sAz7Y0AKBRb3R74faCC6h0zanRuYHlbDv5EaN3yljc8T40N8bmN1eu0dxeAfKP7gJ6GwxZcKGFvgjbgB8GGzsNKUKes6sgW8udQXALRE0l7wKKzXvWqxjaeBHDqbsMU5GnZmSa3EfIWayEAgE++GdAdtRumRrtGv9Ez4c61wRhELTucP/AABNG30iryEKRq12wchhJ/DeOwfg7W15FpajEBxUDqOHn8HkDx7JbYpd4+dXFF6egXKboTg83I39G/5+4VC/HYQqVqwBqlTqi6aNPsHUDyNRvaoyA0EJ9o9zaHkolHvH46zeJ+Tt9PrCpXzx8n6K0CaJQsXmYViYMBC7Z99CWHl/WhQ0FZ9Ad1RsHiqhdQRzePi4ovPUKri0NRLj1zWX2xwa/WfVxqbpV/HuAp2zzIfH4FCpusE4u/YprVxIKRWloDbxSRZI9LBRpa19JwqVgs+PdED5ZqFw5eDw9Q32gLuXC95f2gSubmr9Pm4eLqjUkvlcayiXIZMz1Z7w9HdDSlyWfr12j+L4eHsbvKdazbmNen3ZpzEXLumDiZtbYeHAE7j8X6RNtgpB9y9rwD/UEzU6GwYVVSqVURLJqfvaYm6nwwCAkDK+aDfBcE9ycoxbqNLr6xqs0SINBpTEhY3PLR5DLmp2tn4wljjGCQTnonKFHqhcgZ7s2ZnhG/ldo+oglCvdHl5ezhMJzYdSEcr7HpKCCJZEiASCraiNkrsaB5WoVWoM7rdZapMITgiJGLdTTKOwlY5PIQ8M+LkuWo4sb7myRFM+5EgaaW9oNcCgX+ph7uM+8PJXnlOu2+fVseD1AL0zydPXMNb3+RFuyV1L1WWO+OAqpTLg5zqc6ikBLtGlVErXK4zJu9rgp9vkoxMAGr9TmlZWuXURTk5xAGg9rgLmv+iHCAaJDTa0+fbr6PMOMJZXcnVT49quKP16XrZ1g0/fXOwClUqF6cc76ssaDS6lX/72cle4uqkx5Lf6KF0vGGNWN+VnuEC4e7qg/YeVEVbOn7VO9Y7F8NF/rdB6XAW0Gm38frQlYnzYwoZoObo8ukxjn0XT+5uaAIAOkypbPI69oLXf24VAIBBkx9s7mEy9J1hNqYiWAAC1msRcEvhR6e0A56j3TspsCcFZIY5xO8XD2/jFYy6Kzt7IzbSsI2qOxkPozismpu4zTNN2pPNnCzPPdzHSxdUwRN8VKuYNAJy1bcWGKpETHOGL3t/WxICf66Bya0MEbqdPqrBGvJeuyzxAwtUx3vWzapjziK53rkSsdYwDQK2uxVGsSqDwxtgh3b4wTvLVaUoVo/X+s2pjwOw6aDqsDADDvVJAAA+pJk2+/c5cGLfOWLvexU2FV48NCXMLcmVM3d8O1TuF49dnfVjbmnm+C0rX0z1zKrUIw7LsIVilHQZ3L8O70P3tezG4hA++udgVTd8tK9jfIiZ1e0Vg+KJGtNlUXO7X4AhmeZ3qHcPx/uLGtL4ClfDKgViWPQRD/lffOoMVTHZ6ntwmEAgEgrwQxzZBYjq0nY0ObWbjo3F35TaFYKe8038bZnyWjkKBpeQ2heCkkGE9B6FwSV/LlewFG/tzvsF0OQ0PH/ql7h/qhaVZQ3D/RBwqNHM8+RYXVxXy86wLnwsI88R9pIvHAADU+klEQVQP17vrpQ1Cy9Cvqy9OdMThhffRcXIV2jYl0GtmTf1y4yGlcXbtU7T/sBIKl/SFm6cLfu99DN9f766v4+HDnDR0//+4d+7s5RvEnL7zqBVNsHTEGdbt5RqH4NHZ15yP1fWzqtg923H1Pkcub4JGg40H4bp9rnOcZ6fnomq7oihVNxhfVN2h3956DIcZMyZo7DhivGbnYliaNQQrx55DdnoeCpcyfp4URERX7xCO6h3CAQDfXe2GmbV3GdWb+7SPXkasgAIncpGKhmhsqpPcETB1jHeeWgV7594xKnNxZb6nTQdl2DAnbWaPOKIEFoFAIBAISsbD3RfNm0yT2wyCHaNSqeDuxq3vSiCIAYkYVxgFSbespWhl5SXO4gtVf5UPsQ/o2uuz7vZkrOvm4YJq7cMdzqECsDvUZp7vgqF/MCewK3DwznnYC99c6orAovQXVGgZPwyeWw9BHB0vcjL2n2ZYmjVEP3BUt1cEVmmHcZKyOL36CQDAzdMFH2xogT/i+uPXZ33QeWoVfHe1m76eVqtFRlKO0b5KlTr66L9W8AvxZJSYaD68nNl9Ry5j1hYMK8ecENYRneJuHoZXZrP3ysLdk9mp6OHjhqbvlkVAmGE2Q7uJFXk5Iau2Kwp3LxeUbxpivcEKwM3DBaNXNsXETS2hUqnQijI44OlHf+6WMLk3mwwtQ3OKU2k3sRJqdSuO95c6tvZlhWahCGd5z3f6xDBIuThtMP5KHgQ3D8dyeHPFxcEc/QQCgWAtfDXGCQQCgUBwVhzPG2jnBEf4YJV2GO6diEPxaoGYELyB037Nh9vHlHEumEYVWosvQwLG4BLG082ZIsgdDa0W+Op0J/zQdJ9RuYePK9y9mJ0HBRGK5jRx7QmVSmW7g0irRcMBpfSrg36ph3SKI1yrBVwpxxj4S13U661MaZ5yjULwR1x/XvqRbJINo1Y2xY/N9tHKA4p4ITk2k7W932P7W22D3ISW9UOLkeXgG+QBNQeZC2qE/s39MbyO6eXvjoWJg8xG+9sTz68m6Je7m0jTAKCdV7ZBvAI8vF0xeWcbYYxTMBM2tcTJFY8Ytw36pS6aDiuLIhX8WQdr7BW1iwqafC1Cyvji9ZM0o20dJ1dGnV4RKFM/GKO9/wVAkm8SCAQCgUAgEAgE63CML20HoiDKt1KLMEYHLxts06ntEVuTvtw9Fmv5GDy0lu2R8k1C8b/ofkZl7l4urNeLs5wXU4pWYp9xweSQ9Al0x3dXuuLHWz2gVqvgU8iQmLRml2Ki2CgUfO8vNcs1w+Ywn/OwF2tbX53uhIAw6/W25UalUmHk0iYYOKcup/rU5InWJpqk4ubhwskRbw9Qtfv9QjzN1NThE6i8pL9S4RvkjoAiXggI84R/iAeu7YxirKdSqRBRo5DDOcUBXULVhgNL4dP97WjbAot6oVKLMKP3VszdZCnNIxAIBOVhL/p+BAKBQCAoBMfxpjoIVEeKJUav0skhzH1iH4n/+NLjK3pUoTmSYtijVMeuaQbvQHdM3mW/EYYLEwZyqlfgLCgUbix54u7tChd3Fse4k/alv77QBZN3tcGQ3+hJ6NgcwiVrB6N41UAAgDfFeUeVz7BnPj/awWjdleWaYXpmubqr4enLrN0O6KLsnQE3ikSTsw46mdLxY4PsB9u9RdChdlFjXmRfzHvRD2oXNesglCMTUTMIH6xvwTiLqWBghXpvUQcpCQQCgUAgEAgEAsES5KtUYfibiaCr3jHcaL3ZsLJYpR2GkNLMGr/2TJdPq+qX+ThPvAOYnXJNhpTBwoSBqNQijLdtcuNTiNtMAu9A5nPg7uUCN5bIQmd13nn5uaFW1+IAg8OWi+a9h7crhv/VCEP+Vx++wY7hGK/U0vgeYYs0Z3KMd5tezWzbXBMD2jvUKO+s1FwZLVEO1GSZbAPBS7OGoPuX1fFXymCpzFIsrm5quL6dtRJRy3JuBEem/UeVjNYLZthRH021e5SQ0iQCgUAgEAgEAoFg5xDHuMLpObOGftnTjz0C09GgfgDziWI25+C1VarFXijfJJSx3M3TxaLGuLPi7k0/L1wHZlqPrYAOkyoLbZKkUCVluN4nVOfmpwfaod+PtdH1M3bH+KTtrc0mU3RUir2dXeDsUJ8xbI5xNw8X9PuhNryc6J3HBa8A546GHjC7Lhq/U1q/XrVdUQDG15EzRtUTCAQCFZJ8k0AgEAgE63D8DIR2Tu9vamL7dzcAGKKjnAFqckwm2YVSdYPx7HI8475uHmqkJ+YwbnMm2K4XFzc1e8S4k/elmZwqXCLGHYVKLcPw8h43jd6un1dD03fLGDmlilUNRLX24Wb2Auo4aUQnNVLamaFeL46imy4VzpA02hzuni4Yt7Y53vlffeTnavQyYSqVCouSBiE/VwMPb+c+RwQCgUAgEAgEAsE6SMS4jLBp9lKhRm1qnUWYF8YJD7UMDl4XN8N5MXXyhpX3N4oqc1YaDS6lX577tA8AoE7PElCrVUh6yazD7uwR4xUZJHac6pxY+FML5JzKNw3BgFl1UKxKILwC3OHl7wZ3b1f4hzqGjIyQlKobDABoOKCkzJYog5K1CqFiizA0HkKe0dZiTQ4SR8Y/xJOWO8M7wB1+hcnzh0AgEJw+yoVAIBAIBCshoTUy8v6yJlj87imL9Sq2CMP9E3FoPbaCBFYpA+qgQX6ehmG7wRn++ZEO2D3nFq5sewEA0Gi0GLO6Kc7++1R8QxVA4VK+ePMszahswOw6aDK0jH49pJQvVmmH6ddJxDgzbOeFoGPcv81xbt1TNBhQSl+mVqvwx6sB0Gq0cCHJFGl8dboTkl5mOqV8DBNqFzW+ON5RbjPsEuIYJxAIBAKBQCAQCARhIV4MGWlMieg1x7RD7THnUW/U6FRMXIMUBDViXJOvNdI+BgA3TzWlrgqT/mutX9dqdM4XZ4EaPV9As/fKmtWIDinFosPq5J5xpnMWH5kugyXyYMl56xvkgXYTKtGSBLt5uMDdy/I4q28wt8SxjoSbhwtxihMEwTvQuTXGCQQCgWAZojFOIBAIBIJ1OI/3UIFwdd66uqkRVtZPZGuUBdVBqcnX0vy11MheU6kLrUYnvTLrTg9U7xiOmee7iGeoAmg5qjytzJJMT8nawWKZQ7Bj2k+qjNbjKmDK7jaitJ8Wny1KuwSCM1Ctg3n9fgKBQCAQCAQCgUAgWAdxjCuIOr2cMymdJTT5WpSub+zIpUqpmCaZLF1PVze8ciCm7muHsg0Ki2+kjHT+pAo+P9rBqMyayELvADf9soZBtobgPLh7umD4okao2aW4IO199F8r1OpuaCugiJcg7RIIzoharUK5xiEAgEqt6PkQCAQCgUBw9tmfBAKBQCBYi907xp89e4aRI0eidOnS8PLyQtmyZfH1118jJydHbtOshkSDMfPqUSqG/NYAXT+vpi9r/n45/XJ+rs6Z+9PtHuj6WVUM/aOB5DbKidpFjcqtiqBenwh9mTkZlQLq9tbVH7++hWE/Z0o0SRCdur0iMHlHG4xd0wyBRb0waXtryzsRCARWJm1rhcG/1sOEjS3lNoVAIBAIBAKBQCAQ7B67T7557949aDQa/P333yhXrhxu3bqF0aNHIz09HXPnzpXbPKuo1dV5NMSt4dquKPgEumPArDroNbMG4iPTUaSCv357Xo7OMV6sSiAG/FxXLjMlZV5kX8xuewDvLWyoL5u4uSV+arkfpepyk0mZuLkl0uKz4R/iiQGz6yA/VwPfIOfTgCaIT5MhZdD4ndKcBmwIBAI7/qFe6DSlitxmEAgEAkGhEI1xAoFAIBCsw+4d4506dUKnTp3062XKlMH9+/exaNEiu3OMB0eQBG2WcPdyRdGKxok4PXzs/jK2muASPpjzoLdRmUqlwpcnOrHsQUetVumTKHadVs1CbedBpQK0Wsv1CNZBnOIEAoFAIBAIBAKBQCAQlITdS6kwkZycjKCgINbt2dnZSElJMfpHUB4zznZGyTpBWJY9hHH7uLXN0OvrGihT37E1xAnSUr2T8cyNJkPLyGQJgUAgEAgEAoFgBSQQgUAgEAgEq3A4x/ijR4/wxx9/YOzYsax1Zs2ahYCAAP2/EiVI0kslUq5RCL673M0o0SaVxu+UQe9vaklrFMHhaTGynNH6iMWNZLKEQCAQCAT7IDs7G7Vq1YJKpcK1a9fkNodAIBAIBAKBQOCEYh3jn3/+OVQqldl/9+7dM9onOjoanTp1Qv/+/TF69GjWtqdPn47k5GT9vxcvXoj957Ay+Nd6AICeM2vIZgOBQDBQr08Epuxug+5fVMcfcf3h7uV8Uj0EAoFAIFjDtGnTEB5OksgTCHITGFBSbhMIBAKBQLArVFqtMtV0X79+jfj4eLN1ypQpA3d3dwBATEwMWrVqhUaNGmHlypVQq7n7/FNSUhAQEIDk5GT4+/tb3kFAtFotEl6kI6iED9HgJRAIBAKBQLAT5Ow/Kom9e/diypQp2LJlC6pWrYqrV6+iVq1anPYl55BAEIbs7FRoNHnw8ioktykEAoFAIIiK0P1HxYZChoSEICQkhFPd6OhotG7dGnXr1sWKFSuscorLjUqlIkk3CQQCgUAgEAh2R1xcHEaPHo1t27bB29vbYv3s7GxkZ2fr10meHwJBGDw8/OQ2gUAgEAgEu8R+PMgsREdHo1WrVoiIiMDcuXPx+vVrxMbGIjY2Vm7TCAQCgUAgEAgEh0Sr1WL48OEYN24c6tWrx2kfkueHQCAQCAQCgaAk7N4xfvDgQTx69AiHDx9G8eLFUbRoUf0/AoFAIBAIBAKBwB2ueX7++OMPpKamYvr06ZzbVlKeHwKBQCAQCAQCQbEa41JC9A0JBAKBQCAQCNbgqP1Hrnl+BgwYgJ07dxrlyMnPz4eLiwuGDBmCVatWWTyWo55DAoFAIBAIBII4OI3GOIFAIBAIBAKBQJAWrnl+fv/9d/zwww/69ZiYGHTs2BEbNmxAw4YNxTSRQCAQCAQCgUAQBOIYh04jESAJgAgEAoFAIBAI3CjoNzrr5MuIiAijdV9fXTL5smXLonjx4pzaIH1wAoFAIBAIBII1CN0HJ45xAKmpqQBAEgARCAQCgUAgEKwiNTUVAQEBcpthl5A+OIFAIBAIBAKBD0L1wYnGOACNRoOYmBj4+fkZ6SSKTUpKCkqUKIEXL14QXUUCZ8h1Q+ADuW4I1kKuGQIfnOm60Wq1SE1NRXh4ONRqu89nLwukD06wJ8h1Q7AWcs0Q+ECuGwIfnOm6EboPTiLGAajVas5TPsXA39/f4S9cgvCQ64bAB3LdEKyFXDMEPjjLdUMixW2D9MEJ9gi5bgjWQq4ZAh/IdUPgg7NcN0L2wUl4C4FAIBAIBAKBQCAQCAQCgUAgEJwK4hgnEAgEAoFAIBAIBAKBQCAQCASCU0Ec4zLi4eGBr7/+Gh4eHnKbQrAjyHVD4AO5bgjWQq4ZAh/IdUOwB8h1SuADuW4I1kKuGQIfyHVD4AO5bvhDkm8SCAQCgUAgEAgEAoFAIBAIBALBqSAR4wQCgUAgEAgEAoFAIBAIBAKBQHAqiGOcQCAQCAQCgUAgEAgEAoFAIBAITgVxjBMIBAKBQCAQCAQCgUAgEAgEAsGpII5xguQQWXsCgSAF5FlD4AO5bgh8INcNwR4g1ymBQJAC8qwh8IFcNwQ+CHHdEMc4QVLi4+OhUqnkNoNgZ0RFRUGj0chtBsGOiI2NJc8agtUkJyeT64ZgNaRvQ7AHyHVKsBbS/ybwgfTBCXwgfXACH4Tq2xDHOEESDh06hIYNG6JDhw744IMPcOTIEQBkVJBgnhMnTqBevXpo2rQpOnXqhD///FNukwgK5+jRo6hfvz5atWqFgQMHYuPGjXKbRLAD9u/fj6ZNm6JXr16YOXMmrl+/DgDEIUAwC+nbEOwBcp0SrIX0vwl8IH1wAh9IH5zAB6H7NsQxThCd48ePY9SoUfqL9s6dO+jbty/u379PRgUJrDx8+BAff/wx2rRpgxUrVqB69er4+OOP8eeffyI3N1du8wgK5MqVKxg/fjw6dOiAWbNmQa1W491338XevXtJ54rAys6dOzF8+HC0bt0anTt3xrZt29CvXz+kpKRArSbdJAIzpG9DsAfIdUqwFtL/JvCB9MEJfCB9cAIfxOjbqLQkXIAgEgWX1sSJE3H37l3s378fbm5uAICGDRsiODgYixYtQsmSJeU0k6AwNBoN1Go1VqxYgS+++ALXr19HaGgoAOCjjz7C1atXMW3aNHTv3l1mSwlKQavVQqVS4aeffsLatWtx7tw5+Pn5AQB69+6N5ORk/Pzzz2jQoIHMlhKUQsE1k5eXh4EDB8LLywtr1qwBALx48QLt27dH48aNsXDhQnh5eclsLUFJkL4NwR4g1ynBWkj/m8AH0gcnWAvpgxP4ImbfhgzDEAQjOzsbR44cQUpKCgBApVJBpVLh2rVrqFmzJtzc3JCTkwMA+O2333DhwgUcO3ZMRosJSiArKwsbN27EzZs3kZeXpx8dvnHjBmrUqAF/f3993Y8++gheXl7YvHkzmQLsxGRlZWHXrl2IiooCAP3I8JUrV1CjRg34+fnpo5q+/fZbvHnzBnv27JHNXoIyyM7Oxrlz55Cfn6+/ZlxdXXHjxg3UrFkTAJCfn48SJUpg7ty5WLNmDS5cuCCnyQQFQPo2BHuAXKcEayH9bwIfSB+cwAfSByfwQcq+DXGME2wmOzsbX3zxBYKCgjB69GjUq1cPs2fP1l+kDRo0wOHDhwEA7u7u0Gq1aNSoEWrUqIEdO3YgMTFRTvMJMqHRaDB79mwULlwY33zzDdq1a4eRI0fi5s2bAIA6dergwoULyMzM1O9Trlw5NG3aFE+ePMHZs2flMp0gE3l5efj2228RHByMyZMno1GjRvj0008RGxsLQPesOX78OADAzc0NWq0WNWrUQL169XDu3Dk8fPhQTvMJMpGZmYmpU6ciODgYQ4cORaNGjbBixQoAuvdX/fr1ceLECQCAi4sLtFotunXrhvLly2P9+vVymk6QEdK3IdgD5DolWAvpfxP4QPrgBD6QPjiBD3L0bYhjnGAzhw4dwvbt27Fz507s27cPY8eOxffff4+FCxcCABo1aoSkpCT96E12djYA3RSIffv2EY1DJ+XevXvYuHEj/v77b1y8eBGLFy/G7du3MX36dOTn56NLly7Iz8/H5s2bAeg6ZADQuXNnREdH6ztiBOfhwoUL2LJlC9b/n737Do+iavs4/tsECD0ivYQiHaT3DopEpIogRUQQBVFUQAXkUZBHFAURBaVY8UEREBUQkd57kd6RXkInoYYke79/8GZgDSBZSRay38915SI7c2b2nOQwc+feM+eMH6+lS5fq/fff17hx4/T+++/LzFSnTh2dOXNG06ZNk3TtWtOmTRutWbNGFy5c8GX14SM///yzpk+frhkzZmjcuHGqWbOmunTpomnTpikoKEglSpRQWFiY/vzzT0lyRjp16dJFv/zyiy+rDh8itsG9gH6K+CL+hjeIweENYnB4wyexjQH/QkxMjL366qtWuXJli46Odra/9NJLVq1aNVu6dKkdPXrUHnnkEWvWrJmZmbndbjMz279/v6VNm9aWL1/uk7rDt77//ntLly6dnTt3ztk2ceJEK1iwoA0fPtzMzJ5//nnLnz+/Xbp0yePYDBky2JgxYxK1vvC9QYMGWd68ee3y5cvOtsGDB1vp0qVt0qRJZmbWuHFjK1++vJldu9ZERUVZmjRp7Pfff0/8SsOnLl++bM2bN3fuP7EaNGhgjzzyiO3Zs8fWrl1rVatWtR49epjZtX6zYMECy5o1q23dujXR6w3fIrbBvYB+Cm8Qf8MbxOCIL2JweMNXsQ0jxvGvBAQEaPfu3SpWrJgCAwMVExMjSercubOSJ0+ucePGKVu2bGrdurVmzZql2bNnO5/gzJ49W9myZXMWdkHSZ9fNSxgWFqbSpUvr5MmTzra6deuqXr16Gj58uCTprbfe0vHjxzV48GCdPXtWkrR69Wrdd999ypYtW6LWHb534MABlSxZUpcvX3a2tWjRQoUKFdJXX30lSerevbvWr1+vMWPGyO12S5JmzpypzJkzc63xQ0FBQdq9e7eKFi0q6dqIgj59+ujIkSP69ddfVbZsWT388MOaOnWq1q1b59yjli5dqsyZMytr1qw+qz98g9gG9wL6KW4X8Tf+LWJwxBcxOLzhq9iGxDi8FttJa9WqpVmzZikqKkqBgYGSpBIlSqhcuXLaunWrdu/erfbt26tNmzZq27atXnnlFY0dO1affPKJHn74YT3wwAO+bAYS0fWPtRQsWFB//fWX9u7d62zLkCGD6tevr+joaE2ePFm5c+fWwIEDNWbMGNWvX1/Dhw9Xx44dVaRIEdWsWdMXTYAPxP5BV758eS1atEinTp1y9uXJk0c1a9bU8ePHtWzZMtWuXVt9+vRR79691aJFC3311Vfq3bu3KlWqpLJly/qqCfCB6+9RkydPlnR1HjpJqlq1qgoXLqxFixYpIiJCzz//vIoXL66GDRtq8ODBGjdunH788Uc1btxY999/v6+aAB8gtsG9gH6K+CD+hreIweENYnB4w5exDYlx3NTw4cPVs2dPzZ49W6dPn5Z0bZ65n3/+Wfv27ZMkNW7cWCdOnNDUqVM9ytSrV0/bt2/XqVOn5HK5NGrUKL322mvau3evBg4cqCeeeEIjR45M/IYhQX388cdq0aKFRo4cqa1bt0q6dpGbMmWKs5BG48aNJUlTp071mHeucOHCyp49u7Zv3y5Jeumll/TNN9+odOnS+vnnn9WsWTNNmzZNqVKlSsxmIQENHTpUzz33nCZOnKgDBw5IujbH3IQJE7RkyRJJUqtWrWRmmjJlisfxFStW1IULF3Tw4EFJUv/+/TV06FClTJlSo0aN0hNPPKFx48YpIIBbXlIycuRIDRo0SCtXrnRGocSOUJoyZYqzQEtoaKh27dqlpUuXyuVyOaOdmjdvrqVLl+rixYsKCQnRhAkT1Lx5c02fPl1vv/22WrRooQEDBvimcUgwxDa4F9BPEV/E3/AGMTi8QQwOb9zVsc2/nQMGSc/GjRutcOHCVqxYMWvSpIllzpzZGjVq5Ow/d+6cuVwue+2118zMLDIy0tq2bWulSpXymIsuPDzcXC6XLVu2zOP858+fT5yGIFEdPHjQatasacWKFbMuXbpY0aJFLWfOnLZlyxanTLFixeyRRx6xffv2mZnZxx9/bDly5LC5c+d6nCtz5sz2xRdfmNm1OaNiYmISqSVILLt27bKyZctasWLFrG3bthYSEmJly5b1mPcyKCjInnzySQsPDzczs549e1ru3Llt165dThm3220pUqSwqVOnepw/MjIycRqCRLV8+XLLkyePFS1a1OrWrWsZM2a0V155xdm/bds2c7lc9umnn5qZ2eHDh61evXpWp04dj/Ns27bNUqRI4XGNMjM7ffp0wjcCiY7YBvcC+inii/gb3iAGhzeIweGNeyG2ITEOR2wA9O6771qNGjXs3Llz5na7bc6cOZYxY0b7z3/+Y1FRUWZmNm7cOJszZ45z7M6dOy1VqlT23//+1w4ePGhmZqNGjbKyZcs6r5E0xfabSZMmWZ48eZzf96VLl6xs2bL2+OOP28aNG83MbPHixTZv3jyP4ytUqGCNGjWyFStWmJnZwoUL7cEHH7QlS5YkYiuQmGIX0hg5cqSVKFHCTp06ZWZXg/ScOXNahw4d7PDhw2ZmNmPGDJs5c6Zz7OXLly1LlizWuXNnZ0GWn3/+2UqUKBEnuELS43a77dVXX7UmTZrYxYsXLTIy0r788ku7//77bcSIEWZ2tY989tlntmDBAue4mTNnmsvlsjFjxtjZs2fN7Oq9rlq1anb27Fn+8E/CYq83xDa4mxGDI76Iv+ENYnB4ixgc8XUvxeAkxuEEVrFKlixpvXr18tg2evRoS5s2ra1Zs+amx48cOdKKFClixYsXt5YtW1qaNGns7bffTriKw2f+3mfMzDp37myPPvqoRUdHOze4efPmWdGiRW3QoEFxyseWWbRokTVu3NgyZMhgoaGhljp1anvuuec8Ph3EvW/Lli02fPhwj23169e3du3amdm1G+eUKVMsU6ZM9tNPP8U5R2yZSZMmWfXq1S1nzpzWtGlTS506tXXr1s1j5WokDTcacZQrVy4bMmSI8zoqKsreeusty5Ilix0/fvym5+rXr5/lzJnTatSoYW3btrXg4GAbPHhwgtQbvrVt2zabMGGCxzZiG9yNiMERH8Tf8AYxOLxBDA5v3KsxOJM9+anVq1erZcuWOnDggFwul9xut+zqByUqUqSIMzdd7FxRnTp1UnBwsCZMmOBsixU7D1mnTp3066+/6plnnlGWLFm0aNEi/fe//03chiFBrVmzRo0bN/aYXy52/sK8efNq27ZtCgwMdBZqqVOnjh588EEtWbJEe/bs8TjXuXPnJEk1atTQ999/r7Fjx6p69epasmSJvvzyS6VMmTKRWoWEtHjxYlWvXl0PPvig9uzZo8jISKfPFCxYUJs3b/Yo37hxY+XLl0/Tpk3TmTNnPPbFzmH3xBNPaOLEiXr33XdVuHBhLVmyREOHDnUW58C9b9myZWrdurU6d+6sL774wpn38sSJEypSpIhzPTEzJUuWTF27dlV0dLQmTJjgbI8V+/3bb7+t8ePHq2rVqgoKCtK8efP0+uuvJ3LLkJBirzfFihXTrl27FBUVRWyDuw4xOOKL+BveIAaHN4jB4Y17PgZPkHQ77lrHjh2znj17WrZs2czlclnnzp3N7NqnwG632959912rUKGCM39Y7KeF7733nuXJk8cpFxkZaR07drSvvvrqhiMYkHRERETYhx9+aA888IAFBARY7dq143yKvGTJEkuRIoUz59Ply5fNzOyXX36x3LlzO49qmpn16dPHOnXqZEePHk28RiBR7du3z+rXr28ul8t69Ohh+/fvj1Nm7Nixlj17dtuwYYOZXeszX3/9tWXMmNHCwsKcss8//7z17duX+VGTuP3791ubNm0sY8aM1qVLF+vcubM98MAD1rhxYzO7eq/q0KGDNW3a1A4dOmRm10YVdOnSxUqWLOlsi4iIsPbt29usWbPM7NooOe5XSc/27dutVq1a5nK5rFu3bnGuN8Q2uBsQgyO+iL/hDWJweIMYHN5IKjE4I8b9zIkTJ7R//369++67+uCDDzRx4kSdPn1agYGBio6OlsvlUtmyZZUsWTJn9fLYT4Dr16+vEydOaPv27XK5XEqRIoWOHj2qb775xllhGEnThQsXFB4eru7du2vu3LlavHixFi1a5FHmgQceUI0aNZxP8WL7zeOPP65Tp04pLCzMKRsYGKiVK1cqIiIi8RqBRHXixAkdOXJEnTp10pAhQ5Q7d25t3bpVFy5ccD4VLly4sAoWLKjPPvtMkpwV65s1a6bw8HDt3bvXOZ+ZaeLEibpw4ULiNwaJZvHixQoLC9PcuXM1YsQIjRw5Uh999JE2btyotWvXKjAwUFWrVtXBgwc1Z84cj2MffvhhnTlzRgcPHpTL5ZKZaf369Ro2bJika/3L5XIleruQsA4dOqRt27bpvffe09ChQ5U7d2799ddfzir2LpdLpUqVUmBgILENfIYYHPFF/A1vEIPDG8Tg8EaSicETNQ2Pu8Lq1avN7Or8P8WLF7c33njDzMyuXLliZmYXL160F1980cqWLevxic///vc/y507t23evNnZdvLkST758xO7du1yRjWFhoZa/fr1PRbLcLvdNmHCBAsMDPRYcGPz5s2WPXt2Gz9+vLMtKiqKfuMH+vTpYzVq1LA333zTKleubCVKlLCSJUtax44dzexqP/jwww8tU6ZMtm3bNue42bNnW/bs2T360ZUrV+gzfmDRokXOQk+x15e5c+da/vz5be3atWZ2dQRdgwYNrGnTph7zGX7wwQdWpEgRj5Fwe/fupd/4idatW1uzZs1swIABVqlSJStfvrxVrVrVmYvwwoULxDbwOWJwxBfxN7xBDI74IgaHt5JCDM6IcT8QO5dY7CfE5cuXlySFhIToySef1HfffacrV64oefLkio6OVqpUqdSuXTulSJFC7du318qVK3X69GnNnTtXFSpUUPHixZ1zZ8yYkU/+kqjYfhOrQIECzqd7vXr10syZM7V69Wpnv8vl0uOPP65WrVqpY8eOGjJkiA4fPqwvvvhCefPmVcOGDZ2ygYGB9JskKLbP2P/PJ/foo4/qwoULmjJlilq2bKlPPvlEHTp00Pjx4/XGG28oJiZG7du3V5kyZdS6dWv99NNPOnnypCZNmqQHH3xQNWrUcM6dLFky+kwSdf21pkaNGqpXr57H/tiRJwUKFJAkpUuXTs8++6z27dunrl27at++fTp58qT+/PNP1ahRQ9myZXOOzZs3L/0miYrtN7H/Pvnkk1q5cqUmTZqkJ598Um+//bYqVqyoDz74QMOGDVPq1KnVoUMHJUuWjNgGiYYYHPFF/A1vEIPDG8Tg8EaSjMETPRWPBHP8+HHbsGGDXbhwIc6+ixcvmtm1eZ1i/129erXly5fPBg4caGbXRqyYXR3NUrp0aStSpIjdf//9VqJECWekC5KOs2fPOivQ//3TufPnz9vZs2dveFylSpWsdevWcbafP3/eunbtasWKFbOcOXNa0aJFbd68eXe+4vCZf+ozp0+fdl6PHj3ali5d6lHmk08+sZCQEGf0wdGjR61hw4ZWpEgRy5IlixUrVsyWLFmSwK1AYjt16pQdOHDA4z4T6+/3qOs9/fTT1q5dOzO7NgdmVFSULViwwHLkyGElSpSw++67z8qWLWubNm1KwBbAF06cOGGvvvqqbdy40cyuzcdsdnUEyvWvBw4caCtXrvQ4vk+fPhYSEuJcl4htkBCIwRFfxN/wBjE4vEEMDm/4UwxOYjwJOH78uLVq1cpSp05tpUqVssqVK9v8+fOd/X/++acFBATYokWLzMzzohcREWGvv/665c6d29kWExPjdPILFy7YmjVrbM2aNYnTGCSa/fv3W4cOHSxz5sw2YsQIMzOPRzMjIiIsODjY+vbte8Mb5S+//GIpUqSwLVu2mNnVfhV7wzQzO3jwoG3dujWBW4HEFJ8+c/01JFZsP7p48aK5XC5buHChx77t27c7iwAh6di5c6c1b97csmfPbpUrV7ZHH33Udu7c6ey/1T3q+PHjFhISYpMnT77huU+ePGnz58/3WFwMScvLL79sLpfLmjVrZmbXrjn79u2zVKlS2ZgxY5yy586di3P8zp07LTAw0OMxzYsXLxLb4I4gBkd8EX/DG8Tg8AYxOP4Nf4rBmUolCRgzZoz27t2rBQsWaNSoUQoODtZLL72kZcuWSZLSpk2revXqadOmTZI8Fz1Ily6dmjRpIrfbrdGjR2vZsmXq3bu3jh8/LklKnTq1ypUrp3LlyiV+w5Bgdu7cqXbt2mnPnj0qUKCA5s+fr0uXLikgIMB5BC9dunTq3LmzkiVL5jwCfL2mTZuqYMGC+vzzz/X777/r2Wef1ezZs539uXLlUtGiRROtTUhY8e0zsVKnTu18H3vtGT9+vO6//36lSpXKY1/hwoVVsmTJRGoREprb7dbUqVP1xBNPKHny5Pr111/Vs2dP7dmzR++9956OHTsmSQoODr7pPWr27NlKkyaNGjVqJElatWqVRo4cKenq43sZM2ZU7dq1ValSpURuHRLDlStXtGLFCnXv3l0LFizQjh07nAWcMmfOrCeffFInT550yqdNm9b5Pva69NNPPyl79uwe16VUqVIR2+COIAZHfBB/wxvE4IgvYnD8W34Xg/syKw/vxX6aFxUVZSEhIfbuu+86+/bs2WONGjWyihUrmtnVT3Zu9AlOrAMHDljNmjXN5XKZy+WyNm3aOI9oIWm6cuWK9ejRwzZu3GifffaZVaxY0Vmc5/pHYq7//u+ioqLsueee8+g3Z86cSeiqI5HFXmsiIyP/VZ8JCwuz6Oho++OPP6xatWr2+uuvJ3zl4VNut9vefPNN69u3r8ejvd98840VL17cY9Ge8+fPxznWzOyZZ56xnj172oYNG6xatWrmcrmsZcuWLOaTRF3/e3W73XbixAlr0KCBTZ8+3WrVqmVPP/20mV0bsXL9KMnrnTp1ytxut/3+++9WtWpVGzBgQMJXHn6DGBzeIv5GfBCDw1vE4Igvf4/BSYzfQ8aNG2cff/yxbd682ZkL6ujRo1a5cmX74IMPnHJut9vmzJljLpfrho/FXG/OnDlWuHBhS5kypb3zzjsWHh6e8A1Bopo1a9YN5w6LvZgdPHjQGjVqZK1bt/Z4JO9Wtm7dasWKFbNkyZLZO++8YxEREXe+4vCZSZMm2ciRI23jxo0ewZK3febYsWPWokULK1OmjKVNm9b69OnDH/5J0PX3qNh+s27dOudR3ti+MnPmTMuQIYNHoH4j+/btc/7wDwoKsi5dutx0zlXcu/73v//ZW2+9ZUuXLnV+v1FRUWZ29f5VqVIlMzMbMmSIBQcHO8dFRkbe8Hzbt2+39u3bW5kyZSx9+vT29ttv3zR4B24XMTjii/gb3iAGhzeIweENYvBrSIzfA9auXWtFihSxPHnyWJUqVSxnzpzWtWtXM7s6n9jDDz9sr7zyikdwdObMGXvkkUescePGZnYtIJswYYLHqIKffvrJPvnkEz75S4ImTZpkRYsWNZfLZR9//LGZxR1JEHuTHDRokFWqVMl+//33G5abOHGiLViwwHm9detWGzt2LP0mifnuu+8sV65cVrBgQatRo4blzJnTevToYWbXriHx7TOxx40aNcpGjRpFn0mCbnSPevnllz3KuN1up4+8+OKL1rRp0xue6/p71J9//mn169e3IUOG0G+SoK1bt1qZMmUsb968VrduXcuePbszh2GsMWPG2HPPPWdmV+e6LF26tD388MPWtGlTW758uVNu4sSJtm3bNjO7Onfh4MGD7bPPPqPf4F8jBkd8EX/DG8Tg8AYxOLxBDB4XifG7WGxn6tOnj9WtW9cuXbpkp0+ftjFjxliyZMns22+/NTOzN99808qXL++x8EFUVJR9/PHHVqRIETt58qSZmf3111+WMWNGa9u2baK3BYlr9erVVr16devSpYu1adPGqlevfsPH62IDrK1bt1poaKh17NjxhuerWbOmFS9enJEpSdj06dOtQoUK9vnnn1tkZKQdP37chg0bZtmzZ3dudm63O959hhFwSdc/3aP+97//xSl78eJFq1q1qvMI8PX27NljGTNmtDZt2pjZzR/Rw70tti989NFHVqFCBTt//rxdunTJFixYYMmSJbMBAwY4140uXbrYyJEjzczsww8/tPTp01tAQID16tXLrly5YmZm4eHhVrRoUXv44Yd90yAkScTg8AbxN7xBDI74IgaHN4jBb47FN+9isYsfjB07Vg0aNFDKlCmVIUMGPfPMM3r55ZfVr18/nTx5Ui+++KJOnTqlGTNm6NKlS5KkZMmSKTo6WmnSpHEmv8+RI4c++ugjPf300z5rExJH+fLl9eSTT+q///2vHn/8cZ09e1Zjx46VdHWxjFixCygULVpUVapU0datW7V48WJJ0oEDB5xyw4YN00cffaR06dIlYiuQ2Bo3bqy2bdsqefLkypw5sypVqqQsWbLo4MGDkq5ek+LbZ9KnT5/4DUGiuJ171J49ezzKbtu2Tfv27VOFChWc81y+fFmSlCVLFn300Ud65plnJElBQUGJ2Rwkkti+8NNPP6lGjRpKkyaNUqRIoVq1aum9997TV199pXXr1ik6Olq7du3SDz/8oAwZMmjUqFHq1KmTHnjgAQUHByt58uRyu91Knz69Pv74Y73xxhs+bhmSEmJweIP4G94iBkd8EIPDG8Tgt+DrzDxuLvaxl2rVqjmPbcbO+RMREWFBQUE2bNgwM7s6YqVcuXL2zTffOMe/+OKL9thjj932vHW4t9zs8ZS/bz906JC1bdvW6tSpc8Pysf1j3bp19sgjj1izZs3s8ccft4CAgFsuGIV7z60eabrRfIPbt2+3++67z/bv3++xnT7jX251rfmne9Tnn3/ucUzHjh2tefPmZma2Y8cOe/bZZ+3ZZ59lZIofib1+NG7c2HlsM3auwitXrljevHmtV69eZmbWrl07K1eunI0dO9YuX75skZGR1rt3b0uePLlvKg+/QQyOmyH+hjeIweENYnDcScTgN8eIcR87f/78Tfe5XC5FRUWpQoUK2rRpkyIiIpQsWTJFRUUpXbp0atWqlX744QdJ0ksvvaR69eqpY8eOevrppxUaGqrx48erS5cuzqfLSDpOnTrlfOL3d9dvd7vdypkzp+rWrauwsDBNnjxZUtxRK1FRUQoLC9Pq1av166+/yuVyaeXKlUqbNm2CtgOJ58yZMzftM5KUMmVKSVf7TKwff/xRJUuWVI4cOTy202f8x5o1a3Tq1ClJntcN6fbuUePGjXPKHzt2TGvWrFGZMmX0xBNPqFixYtq/f7/eeOMNRqYkMcuXL9eIESN0/PjxOPsCAgLkdrtVq1YtrV69WmfOnFGKFCl05coVJU+eXE8++aR++eUXud1uffbZZ1q0aJHatm2roKAgpUiRQg0bNtRLL72ks2fPOqNxAW8QgyO+iL/hDWJweIMYHN4gBvcO0ZqPTJkyRVWqVFGbNm30xhtvaO/evZIUp4OlTJlSpUqV0oULF/Tzzz977GvZsqU2b96ss2fPKmfOnHr//fc1ceJE5ciRQwULFtSGDRvUsGHDRGsTEt7vv/+ucuXKqUmTJnr++ee1evVqSXH7TazYIKx69eoqVqyYvv76a0lSYGCgR7lhw4bpscceU7NmzXT48GH9/PPPKl++fAK2BIllypQpql69ulq2bKnnnntOy5Ytk3TzPhN7w4yJidGcOXPUsGFDJUuWLM4f98OHD6fPJHFDhgxRxYoV1bNnz5uW+ad71Pr16xUeHi5JWr9+vTZu3Ki3335bQUFB2rNnj+bMmaMiRYokaDuQeFatWqUKFSooNDRUO3bs0KFDh25YLiAgQKVKlVLGjBk1atQoSdcSAh06dNDu3bt1+PBhpUuXTqlTp5Z07ZpVrVo1DR06VPfdd98tEw3AzRCDI76Iv+ENYnB4ixgc8UUM/i/5aqi6Pxs8eLDly5fP+vXrZ2PHjrXSpUtb9erVbfv27WZ27RGH2EdnDh8+bC1btrQ6deo4j8iYmQ0bNswKFy5sf/31V+I3Aolu/vz5ljNnTnv77bft+++/t9KlS1vhwoVtw4YNZnbrR/TMzEaOHGmFCxe2RYsWWXR0tM2bN8/Zd/LkSR6/S2IOHjxobdq0sbx581rfvn1tzJgxVqpUKatWrZrt2bPHzG7dZ7Zv3245cuTwuL5s2rTJ+Z4+k3TF9osnn3zSGjVqZJkyZbLjx4+bmXlMC3C796hdu3aZ2dX+M3ToULtw4UJiNQWJ6Pz589a4cWN75ZVXnAUHbzSNRGy/OXPmjHXv3t3y5Mnj8Rj5L7/8Yjlz5rQ1a9YkTsXhV4jBEV/E34gvYnB4ixgc3iAG//dIjCeS2E54/PhxK1SokH399dfOvi1btliJEiXs8ccfv+nxv/32mz3wwAPWpUsX27Nnj0VGRlqbNm3s6aefTvC6I/HdKFhq3ry5Rx/Zt2+fhYaGWvXq1W/rXNu3b7dHHnnE8ufPb5kzZ7bs2bPb6dOnb/p+uLf8/Xc4Y8YMe/zxx23p0qXOtqVLl1q1atXshx9++Mfz9erVy1q2bGlmV4Or7NmzW/bs2eMkDXBvu9HvMXZbrVq17KuvvrIqVapY9+7dzcw8gu7rcY/yLzfqNz/99JMVK1bMWc3+999/t6VLlzr3mRsF6Js2bbIiRYpYs2bNbOnSpRYZGWnPPfecNWnSJEHrD/9CDI7bRfwNbxCDwxvE4PAGMXjCIDGegM6fP2/Lly93JrQ3uzrqoHjx4jZr1ixn29mzZy1fvnzmcrlsxYoVZnatw1//77Rp0yxHjhxWrFgxy5IlixUuXDhOedz7/r4AS+yFrG7dutapUyePfatWrbLAwED77bffbnnOQ4cOWffu3c3lclnx4sU9/ijEve/ixYvO99cvyrN69Wozu3Z9OHr0qKVLl87mz59/y/OdOnXKChQoYPnz53eC8VGjRiVM5eEzN1rsKdaqVavsoYcesosXL1rfvn0tU6ZMzr7r7ze3e49C0vH3fhPbB3r37m1169a1PXv2WN68ea1EiRJWoEABK1asmDOy8kZWrlxp5cqVswIFCli2bNksf/78tmDBAo9zA/FFDI74Iv6GN4jB4Q1icHiDGDzhkBhPAOfOnbOuXbta6tSprXDhwla1alX78ssvzczsr7/+skKFCtm7775r58+fNzOz2bNnW9OmTe3BBx90Ph2Ojo72OGdsxzx27Jj99ttvNnv27ERsERLDyZMnrVu3bhYcHGxjxowxs2v94OLFi9apUydr2LCh8+hcbJ9o2LChPfroo2Z2408Dzcz69+9vZcqUsV9++SWhm4FEdOrUKXvttdfM5XLZRx99ZGZXV5T+u9i+smbNGitYsKDt3Lnzlufds2eP5ciRw8qVK2e//vrrHa83fOtW15pYK1eutFq1allUVJRt2bLFChcubP369bMffvjB1q1bF+ec3KOSvn/qN998840VKlTIWrZsae+//76dO3fOli9fbo899phVqFDBeRT4erH95sKFC7Zw4UInGAe8RQyO+CL+hjeIweENYnB4gxg84bnMkthyoneB77//XgMGDNDXX3+tFClS6KuvvtKYMWM0c+ZM1a5dWwMGDNAXX3yh/Pnz6+TJk/rrr780cOBAXbhwQV9//bU2b96sVKlS+boZSETbt29Xjx49dOrUKQUEBCg4OFgzZsyQdHUxhICAAH344YeaOnWq+vXrp3r16jnbf/rpJz3zzDM6cuSI7rvvPo/zxpa5dOkSfSqJ2b9/v/7zn/9o3759SpEihY4cOaLt27ffsKyZyeVy6YMPPtC8efM0a9Ysp2/cSHh4uM6cOaO8efMmYAvgC7e61lzvjTfeUGBgoD744APt3r1bTz75pNavX69SpUppwoQJKliwYNJbdAU3dat+E3t9+emnn/TWW2/pzJkzWrBggYoVKyZJOnDggPLmzat58+apdu3acc4dezxwJxCDIz6Iv+ENYnB4gxgc3iAGTxw3viIj3mJXcpWkzz//XHXr1lW1atVUoUIFjRo1Sk2aNFH37t0VHh6uXr166eeff1bFihX1zDPP6K+//tKrr76qVKlSKVeuXB7nQtIWExMjScqTJ4/y5MmjTz/9VJ06ddL+/fs1depUSVJ0dLQk6fHHH1dMTIx+//13RUVFOQFV5syZlTt3bm3bti3O+WPLEJQnHbHXh2zZsilPnjx6//339dZbbyk8PFxjxoyRdK3PxIq94X399ddq1qyZJHkE5H+/5gQHBxOQJzG3c62JiYmRXX2STFeuXFF0dLSefPJJFS1aVGamTJkyqWPHjipUqJBzPiRt8blHVa9eXfnz59f58+dVsGBBSVJUVJRy586tIkWKaNWqVZKurWwfi4Ac/xYxOOKL+BveIAaHN4jB4Q1i8ESW+IPUk46pU6fa+++/b3/++afHo1MVK1aMs0jCvn37LCAgwMaOHXvDx+2io6OtcePGVq9evcSpPHzmZv0m9hHNvXv3WrNmzaxRo0bOvthHXfr162fly5e38ePHO/tGjx5tuXLluuEjMkgaJk+ebL169bI5c+Y4j3+bmfN9eHi4dezY0UqUKHHTc8yYMcNCQkKcRThmzZplTz/99E0f/8W9z5trTaw6deqYy+WyZs2a2fLly+3UqVP2yiuvWO7cuROt/vCNf3OP+uGHHyxt2rTWv39/Z9+aNWusUKFCNmfOnERqAfwBMTjii/gb3iAGhzeIweENYnDfITHuhV27dlm1atUsa9asVq1aNcuSJYs9/fTTduXKFYuKirKXX37Zatas6QTksf82adLECbqvnwvq/Pnz9vnnn1vJkiVZJCEJu1m/uXz5cpyyn3/+uRUuXNiZ6ym2zMGDB+2ll16y5MmTW9++fW3EiBFWrFgx69mzp98tkOAPDh06ZI888ohlyZLFHnnkEcuUKZPVq1fP9u3bF6fsH3/8Yffff79NnTrVzOKuXP7WW29Z27ZtbfLkyfbggw9aqlSp7OWXX7aoqCj6ThLzb641sYu67N6929atW+fRN6ZNm2YFChSwLVu2JE5DkKj+Tb+JXeAwIiLCPvzwQ0uePLm1bt3ahg4dahUqVLBmzZo5QT3wbxCDI76Iv+ENYnB4gxgc3iAG9z0S4/EQe3EaNmyYlSlTxsLDw+3cuXM2f/58S5kypb3//vvmdrvtm2++8VhoJbazTp061VKkSOGsXh0WFmbvvvuu5cqVy7JmzWpffPGFbxqGBPVP/WbgwIHOqIPYRRQ2b95s9evXtzZt2tzwnP369bPHH3/cihQpYgMHDkychiDRxPaZsWPHWpEiRSwsLMxiYmJsx44dlitXLuvSpYudOnXKzK71mbCwMGvRooVVrVo1zvkuXLhgWbNmNZfLZZkyZfL4JBlJR0Jca64/799XQkfSkBD95quvvrLnn3/eKlWqxD0KdwQxOOKL+BveIAaHN4jB4Q1i8LsHifF/8PdHnC5fvmyPPvqoderUydxut9OZ33zzTStbtqwtWrTIjh49avXr17cnnnjC49jp06dbnjx5bO3atc65Z8+ebRMnTkycxiDRxKffVKhQwaZPn+5xnNvtto8++sgKFy5s69evN7OrI5uuxw0yabl+ZWm3221RUVHWuXNna9CggcejVMOHD7eKFSval19+aWaefe3nn3+29OnT29KlS83M7PDhwxYdHW2HDh2yl19+2X788cdEag0SS2Jca5D0JEa/YRQc/i1icMQX8Te8QQwObxCDwxvE4HcnFt+8iUOHDql79+7q2LGjhg8frrNnz0qSgoKCFBkZqcuXL8vlcikyMlKS1LVrV7lcLk2ZMkXZsmVTq1attHr1ao0cOdI558qVK5UjRw6VKFFC0tWFN+rWrasWLVokevuQMLzpN2amefPm6fLlywoICJDb7ZbL5dJDDz2k3Llz691339Wzzz6rsmXL6sSJE857pUyZ0hdNxB126NAhvfTSS2rZsqXeeecdHThwQC6XS8mSJVN4eLjMTMmSJXMW4GjdurVy5MihmTNn6vz5806fkaTKlSurZs2a6tmzp55//nmVKVNGmzdvVs6cOTVs2DC1atXKl03FHZSY1xokHYnZb1jQB94iBkd8EX/DG8Tg8AYxOLxBDH53IzH+N+Hh4XrzzTdVokQJHTx4UEFBQerfv7+efvppp/M2atRIv/32m6SrwVFMTIxy5MihatWqacWKFTp+/LhatGihF198Ua+++qoee+wxtWjRQp9++qnatm2r5MmT+7CFSAj/pt9UrVpVK1eu1LFjxyRdW6n8zJkz2rZtm3755Rft27dP3377rTJnzuyT9uHOO3/+vPr3768yZcro2LFjKlKkiL7++mu1bdtWW7ZskSQ1b95c8+bN04kTJxQYGCi3262MGTOqWrVqOnLkiDZv3izp2s1v586d+uuvv7Rs2TL99ddf+uGHH1SqVCmftRF3HtcaeIN+g3sBMTjii2sbvEEMDm9wvYE36Df3CN8NVr87/frrr1a1alX7448/nG3btm0zl8tlGzZsMDOzFStWWObMmW3EiBFmdu2RutWrV1vy5MntwIEDzrF//PGH9enTx55//nnbtGlTIrYEielO95tPP/3UgoKCrGnTprZjx45EbAkSy/z5861evXr2008/OdtOnDhhadKkcRbvOXLkiIWEhFjfvn3N7NpiPrt377Y0adLY8uXLnWN//PFHy5gxozVo0IA+k4RxrYE36De4FxCDI764tsEbxODwBtcbeIN+c28gMf7/Yufh2bNnj33yySfOfGJRUVF27tw5y5UrlzM32NmzZ61r166WM2dOjznJFi9ebMHBwbZmzZrEbwB8IqH6zd69e5ljLImK7TMHDhyw0aNHO6tNxy4Q9sADD9inn35qZlfnEvvwww8tODjYdu/e7Zxj7969ljJlSpszZ46z7ciRI3by5MnEagYSGdcaeIN+g3sBMTjii2sbvEEMDm9wvYE36Df3FhLjtxA7wf3atWstR44cdujQIWffnj17LGvWrNa+fXtnkY0uXbpYw4YNzYwJ7/0Z/QbxFft737Vrl4WEhDifHpuZXblyxYoWLWqNGjWyyZMnW1RUlL3xxhv20EMP2YULF3xVZSSw27kWcK2BN+g3uBfQTxFf9Bl4gxgcf0cMjoRCv7l7Mcf4TZiZM4fP7NmzVbBgQWXJksVZfCNfvnz6/vvvtX37dj311FPKly+fpk6dqhdeeEESE977K/oNpKv94LffftO+ffuc3/2tysb+3tesWaOMGTMqb968kqSYmBglT55cY8eOVbJkyfTSSy+pUKFCGjt2rF588UWlTp06oZuCRGRmWrZsma5cufKP1wKuNYhlZpo0aZKWLl2qc+fO/WNZ+g3udvRTxBd9BrGIweENYnB4gxg8CUn8XHziu3jxor3zzjvmcrns22+/NbNrn9bcSkxMjMXExFjFihXtvffeu2GZc+fO2R9//OHMR4akg36D+IqJibGhQ4da2rRpLV++fJY7d27r0KGDHTlyxMxu/klv7Pb69etb165db1gmOjrali1bZjNnzkyYysNnLl++bG+//bYFBwdbsWLFrGLFivb+++//43Fca/xbZGSk9e/f3+k3uXPntvr169uePXtueRz9BomJWArxRZ+BN4jB4Q1icHiDGDzpSfKJ8QMHDlinTp2sYsWKVqZMGStRosRtHRd7k1y+fLllzJjRzpw5Y2Zmhw4dsvHjx1tYWFhCVRl3AfoNvLFp0yYrXbq0ff/993bixAmbMmWK5cqVy5599lk7d+6cmcUNzGNfb9261e6//37nhnro0CEbPXq0bd++PXEbgUQ3YsQIK1u2rC1YsMB27dplo0ePNpfLZSNGjHDmo/s7rjUYO3aslShRwubOnWsXLlywJUuWWPr06W8ZSNNvkJiIpRBf9Bl4ixgc3iAGhzeIwZOeJD+VSurUqZU9e3b1799fI0aM0I4dO/Tbb79Juvo4w83EPqowbdo0NW3aVKdPn9ZTTz2lkJAQTZgwQUFBQYlSf/gG/QbeWLNmjQ4fPqzQ0FBlypRJjRs31ltvvaVNmzbp22+/lSS53W5J1/pRbJ+ZN2+eateurUuXLunpp59WSEiIpkyZouDgYN80Boni7Nmz+vTTT9WiRQvVqlVLefLkUadOnRQaGqqPPvpIixcvlnSt38TiWuPfLl68qLFjx6ps2bKqWbOmUqdOrWrVqilTpkxKnjz5TY+j3yAxEUshvugz8BYxOOKLGBzeIAZPonyZlb/TFixYYO+9954tXrzYYzXXs2fPmtnVRxdatWplFSpUMLN/nsA+LCzM8uTJYy6XywICAuyxxx6zTZs2JVwD4BMbN26006dPx9keHh5uZvQbxLV27VpbsmRJnO3vvPOO1a5d2+MT3+PHj1vHjh2tWrVqzqr3fxceHm5VqlShzyRxN7pHxcTEWEhIiH3xxRfOazOzxx9/3DJmzGgvv/yyx/3selxr/MPNYpuHHnrIQkNDbf369eZ2u61z585WpkwZmzBhwg3vabHoN0gIxOCIL+JveIMYHN4gBoc3iMH9R5JIjJ84ccIaN25swcHBVrt2bUuXLp21bt3aduzYYWbXAim3220LFy60gIAAW7x4sZnFnbNuxYoVNnfuXOd17ty57dVXX+XRhiRo+fLlVqtWLXO5XPbpp5/etBz9BrHWrl1rjz32mLlcLmvZsqUdPXrUzMyioqLMzGz27NkWFBTksaK9mdl3331n5cuX93i8as2aNTZ+/HjndbVq1ez111+nzyRBN7tH7d6928yurjieNWtWW7lypUVHR9tHH31koaGh1rBhQ6tdu7b99ddfzrm41viPm/WbLVu2mJnZkiVLLDQ01OrUqWOBgYFWoUIF69Gjh+XIkcPq16/v0U/oN0goxOCIL+JveIMYHN4gBoc3iMH9T5JIjP/444/24IMP2p49e8ztdtvSpUutSJEi9swzzzhzQ8UGUufPn7dHH33UHnnkETOLO/qgcuXKVr16decieLNPCXFv27Fjh7Vt29bat29vLVu2tGLFijkjVG6EfoOIiAjr2bOnPfXUU9azZ08rWrSo/f7773HKhYSEWO/evT227dy504oXL26jR492trVp08aKFCli69atMzP6TFJ2o3tU4cKF7ZlnnrGoqCgLDw+3ihUrWsGCBS1lypSWI0cOW7VqlS1atMhSpEhhx48fd87FtcZ/3Cy2adeuncfIt2eeecZefPFF5/WuXbusTp061rNnT2cb/QYJhRgc8UH8DW8Qg8NbxODwBjG4/7nnE+Nut9t69uxpVapU8dg+cuRIK1OmjLOaeeynyWZm06ZNM5fLZZs3bzYzs1OnTjmT3//yyy/2ww8/JErd4TsnTpywMWPG2LZt22z//v0WFBRk33///S2Pod/4t8jISJs/f74TRJcoUcJefvll53Gp2D/8P/74Y7vvvvts48aNHsfff//9zqN6Zlcfzfrpp58Sp/LwmVvdo0qXLm1fffWVmV29nqxYscL+/PNPp8zq1astR44czshLM7PJkydzrfED/xTbfPPNN2Z29Q/+YsWK2Zo1azzKlStXzrp06eIkJuk3SAjE4Igv4m94gxgc3iAGhzeIwf3TPZ8YNzN76qmnrFmzZh4jDg4dOmRt2rRxRhiYXRtlEB4ebjVr1rTHHnvMunXrZkWLFrUFCxYker1x92jfvr2VLVvWLl68eNMy9Btcb8iQIVakSBGPR6NiFShQwFq3bm2rV682M7O5c+da8eLFbfny5YldTdwFbnWPqlu37k2Pa9eunT366KMWExMT5/FxJH2302/Onz9vyZIlswkTJjhlNmzYYOXKlbPvvvsu0esM/0MMjn+D+BveIAbH7SIGhzeIwf1PgK8X//w3YmJiJEn169fXnDlzdPLkSWdfzpw5VbVqVYWHh2vp0qUex+3cuVOXLl3SH3/8oYULF2rAgAGqVatWotYdCWv//v364Ycf/rFc7CrTb7zxhjZs2KC5c+fetCz9JmmLiIi4rXKxfebFF19UdHS0Zs+erXPnzkmSoqKiJEmjRo3SqVOn9Oijj6p58+Zq0qSJKlSooDJlyiRM5eEz4eHhunLlyg333c49KiIiwrlHXblyRevXr9eGDRv0wgsvaNmyZXrppZcUEBCggIB7+naNvzl16pSOHz9+w33xiW3SpEmjV155Re3atVObNm304osvqnbt2ipQoIAaNGiQKG2BfyIGx40Qf8MbxODwBjE4vEEMjhu5a/+Xb9myRY8//rjmzJkjSTKzOGUCAwMlSU888YSSJ0+uiRMneuyvWrWqwsLCdPHiRUmSy+XStGnTFBoaqhQpUmj16tX6888/1axZswRuDRLL2rVrVa9ePeXLl08bN27UpUuXblk+9kZXrFgxNWzYUB9//LGio6PjlPvtt9/oN0nUli1b1KBBA1WpUkVt27bV999/7+y70XUnICBAMTExSpkypVq3bq0ZM2Zo8+bNkqTkyZNLkh5++GH98MMPGjZsmAoVKqSZM2fq22+/VVBQUOI0Cglu/fr1atq0qapVq6ZmzZrp888/j1MmvveoFClSaNq0aWrevLm2b9+u77//Xg0bNkz4xiDRbN68WQ0bNlTZsmXVtGlTvfnmm3ESArfTb44dO+b0myFDhmjw4MFKnTq1zp8/r2nTpmn8+PHKmDFj4jQKSQ4xOOKL+BveIAaHN4jB4Q1icNySbwesx3Xu3DkbPHiw5cuXz1wul1WrVs3M4i628nf9+vWzbNmyeaxEffToUXO5XLZw4UJn2/79++3AgQMJU3n4zP79+52Vyjt37mw7d+6M9zmWL19uLpfLli5dapcvX7bVq1fb4cOHzcxs79699JskaPHixVa8eHF78cUX7bfffrNXX33VMmTIYJ999tktrzmxj9SdOHHC8uTJYwMHDrRTp07Z3Llz48xriKTl5MmT9sorr1jmzJmtc+fONnnyZHv11VctMDDQeWz3RuJzj4q97iBpWbhwoRUuXNi6dOliS5YsscGDB1vatGlt0qRJNz3mdvuNmec8zoA3iMERX8Tf8BYxOOKLGBzeIgbHP7nrEuNhYWH28ssv29ChQ23KlCkWGBhoy5YtM7N/Dszz589vzZs3t1mzZllMTIz179/fatWqZSdPnkyMqsMHYvvEunXrLEeOHB4rAO/evdtjzsLbmR+sVq1aVqJECStYsKDlzZuX+eiSsJiYGHvhhResYcOGzuIYZmatW7e2/Pnz26xZs5xyNzvezKxLly6WK1cuCwkJsVSpUv3jIlK4tx04cMBef/11W7x4scf2tGnT2rhx4255LPco/+R2uy0mJsa6detmDz/8sF26dMnZlyNHDhs5cuQtj6ffILEQg+N2EX/j3yAGhzeIwRFfxOC4XT5PjC9fvtxZWTzWpk2bLCYmxq5cuWKhoaEWGhpqZnGD8tibYuz2hQsXWpMmTSxnzpxWqFAhy5Ahg40ZMybhG4FEt2nTJrt8+bLHts6dO1uDBg1swIABVr16dStXrpxVrFjRevTo4VEuOjo6zvnCw8NtyJAhliFDBsuSJYv16dPnlgsB4d7z9+uMmVmpUqXsrbfeMrOrC2iYXf102OVyWatWrZxyNwrMz507Zx9//LHlzJnTMmfObP369fO42SJpuFG/2bdvn8f9aMqUKVa/fn07ePCgRznuUf7rRrFNzZo1rU2bNnb69Gkzu7og2MMPP2xbtmzxKBd7j6LfIKERgyO+iL/hDWJweIMYHN4gBoc3fJYY/+yzzyxjxoyWJ08eK1SokH344YcWERHhUcbtdtvUqVPN5XI5nfbvgfmVK1dsz549zutLly7ZwoULb/lYBO5NMTExNmDAAMuTJ48VL17cypQpY1999ZWzf8GCBc6+9957z/744w/r1auXpUuXzvr27esxIuHKlSt24sQJ5/XkyZMtf/789v777ydqm5CwYmJibOjQoZYpUyb773//6/wxFxss9ezZ0/Lly2d//fWXmV19PKpRo0bWqFEjq1atmseIpStXrtimTZuc1ydOnLAHH3zQ3n333URsERLDzfrN3+8/hw4dsurVq1tgYKAVKVLEcufObe+9954dPXrUKcM9yr/cKLaJDcLHjx9vOXPmtCZNmljFihUtKCjIypUrZ5kzZ7aXXnrJtm7d6pyHfoOERAyO+CD+hjeIweENYnB4ixgc/4ZPEuOrVq2yUqVK2TfffGM7d+60Dz74wLJmzWpvvvmmUyb2pnnmzBmrVKmStW7d2sziXhRbtGhhjz/+OPNBJXG7d++2Zs2aWcWKFW3SpEm2ZMkSe+WVVyxNmjS2efNmp9yQIUNswYIFHsd+9tlnliFDBtu/f7+zrWrVqvbiiy9aeHi4mV0deYCk5fTp09a7d2+rXLmylS1b1ooVK+YE37FOnDhh+fLls8KFC1u5cuXM5XLZyy+/bNOmTbOcOXPa3LlznbLdu3e3KlWq2LZt2xK7KUhEt9NvYm3bts2GDBli27dvtyNHjtg333xjefLksWHDhjlluEf5j5vFNr1793bKHDlyxF555RWrUaOGM93Ar7/+alWqVLE33njDKUe/QUIhBkd8EH/DG8Tg8AYxOLxFDI5/K8AXC34uXLhQp0+fVps2bVSwYEH16tVLL7zwgmbNmqXffvtNkuR2uyVJ9913n7p27aqJEyfqyJEjcrlcMjNFRkZKksqWLavUqVOz0nQSd+rUKR09elRff/21nnjiCVWrVk2ffvqp0qRJo5UrVzrlOnfurFq1ankc26pVK124cEF79uxxtlWuXFnHjx9XQMDV/wJp06ZNnIYg0bhcLuXOnVs9e/bUjBkztHPnTs2cOVMxMTGSpJiYGGXKlEnz5s1T//791ahRI23fvl3Dhg1TgwYNdPbsWY/zlSpVSkWLFlW6dOl80Bokln/qN9crUqSIevToocKFCyt79uzq0KGD0qZNq+PHjztlypcvzz3KT9wstpk9e7amTp0qSUqRIoU2bNigZ599Vvnz51eqVKnUtGlTZcyYUadOnXJWuaffIKEQgyM+iL/hDWJweIMYHN4iBse/5otsfNeuXa1Zs2YeowS2b99uTZo0sSZNmsQpf/z4cXvwwQft5ZdftlWrVlnnzp3jrASLpG/Hjh0er8+ePWslSpSw0aNH37B87MimUaNGWebMmW3VqlX/uHgUkpbrrzEdOnSwUqVK2aFDh8zs1guJjRw50kJCQmz79u30GT90q35zK1u2bLG8efPa8OHDE7J6uEvdKrZp3LixmV2dTzdlypQeMcy5c+esUqVK9vrrryd6neF/iMERX8Tf8AYxOLxBDA5vEIPj3/LJiPFixYpp6dKlOn36tLOtcOHCqlmzpg4dOqTVq1dLujZiJXXq1KpUqZI+++wzVapUSYcPH1bx4sV9UXX4UKFChSRd6xcHDx7UwYMH9cgjj8Qpe/r0ablcLs2fP1/jx49X+/btVaFCBblcrkStM3wrbdq0ziiDd999Vxs3btT8+fPldrvj9IXTp0/r7Nmzmj9/vr7//nu1a9dOhQsXps/4oVv1m787duyYoqOjtWjRIr322msqWbKk2rZtm9hVxl3gn2KbVatWKX369GrQoIE6dOig4cOHa86cOXriiSd0+fJltWvXzoe1h78gBkd8EX/DG8Tg8AYxOLxBDI5/yyeJ8bZt2yoiIkIzZ8702F6hQgVdvnxZe/fuvVq5gABt2rRJderU0TfffKM33nhDx48f12+//aaMGTP6ouq4C5iZJOnnn39W5cqVlS9fPkVHRzv7Dxw4oD59+qhChQpq1KiRypQpo759+/qquvCxwMBAxcTEKGfOnGrcuLFGjRqlkydPepQxM02dOlWPP/64HnvsMZUtW1a9e/f2UY1xN7idfnP+/Hm99dZbqlGjhho0aKACBQrou+++03333eebSsOn/im22b9/vyRp1KhRKl68uL7//nu98MILypcvn+bMmaMSJUr4otrwM8Tg8BbxN+KLGBzeIAZHfBGD499yWWyUk8heeOEFLVy4ULNnz1auXLmc7SlTptSvv/6q+vXrS5LWrFmjNWvWqH379kqZMqUvqoq7UExMjGrUqKHWrVvr5Zdfdra73W4FBATo888/15UrV/Tiiy8yPxQUExOjwMBAbdmyRSVKlNDkyZPVuHFjRUREKCYmRhkyZNCmTZu0c+dONWzYkD4DSbfuN263W/fdd58mTpyo06dPq0OHDvQb3DK2+eWXX/TYY4852w4fPqwsWbIoefLkvqgq/BgxOLxF/I34IgaHN4jBEV/E4Pg3fJYYP336tPLly6fOnTvr1VdfVc6cOfXHH3+oe/fu+vHHH1WmTBlfVAv3iAULFqhVq1basmWLgoODNWTIEC1YsEDvv/8+fQc3ZGZyuVx6+OGH5XK5VLx4cc2ePVuvvfaaOnbs6Ovq4S5Fv0F8ENvgXkA/hbeIv+ENYil4g36D+CC2wb/hk6lUJOn+++/XkCFDNHfuXD388MN64YUX1LZtW9WsWZNHGXBTsZ/j/PHHHypWrJi++uorZc6cWZ9//rlatGjBBQ835Xa7dfToUaVJk0bz5s3TjBkz1LNnTwIr3BL9BvFBbIN7Af0U8UX8jX+DWAreoN8gPoht8G/4bMS4dDXI2rVrlyZPnqxt27apefPmatCgga+qg3vE5cuXlStXLp0+fVplypRRv3791LhxY19XC3e5rVu3qmrVqsqRI4c+//xz1alTx9dVwj2AfoP4IrbBvYB+ivgi/oa3iKXgDfoN4ovYBt7yeWKc1abhjc8++0yVK1dW+fLlfV0V3CPOnz+vY8eOKX/+/L6uCu4h9BvEF7EN7gX0U3iD+BveIJaCN+g3iC9iG3jLp4lxAAAAAAAAAAASm8/mGAcAAAAAAAAAwBdIjAMAAAAAAAAA/AqJcQAAAAAAAACAXyExDgAAAAAAAADwKyTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL9CYhwAcMfkzZtXn3zyia+rAQAAAPgNYnAA8A6JcQC4C7Vv314ul0sul0vJkydX1qxZ9cgjj+ibb76R2+2O17nGjBmj++6771/VZ8GCBU59bva1YMECrV69Wp06dfpX7wUAAAD4AjE4APiXZL6uAADgxh599FF9++23iomJ0bFjxzRjxgy9+uqrmjRpkqZOnapkyRLvEl61alUdPXrUef3qq68qIiJC3377rbPt/vvvV4oUKRKtTgAAAMCdRgwOAP6DEeMAcJcKCgpStmzZlDNnTpUtW1Z9+vTRlClT9Mcff2jMmDFOuY8//lglSpRQmjRpFBISohdffFHnz5+XdHWUSYcOHRQeHu6MKnnnnXckSZGRkXr99deVM2dOpUmTRpUqVdKCBQtuWJcUKVIoW7ZszleqVKmc+sV+pUiRIs5jnC6XS6NHj1bDhg2VOnVqFS1aVMuXL9fu3btVu3ZtpUmTRlWrVtVff/3l8X5TpkxR2bJllTJlSj3wwAPq37+/oqOj7+SPFwAAAIiDGJwYHID/IDEOAPeQhx56SKVKldIvv/zibAsICNCwYcO0ZcsWfffdd5o3b5569uwp6eook08++UTp06fX0aNHdfToUb3++uuSpK5du2r58uUaP368Nm7cqBYtWujRRx/Vrl277mid3333XbVr107r169XkSJF1KZNG3Xu3Flvvvmm1qxZIzNT165dnfKLFy9Wu3bt9Oqrr2rr1q0aPXq0xowZo/fee++O1gsAAAC4HcTgAJA0kRgHgHtMkSJFtG/fPud1t27dVKdOHeXNm1cPPfSQBgwYoIkTJ0q6OsokODhYLpfLGVWSNm1aHThwQN9++61++ukn1ahRQ/nz59frr7+u6tWrezyaeSd06NBBTz75pAoVKqRevXpp3759euqppxQaGqqiRYvq1Vdf9Rgl079/f/Xu3VvPPPOMHnjgAT3yyCN69913NXr06DtaLwAAAOB2EYMDQNLDHOMAcI8xM7lcLuf1nDlzNHDgQG3fvl0RERGKjo7W5cuXdfHiRaVOnfqG59i0aZNiYmJUqFAhj+2RkZHKmDHjHa1vyZIlne+zZs0qSSpRooTHtsuXLysiIkLp06fXhg0btHTpUo/RKTExMf/YJgAAACChEIMTgwNIekiMA8A9Ztu2bcqXL58kad++fWrYsKG6dOmi9957T/fff7+WLFmijh076sqVKzcNYM+fP6/AwECtXbtWgYGBHvvSpk17R+ubPHly5/vYPyZutM3tdjt169+/v5o1axbnXClTpryjdQMAAABuBzE4ACQ9JMYB4B4yb948bdq0Sd27d5ckrV27Vm63W0OGDFFAwNXZsWIf4YyVIkUKxcTEeGwrU6aMYmJidPz4cdWoUSNxKn+bypYtqx07dqhAgQK+rgoAAABADA4ASRSJcQC4S0VGRiosLEwxMTE6duyYZsyYoYEDB6phw4Zq166dJKlAgQKKiorS8OHD1ahRIy1dulSjRo3yOE/evHl1/vx5zZ07V6VKlVLq1KlVqFAhPfXUU2rXrp2GDBmiMmXK6MSJE5o7d65KliypBg0a+KLJkqS+ffuqYcOGyp07t5o3b66AgABt2LBBmzdv1oABA3xWLwAAACR9xODE4AD8B4tvAsBdasaMGcqePbvy5s2rRx99VPPnz9ewYcM0ZcoU59HLUqVK6eOPP9aHH36oBx98UD/88IMGDhzocZ6qVavqhRdeUMuWLZU5c2YNGjRIkvTtt9+qXbt2eu2111S4cGE1bdpUq1evVu7cuRO9rdcLDQ3VtGnTNGvWLFWoUEGVK1fW0KFDlSdPHp/WCwAAAEkfMTgxOAD/4TIz83UlAAAAAAAAAABILIwYBwAAAAAAAAD4FRLjAAAAAAAAAAC/QmIcAAAAAAAAAOBXSIwDAAAAAAAAAPwKiXEAAAAAAAAAgF8hMQ4AAAAAAAAA8CskxgEAAAAAAAAAfoXEOAAAAAAAAADAr5AYBwAAAAAAAAD4FRLjAAAAAAAAAAC/QmIcAAAAAAAAAOBXSIwDAAAAAAAAAPwKiXEAAAAAAAAAgF8hMQ4AAAAAAAAA8CskxgEAAAAAAAAAfoXEOAAAAAAAAADAr5AYBwAAAAAAAAD4FRLjAPzOggUL5HK5tGDBgrv6nHeT2rVrq3bt2r6uxh1x8OBBpUyZUkuXLvV1VXTq1CmlSZNG06dP93VVAAAAAADwKyTGAdxTJk6cKJfLpV9//TXOvlKlSsnlcmn+/Plx9uXOnVtVq1ZNjCriLvff//5XlSpVUrVq1e74ud1utzJnzqxBgwbdVvmMGTPqueee09tvv33H6wIAAAAAAG6OxDiAe0r16tUlSUuWLPHYHhERoc2bNytZsmRxRgIfPHhQBw8edI6tWbOmLl26pJo1ayZOpXHXOHHihL777ju98MILCXL+VatW6eTJk2rQoMFtH/PCCy/ozz//1Lx58xKkTgAAAAAAIC4S4wDuKTly5FC+fPniJMaXL18uM1OLFi3i7It9HZsYDwgIUMqUKRUQwCXQ33z//fdKliyZGjVqlCDnnz59uvLkyaPixYvf9jFFixbVgw8+qDFjxiRInQAAAAAAQFxkhQDcc6pXr65169bp0qVLzralS5eqePHiql+/vlasWCG32+2xz+VyOVNn3Gg+8Nq1a+vBBx/U1q1bVadOHaVOnVo5c+a84ZQYhw4dUtOmTZUmTRplyZJF3bt3V2Rk5G3V/dy5c+rWrZvy5s2roKAgZcmSRY888oj+/PPPOHVZu3atqlatqlSpUilfvnwaNWpUnPNFRkaqX79+KlCggIKCghQSEqKePXvesD7ff/+9ypUrp1SpUun+++9Xq1atdPDgwTjlvvjiC+XPn1+pUqVSxYoVtXjx4ttqW3z06NFDGTNmlJk5215++WW5XC4NGzbM2Xbs2DG5XC6NHDlSx44dU7JkydS/f/8459uxY4dcLpc+++yzW77v5MmTValSJaVNm9Zje+zPfOPGjapVq5ZSp06tAgUKaNKkSZKkhQsXqlKlSkqVKpUKFy6sOXPm3PD8v//+u8do8TVr1ig0NFSZMmVyfo/PPvtsnOMeeeQR/fbbbx4/DwAAAAAAkHBIjAO451SvXl1RUVFauXKls23p0qWqWrWqqlatqvDwcG3evNljX5EiRZQxY8ZbnvfMmTN69NFHVapUKQ0ZMkRFihRRr1699McffzhlLl26pIcfflgzZ85U165d9Z///EeLFy9Wz549b6vuL7zwgkaOHKknnnhCI0aM0Ouvv65UqVJp27Ztcery2GOPqVy5cho0aJBy5cqlLl266JtvvnHKuN1uNW7cWB999JEaNWqk4cOHq2nTpho6dKhatmzpcb733ntP7dq1U8GCBfXxxx+rW7dumjt3rmrWrKmzZ8865b7++mt17txZ2bJl06BBg1StWjU1btz4hgn0f6NGjRo6ffq0tmzZ4mxbvHixAgICPBLxsd/XrFlTWbNmVa1atTRx4sQ455swYYICAwPVokWLm75nVFSUVq9erbJly95w/5kzZ9SwYUNVqlRJgwYNUlBQkFq1aqUJEyaoVatWeuyxx/TBBx/owoULat68uc6dO+dxfFhYmNatW6fHHntMknT8+HHVq1dP+/btU+/evTV8+HA99dRTWrFiRZz3LleunM6ePevx8wAAAAAAAAnIAOAes2XLFpNk7777rpmZRUVFWZo0aey7774zM7OsWbPa559/bmZmERERFhgYaM8//7xz/Pz5802SzZ8/39lWq1Ytk2T/+9//nG2RkZGWLVs2e+KJJ5xtn3zyiUmyiRMnOtsuXLhgBQoUiHPOGwkODraXXnrplmVi6zJkyBCPupQuXdqyZMliV65cMTOzsWPHWkBAgC1evNjj+FGjRpkkW7p0qZmZ7du3zwIDA+29997zKLdp0yZLliyZs/3KlSuWJUsWK126tEVGRjrlvvjiC5NktWrVumW94+P48eMmyUaMGGFmZmfPnrWAgABr0aKFZc2a1Sn3yiuv2P33329ut9vMzEaPHm2SbNOmTR7nK1asmD300EO3fM/du3ebJBs+fHicfbE/83Hjxjnbtm/fbpIsICDAVqxY4WyfOXOmSbJvv/3W4xxff/21pUqVyi5evGhmZr/++qtJstWrV//jz2PZsmUmySZMmPCPZQEAAAAAwL/HiHEA95yiRYsqY8aMztzhGzZs0IULF1S1alVJUtWqVZ0FOJcvX66YmBhnfvFbSZs2rdq2beu8TpEihSpWrKg9e/Y426ZPn67s2bOrefPmzrbUqVOrU6dOt1X3++67TytXrtSRI0duWS5ZsmTq3LmzR106d+6s48ePa+3atZKkn376SUWLFlWRIkV08uRJ5+uhhx6SJM2fP1+S9Msvv8jtduvJJ5/0KJctWzYVLFjQKbdmzRodP35cL7zwglKkSOG8d/v27RUcHHxb7btdmTNnVpEiRbRo0SJJV0f1BwYG6o033tCxY8e0a9cuSVdHjFevXl0ul0uS1KxZMyVLlkwTJkxwzrV582Zt3bo1zij5vzt16pQkKUOGDDfcnzZtWrVq1cp5XbhwYd13330qWrSoKlWq5GyP/f76fiFd7Rt16tRRqlSpJF39XUvStGnTFBUVdcu6xdbp5MmTtywHAAAAAADuDBLjAO45LpdLVatWdeYSX7p0qbJkyaICBQpI8kyMx/57O4nxXLlyOQnYWBkyZNCZM2ec1/v371eBAgXilCtcuPBt1X3QoEHavHmzQkJCVLFiRb3zzjtxEqzS1UVG06RJ47GtUKFCkqR9+/ZJknbt2qUtW7Yoc+bMHl+x5Y4fP+6UMzMVLFgwTtlt27Y55fbv3y9JKliwoMf7Jk+eXA888MA/tu306dMKCwtzvsLDw29ZvkaNGs5UKYsXL1b58uVVvnx53X///Vq8eLEiIiK0YcMG1ahRwzkmU6ZMevjhhz2mU5kwYYKSJUumZs2a/WMdJd10Hu8b/f6Dg4MVEhISZ5skj34RFRWl2bNne8wvXqtWLT3xxBPq37+/MmXKpCZNmujbb7+94fzvsXX6+/sDAAAAAICEkczXFQAAb1SvXl2//fabNm3a5MwvHqtq1ap64403dPjwYS1ZskQ5cuS4rcRuYGDgDbffLJHqjSeffFI1atTQr7/+qlmzZmnw4MH68MMP9csvv6h+/frxOpfb7VaJEiX08ccf33B/bELX7XbL5XLpjz/+uGEb/74QpbeaNWumhQsXOq+feeYZjRkz5qblq1evri+//FJ79uzR4sWLVaNGDblcLlWvXl2LFy9Wjhw55Ha7PRLjktSqVSt16NBB69evV+nSpTVx4kQ9/PDDypQp0y3rFzvH/PUJ7evd7Pd/O/1iyZIlioiIcOYXl64muSdNmqQVK1bot99+08yZM/Xss89qyJAhWrFihcfPPbZO/9QGAAAAAABwZ5AYB3BPih0BvmTJEi1dulTdunVz9pUrV05BQUFasGCBVq5c6ZGs/Lfy5MmjzZs3y8w8Rvfu2LHjts+RPXt2vfjii3rxxRd1/PhxlS1bVu+9955HYvzIkSO6cOGCx6jxnTt3SpLy5s0rScqfP782bNighx9++JYjjfPnzy8zU758+ZzR5Ddrm3R1hHnsdCzS1dHQe/fuValSpW7ZriFDhngknXPkyHHL8rEJ79mzZ2v16tXq3bu3pKsLbY4cOdIZNV+uXDmP45o2barOnTs706ns3LlTb7755i3fS5Jy586tVKlSae/evf9YNr5+//13FStWzPndXK9y5cqqXLmy3nvvPY0bN05PPfWUxo8fr+eee84pE1unokWL3vG6AQAAAACAuJhKBcA9qXz58kqZMqV++OEHHT582GPEeFBQkMqWLavPP/9cFy5cuK1pVG7XY489piNHjmjSpEnOtosXL+qLL774x2NjYmLiTC+SJUsW5ciRI870GtHR0Ro9erTz+sqVKxo9erQyZ87sJIqffPJJHT58WF9++WWc97p06ZIuXLgg6epI7sDAQPXv3z/O6Hczc+beLl++vDJnzqxRo0bpypUrTpkxY8bo7Nmz/9i+cuXKqW7dus5XsWLFblk+X758ypkzp4YOHaqoqChVq1ZN0tWE+V9//aVJkyapcuXKSpbM8zPc++67T6GhoZo4caLGjx+vFClSqGnTpv9Yv+TJk6t8+fJas2bNP5aNr+nTp3tMoyJdHQX+95936dKlJSnO73vt2rUKDg5W8eLF73jdAAAAAABAXIwYB3BPSpEihSpUqKDFixcrKCgozqjiqlWrasiQIZJub37x2/X888/rs88+U7t27bR27Vplz55dY8eOVerUqf/x2HPnzilXrlxq3ry5SpUqpbRp02rOnDlavXq1U9dYOXLk0Icffqh9+/apUKFCmjBhgtavX68vvvhCyZMnlyQ9/fTTmjhxol544QXNnz9f1apVU0xMjLZv366JEydq5syZKl++vPLnz68BAwbozTff1L59+9S0aVOlS5dOe/fu1a+//qpOnTrp9ddfV/LkyTVgwAB17txZDz30kFq2bKm9e/fq22+/va2paLxRo0YNjR8/XiVKlHAWoCxbtqzSpEmjnTt3qk2bNjc8rmXLlmrbtq1GjBih0NBQZ6HLf9KkSRP95z//UUREhNKnT39H2rB3715t27ZNI0eO9Nj+3XffacSIEXr88ceVP39+nTt3Tl9++aXSp08f5ymG2bNnq1GjRswxDgAAAABAImHEOIB7VmzCO3bqlOvFjj5Oly7dP04BEh+pU6fW3LlzVa9ePQ0fPlwDBgxQ9erVNWjQoNs69sUXX9T69evVr18/de/eXTt27NCIESPUo0cPj7IZMmTQ9OnTtWbNGr3xxhs6ePCgPvvsMz3//PNOmYCAAE2ePFkffPCBNm3apNdff139+/fX6tWr9eqrr3pMm9K7d2/9/PPPCggIUP/+/fX6669r6tSpqlevnho3buyU69Spk0aMGKEjR47ojTfe0OLFizV16tQ4C1DeKbHTqVz/4UWyZMlUpUoVj/1/17hxY6VKlUrnzp1Ty5Ytb/v9nn76acXExGjq1Kn/otaepk+fruDgYKfPxapVq5bKly+v8ePH65VXXtGgQYNUsGBBzZs3T/ny5XPKbd++XZs3b1b79u3vWJ0AAAAAAMCtuexOrioHAPjXateurZMnT2rz5s2+rkqS1LFjR+3cuVOLFy++I+d77LHHlDZtWk2cONGr47t166ZFixZp7dq1jBgHAAAAACCRMJUKAMCv9OvXT4UKFdLSpUvjjPL2Ru3atW86sv2fnDp1Sl999ZUmTpxIUhwAAAAAgETEiHEAuMswYhwAAAAAACBhMcc4AAAAAAAAAMCvMGIcAAAAAAAAAOBXGDEOAAAAAAAAAPArJMYBAAAAAAAAAH4lma8rcDdwu906cuSI0qVLJ5fL5evqAAAA4C5nZjp37pxy5MihgADGmgAAAAD3GhLjko4cOaKQkBBfVwMAAAD3mIMHDypXrly+rgYAAACAeCIxLildunSSrv5hkz59eh/XBgAAAHe7iIgIhYSEOHEkAAAAgHsLiXHJmT4lffr0JMYBAABw25iGDwAAALg3MSEiAAAAAAAAAMCvJKnE+Oeff668efMqZcqUqlSpklatWuXrKgEAAAAAAAAA7jJJJjE+YcIE9ejRQ/369dOff/6pUqVKKTQ0VMePH/d11QAAAAAAAAAAd5Ekkxj/+OOP9fzzz6tDhw4qVqyYRo0apdSpU+ubb77xddUAAAAAAAAAAHeRJLH45pUrV7R27Vq9+eabzraAgADVrVtXy5cv92HNbm1+tyn689PFN9xXue8jOrb6oPb+sd1je5V36mn5O7MkSRkKZdaZnSec7a6A/1/8yUxmnv9e3S6Z2bV/PbZ5lnW+v2HZa8dI0sH5f+nU1mN34keSIB5oUFR7ft/mk/eu2r/e1R+j+/9/xu7///m5Tea8jrs98swlbR27Nt7vlzxNClXoVUfuaLfWDlmoqAtX/vGYKv0e0bmD4dr8TcJMPZSxWFYVfKKEYq7EaPWH8xPkPe6E/E2KK0uZnHH/D0g3/n8Q53tziv/9ezlFbvy9O8atDSOWJVTTbskVGCCLcd9W2cpv15UrwCV3lFv7Z+9U2OqDCVy7O+fBZysqfd4Mcl+J0f45u3R0xf44ZYo/U16uwIA7/n+h1AtVFH0pSlu+W3NHzxur+nv15Y5xy2Lccke7ZTEmd4xb7qgY/fnJje8x3qjQs7ZWD1547f9FAqrav55iImO08v25Cf5e/1aqzGl06cQFn9bBFeC6eh9JZCWer6TgfPd7xgdud9wYJE78cPW6t2bwgjtWl2wVQvTUqlfv2PkAAAAAJH0us0T4CzeBHTlyRDlz5tSyZctUpUoVZ3vPnj21cOFCrVy50qN8ZGSkIiMjndcREREKCQlReHi40qdPn2j1HuJ6PdHeCwAAIClrMbezcj9UMNHeLyIiQsHBwYkePwIAAAC4M5LEiPH4GjhwoPr37+/raihzyew6sfHoDfcVb19eJzYc1fF1h+Ns3zIm7qjDEs9Xksvlkv5/0Ljzvcsl1///e/322ysbuy1u2euPOTBnl44s2/dvfhQJKn3eDIrYd8Yn7/1gx4oKTB4oBVz92boCAq6O7Hfp//91yXXdvtjtm79ZrQtHI7x6z5KdKsuVLOC2RyDnb1JcEfvO6MSGI1693+0o/VJVBaZIpvUjlikmMjrB3uffKvVCFadfS7rh/51bfe/8H7rh97EHKM737hi3Vg2cl4AtuzPy1S+i9HkyKCBFoDZ9sULRl+/e3+XfZS2fS1nL5VJgimTaNu5PXT51MU6ZgOSByvdYEf01Zcsdfe/MpXPo/sJZtGPC+jt63lgPdqyogMAAuQJdcgUGKCBZgFyBV2dKWztk4R17n6JPldXRFft19q9Td+ycN1PqhSoKSBGodcOWJPh7wXv3F8mi7FXyyPX/97Lr4wPn39h73Q3ijzv5RIMkpcmW7o6eDwAAAEDSliRGjF+5ckWpU6fWpEmT1LRpU2f7M888o7Nnz2rKlCke5e+WEeMAAODuEvs0V4Mfn1KRVmV8XBvczRgxDgAAANzbksTimylSpFC5cuU0d+61uUjdbrfmzp3rMbVKrKCgIKVPn97jCwAAAAAAAADgH5LMVCo9evTQM888o/Lly6tixYr65JNPdOHCBXXo0MHXVQMAAAAAAAAA3EWSTGK8ZcuWOnHihPr27auwsDCVLl1aM2bMUNasWX1dNQAAAAAAAADAXSTJJMYlqWvXruratauvqwEAAAAAAAAAuIsliTnGAQAAAAAAAAC4XSTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL9CYhwAAAAAAAAA4FdIjAMAAAAAAAAA/AqJcQAAAAAAAACAXyExDgAAAAAAAADwKyTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL9CYhwAAAAAAAAA4FdIjAMAAAAAAAAA/AqJcQAAAAAAAACAXyExDgAAAAAAAADwKyTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAB/Y+brGgAAAAAAEhKJcQAAAAAAAACAXyExDgAAAAAAAADwKyTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL9CYhwAAAAAAAAA4FdIjAMAAAAAAAAA/AqJcQAAAAAAAACAXyExDgAAAAAAAADwKyTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL9CYhwAAAAAAAAA4FdIjAMAAAAAAAAA/AqJcQAAAAAAAACAX0mwxPi+ffvUsWNH5cuXT6lSpVL+/PnVr18/XblyxaPcxo0bVaNGDaVMmVIhISEaNGhQnHP99NNPKlKkiFKmTKkSJUpo+vTpHvvNTH379lX27NmVKlUq1a1bV7t27UqopgEAAAAAAAAA7mEJlhjfvn273G63Ro8erS1btmjo0KEaNWqU+vTp45SJiIhQvXr1lCdPHq1du1aDBw/WO++8oy+++MIps2zZMrVu3VodO3bUunXr1LRpUzVt2lSbN292ygwaNEjDhg3TqFGjtHLlSqVJk0ahoaG6fPlyQjUPAAAAAAAAAHCPcpmZJdabDR48WCNHjtSePXskSSNHjtR//vMfhYWFKUWKFJKk3r17a/Lkydq+fbskqWXLlrpw4YKmTZvmnKdy5coqXbq0Ro0aJTNTjhw59Nprr+n111+XJIWHhytr1qwaM2aMWrVq9Y/1ioiIUHBwsMLDw5U+ffo73WwAAHCPGOK6Gks8Nu4pFW1dxse1wd2M+BEAAAC4tyXqHOPh4eG6//77ndfLly9XzZo1naS4JIWGhmrHjh06c+aMU6Zu3boe5wkNDdXy5cslSXv37lVYWJhHmeDgYFWqVMkpAwAAAAAAAABArERLjO/evVvDhw9X586dnW1hYWHKmjWrR7nY12FhYbcsc/3+64+7UZm/i4yMVEREhMcXAAAAAAAAAMA/xDsx3rt3b7lcrlt+xU6DEuvw4cN69NFH1aJFCz3//PN3rPLeGjhwoIKDg52vkJAQX1cJAAAAAAAAAJBIksX3gNdee03t27e/ZZkHHnjA+f7IkSOqU6eOqlat6rGopiRly5ZNx44d89gW+zpbtmy3LHP9/tht2bNn9yhTunTpG9bvzTffVI8ePZzXERERJMcBAAAAAAAAwE/EOzGeOXNmZc6c+bbKHj58WHXq1FG5cuX07bffKiDAc4B6lSpV9J///EdRUVFKnjy5JGn27NkqXLiwMmTI4JSZO3euunXr5hw3e/ZsValSRZKUL18+ZcuWTXPnznUS4REREVq5cqW6dOlyw3oFBQUpKCgoPs0GAAAAAAAAACQRCTbH+OHDh1W7dm3lzp1bH330kU6cOKGwsDCPeb/btGmjFClSqGPHjtqyZYsmTJigTz/91GM096uvvqoZM2ZoyJAh2r59u9555x2tWbNGXbt2lSS5XC5169ZNAwYM0NSpU7Vp0ya1a9dOOXLkUNOmTROqeQAAAAAAAACAe1S8R4zfrtmzZ2v37t3avXu3cuXK5bHPzCRJwcHBmjVrll566SWVK1dOmTJlUt++fdWpUyenbNWqVTVu3Di99dZb6tOnjwoWLKjJkyfrwQcfdMr07NlTFy5cUKdOnXT27FlVr15dM2bMUMqUKROqeQAAICn7/1gFAAAAAJA0ucz4yy8iIkLBwcEKDw9X+vTpfV0dAADgI0Ncr0uSHvuhjYq2Kevj2uBuRvwIAAAA3NsSbCoVAAAAAAAAAADuRiTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL9CYhwAAAAAAAAA4FdIjAMAAAAAAAAA/AqJcQAAAAAAAACAXyExDgAAAAAAAADwKyTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL9CYhwAAAAAAAAA4FdIjAMAAAAAAAAA/AqJcQAAAAAAAACAXyExDgAAAAAAAADwKyTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL9CYhwAAAAAAAAA4FdIjAMAAAAAAAAA/AqJcQAAAAAAAACAXyExDgAA8Hfm6woAAAAAABISiXEAAAAAAAAAgF8hMQ4AAAAAAAAA8CskxgEAAAAAAAAAfoXEOAAAAAAAAADAr5AYBwAAAAAAAAD4FRLjAAAAAAAAAAC/QmIcAAAAAAAAAOBXSIwDAAAAAAAAAPwKiXEAAAAAAAAAgF8hMQ4AAAAAAAAA8CskxgEAAAAAAAAAfoXEOAAAAAAAAADAr5AYBwAAAAAAAAD4lURJjEdGRqp06dJyuVxav369x76NGzeqRo0aSpkypUJCQjRo0KA4x//0008qUqSIUqZMqRIlSmj69Oke+81Mffv2Vfbs2ZUqVSrVrVtXu3btSsgmAQAAAAAAAADuUYmSGO/Zs6dy5MgRZ3tERITq1aunPHnyaO3atRo8eLDeeecdffHFF06ZZcuWqXXr1urYsaPWrVunpk2bqmnTptq8ebNTZtCgQRo2bJhGjRqllStXKk2aNAoNDdXly5cTo3kAAAAAAAAAgHtIgifG//jjD82aNUsfffRRnH0//PCDrly5om+++UbFixdXq1at9Morr+jjjz92ynz66ad69NFH9cYbb6ho0aJ69913VbZsWX322WeSro4W/+STT/TWW2+pSZMmKlmypP73v//pyJEjmjx5ckI3DwAAAAAAAABwj0nQxPixY8f0/PPPa+zYsUqdOnWc/cuXL1fNmjWVIkUKZ1toaKh27NihM2fOOGXq1q3rcVxoaKiWL18uSdq7d6/CwsI8ygQHB6tSpUpOGQAAAAAAAAAAYiVYYtzM1L59e73wwgsqX778DcuEhYUpa9asHttiX4eFhd2yzPX7rz/uRmX+LjIyUhERER5fAAAAAAAAAAD/EO/EeO/eveVyuW75tX37dg0fPlznzp3Tm2++mRD1/lcGDhyo4OBg5yskJMTXVQIAAAAAAAAAJJJk8T3gtddeU/v27W9Z5oEHHtC8efO0fPlyBQUFeewrX768nnrqKX333XfKli2bjh075rE/9nW2bNmcf29U5vr9sduyZ8/uUaZ06dI3rN+bb76pHj16OK8jIiJIjgMAAAAAAACAn4h3Yjxz5szKnDnzP5YbNmyYBgwY4Lw+cuSIQkNDNWHCBFWqVEmSVKVKFf3nP/9RVFSUkidPLkmaPXu2ChcurAwZMjhl5s6dq27dujnnmj17tqpUqSJJypcvn7Jly6a5c+c6ifCIiAitXLlSXbp0uWHdgoKC4iTsAQAAAAAAAAD+Id6J8duVO3duj9dp06aVJOXPn1+5cuWSJLVp00b9+/dXx44d1atXL23evFmffvqphg4d6hz36quvqlatWhoyZIgaNGig8ePHa82aNfriiy8kSS6XS926ddOAAQNUsGBB5cuXT2+//bZy5Mihpk2bJlTzAAAAAAAAAAD3qARLjN+O4OBgzZo1Sy+99JLKlSunTJkyqW/fvurUqZNTpmrVqho3bpzeeust9enTRwULFtTkyZP14IMPOmV69uypCxcuqFOnTjp79qyqV6+uGTNmKGXKlL5oFgAAAAAAAADgLuYyM/N1JXwtIiJCwcHBCg8PV/r06X1dHQAA4CNDXK9Lkh77vo2KPlXWx7XB3Yz4EQAAALi3Bfi6AgAAAAAAAAAAJCYS4wAAAAAAAAAAv0JiHAAA4G+YaQ4AAAAAkjYS4wAAAAAAAAAAv0JiHAAAAAAAAADgV0iMAwAAAAAAAAD8ColxAAAAAAAAAIBfITEOAAAAAAAAAPArJMYBAAAAAAAAAH6FxDgAAAAAAAAAwK+QGAcAAAAAAAAA+BUS4wAAAAAAAAAAv0JiHAAAAAAAAADgV0iMAwAAAAAAAAD8ColxAAAAAAAAAIBfITEOAAAAAAAAAPArJMYBAAAAAAAAAH6FxDgAAAAAAAAAwK+QGAcAAAAAAAAA+BUS4wAAAAAAAAAAv0JiHAAAAAAAAADgV0iMAwAAAAAAAAD8ColxAAAAAAAAAIBfITEOAAAAAAAAAPArJMYBAAAAAAAAAH6FxDgAAAAAAAAAwK+QGAcAAAAAAAAA+BUS4wAAAAAAAAAAv0JiHAAAAAAAAADgV0iMAwAA/J35ugIAAAAAgIREYhwAAAAAAAAA4FdIjAMAAAAAAAAA/AqJcQAAAAAAAACAXyExDgAAAAAAAADwKyTGAQAAAAAAAAB+hcQ4AAAAAAAAAMCvkBgHAAAAAAAAAPgVEuMAAAAAAAAAAL+SoInx33//XZUqVVKqVKmUIUMGNW3a1GP/gQMH1KBBA6VOnVpZsmTRG2+8oejoaI8yCxYsUNmyZRUUFKQCBQpozJgxcd7n888/V968eZUyZUpVqlRJq1atSsBWAQAAAAAAAADuZQmWGP/555/19NNPq0OHDtqwYYOWLl2qNm3aOPtjYmLUoEEDXblyRcuWLdN3332nMWPGqG/fvk6ZvXv3qkGDBqpTp47Wr1+vbt266bnnntPMmTOdMhMmTFCPHj3Ur18//fnnnypVqpRCQ0N1/PjxhGoaAAAAAAAAAOAe5jIzu9MnjY6OVt68edW/f3917NjxhmX++OMPNWzYUEeOHFHWrFklSaNGjVKvXr104sQJpUiRQr169dLvv/+uzZs3O8e1atVKZ8+e1YwZMyRJlSpVUoUKFfTZZ59Jktxut0JCQvTyyy+rd+/et1XfiIgIBQcHKzw8XOnTp/83TQcAAPewIa7XJUn1/9daxZ4u5+Pa4G5G/AgAAADc2xJkxPiff/6pw4cPKyAgQGXKlFH27NlVv359jwT38uXLVaJECScpLkmhoaGKiIjQli1bnDJ169b1OHdoaKiWL18uSbpy5YrWrl3rUSYgIEB169Z1ygAAAAAAAAAAcL0ESYzv2bNHkvTOO+/orbfe0rRp05QhQwbVrl1bp0+fliSFhYV5JMUlOa/DwsJuWSYiIkKXLl3SyZMnFRMTc8Mysee4kcjISEVERHh8AQAAAAAAAAD8Q7wS471795bL5brl1/bt2+V2uyVJ//nPf/TEE0+oXLly+vbbb+VyufTTTz8lSEPiY+DAgQoODna+QkJCfF0lAAAAAAAAAEAiSRafwq+99prat29/yzIPPPCAjh49KkkqVqyYsz0oKEgPPPCADhw4IEnKli2bVq1a5XHssWPHnH2x/8Zuu75M+vTplSpVKgUGBiowMPCGZWLPcSNvvvmmevTo4byOiIggOQ4AAAAAAAAAfiJeifHMmTMrc+bM/1iuXLlyCgoK0o4dO1S9enVJUlRUlPbt26c8efJIkqpUqaL33ntPx48fV5YsWSRJs2fPVvr06Z2EepUqVTR9+nSPc8+ePVtVqlSRJKVIkULlypXT3Llz1bRpU0lXF9+cO3euunbtetP6BQUFKSgoKD5NBwAAAAAAAAAkEQkyx3j69On1wgsvqF+/fpo1a5Z27NihLl26SJJatGghSapXr56KFSump59+Whs2bNDMmTP11ltv6aWXXnKS1i+88IL27Nmjnj17avv27RoxYoQmTpyo7t27O+/Vo0cPffnll/ruu++0bds2denSRRcuXFCHDh0SomkAAAAAAAAAgHtcvEaMx8fgwYOVLFkyPf3007p06ZIqVaqkefPmKUOGDJKkwMBATZs2TV26dFGVKlWUJk0aPfPMM/rvf//rnCNfvnz6/fff1b17d3366afKlSuXvvrqK4WGhjplWrZsqRMnTqhv374KCwtT6dKlNWPGjDgLcgIAAAAAAAAAIEkuMzNfV8LXIiIiFBwcrPDwcKVPn97X1QEAAD4yxPW6JKn+/1qr2NPlfFwb3M2IHwEAAIB7W4JMpQIAAAAAAAAAwN2KxDgAAAAAAAAAwK+QGAcAAAAAAAAA+BUS4wAAAAAAAAAAv0JiHAAAAAAAAADgV0iMAwAAAAAAAAD8ColxAAAAAAAAAIBfITEOAADwNxmLZfV1FQAAAAAACSiZrysAAABwt2i38TWF7z2trOVy+boqAAAAAIAERGIcAADg/2UukV2ZS2T3dTUAAAAAAAmMqVQAAAAAAAAAAH6FxDgAAAAAAAAAwK+QGAcAAAAAAAAA+BUS4wAAAAAAAAAAv8Lim5LMTJIUERHh45oAAADgXhAbN8bGkQAAAADuLSTGJZ07d06SFBIS4uOaAAAA4F5y7tw5BQcH+7oaAAAAAOLJZQxzkdvt1pEjR5QuXTq5XK5Ee9+IiAiFhITo4MGDSp8+faK9L+5t9Bt4g36D+KLPwBv+1G/MTOfOnVOOHDkUEMDshAAAAMC9hhHjkgICApQrVy6fvX/69OmT/B+PuPPoN/AG/QbxRZ+BN/yl3zBSHAAAALh3MbwFAAAAAAAAAOBXSIwDAAAAAAAAAPwKiXEfCgoKUr9+/RQUFOTrquAeQr+BN+g3iC/6DLxBvwEAAABwr2DxTQAAAAAAAACAX2HEOAAAAAAAAADAr5AYBwAAAAAAAAD4FRLjAAAAAAAAAAC/QmIcAAAAAAAAAOBXSIwj0bHeK4DEwLUG3qDfwBv0GwAAAODeQ2IcierUqVNyuVy+rgbuMYcOHZLb7fZ1NXAPCQsL41qDeAsPD6ffIN6IbQAAAIB7E4lxJIo5c+aoUqVKqlevnl588UXNmzdPEiOscGuLFi1S+fLlVa1aNT366KP6/PPPfV0l3OXmz5+vChUqqHbt2mrZsqUmTpzo6yrhHjBz5kxVq1ZNTZs2Vd++fbVhwwZJ4gM53BKxDQAAAHBvIzGOBLdw4UI999xzzh+OW7du1RNPPKEdO3Ywwgo3tWvXLnXr1k0PPfSQvv32W5UoUULdunXT559/rqioKF9XD3ehP//8U126dFG9evU0cOBABQQE6Omnn9Yff/xBghM39dtvv6l9+/aqU6eO6tevr8mTJ6t58+aKiIhQQABhEm6M2AYAAAC497mMYS1IILFdq2vXrtq2bZtmzpyp5MmTS5IqVaqkjBkzauTIkcqTJ48vq4m7jNvtVkBAgL799lv16dNHGzZsUJYsWSRJr7zyitatW6eePXuqUaNGPq4p7hZmJpfLpffff18//PCDVqxYoXTp0kmSHn/8cYWHh+uDDz5QxYoVfVxT3C1i+0x0dLRatmypVKlS6fvvv5ckHTx4UI888oiqVKmiESNGKFWqVD6uLe4mxDYAAABA0sFQKNwxkZGRmjdvniIiIiRJLpdLLpdL69evV6lSpZQ8eXJduXJFkvTpp59q1apVWrBggQ9rjLvB5cuXNXHiRG3atEnR0dHOCM2NGzeqZMmSSp8+vVP2lVdeUapUqTRp0iQeVfdjly9f1rRp03To0CFJckZn/vnnnypZsqTSpUvnPFXQv39/nTx5UtOnT/dZfXF3iIyM1IoVKxQTE+P0mWTJkmnjxo0qVaqUJCkmJkYhISH66KOP9P3332vVqlW+rDLuAsQ2AAAAQNJFYhz/WmRkpPr06aP7779fzz//vMqXL68PP/zQ+UOxYsWKmjt3riQpRYoUMjNVrlxZJUuW1NSpU3XmzBlfVh8+4na79eGHHypTpkx65513VLduXXXs2FGbNm2SJJUtW1arVq3SpUuXnGMKFCigatWqac+ePVq+fLmvqg4fiY6OVv/+/ZUxY0Z1795dlStX1htvvKGwsDBJV681CxculCQlT55cZqaSJUuqfPnyWrFihXbt2uXL6sNHLl26pNdff10ZM2ZU27ZtVblyZX377beSrt6/KlSooEWLFkmSAgMDZWZq2LChChYsqPHjx/uy6vAhYhsAAAAg6SMxjn9tzpw5mjJlin777TfNmDFDnTt31rvvvqsRI0ZIkipXrqyzZ886I6giIyMlXX0MecaMGczF6ae2b9+uiRMnavTo0Vq9erW++OILbdmyRW+++aZiYmL02GOPKSYmRpMmTZJ0NSkqSfXr19fhw4edZCj8x6pVq/Tzzz9r/PjxWrp0qd5//32NGzdO77//vsxMderU0ZkzZzRt2jRJ1641bdq00Zo1a3ThwgVfVh8+8vPPP2v69OmaMWOGxo0bp5o1a6pLly6aNm2agoKCVKJECYWFhenPP/+UJOdpgy5duuiXX37xZdXhQ8Q2AAAAQNJHYhz/itvt1uzZs5U+fXrVqlVLBQsW1Guvvab27dtr0qRJWrZsmWrVqqUiRYpo+PDhkqSgoCBJUvny5RUQEKDt27f7sgnwkXXr1mnXrl1q0qSJ0qRJoyZNmqhXr17auXOnRo4cqYwZM6pVq1b68MMPdfnyZSVLlkzS1VF6Z8+e1blz53zcAiS2pUuX6ty5c6pXr56yZMmidu3aqXv37lq8eLF++eUXVahQQfXq1VP//v0lXbvW1K5dW5cvX9aRI0d8WX34QGRkpKZMmaKiRYuqevXqqlixooYMGaK6detq2LBh2rt3r0JDQ5UiRQr98MMPkuTMF12yZEm5XC5t27bNl02ADxDbAAAAAP6BxDj+lYCAAO3evVvFihVTYGCgYmJiJEmdO3dW8uTJNW7cOGXLlk2tW7fWrFmzNHv2bGcU1ezZs5UtWzZnYUUkfdfPCx4WFqbSpUvr5MmTzra6deuqXr16TqLhrbfe0vHjxzV48GCdPXtWkrR69Wrdd999ypYtW6LWHb534MABlSxZUpcvX3a2tWjRQoUKFdJXX30lSerevbvWr1+vMWPGyO12S5JmzpypzJkzc63xQ0FBQdq9e7eKFi0q6dqo3j59+ujIkSP69ddfVbZsWT388MOaOnWq1q1b59yjli5dqsyZMytr1qw+qz98g9gGAAAA8A8kxuG12D8Ua9WqpVmzZikqKkqBgYGSpBIlSqhcuXLaunWrdu/erfbt26tNmzZq27atXnnlFY0dO1affPKJHn74YT3wwAO+bAYS0fWPlhcsWFB//fWX9u7d62zLkCGD6tevr+joaE2ePFm5c+fWwIEDNWbMGNWvX1/Dhw9Xx44dVaRIEdWsWdMXTYAPxH6gUr58eS1atEinTp1y9uXJk0c1a9bU8ePHtWzZMtWuXVt9+vRR79691aJFC3311Vfq3bu3KlWqpLJly/qqCfCB6+9RkydPlnR1LmhJqlq1qgoXLqxFixYpIiJCzz//vIoXL66GDRtq8ODBGjdunH788Uc1btxY999/v6+aAB8gtgEAAAD8B4lx3NTw4cPVs2dPzZ49W6dPn5Z0bZ7nn3/+Wfv27ZMkNW7cWCdOnNDUqVM9ytSrV0/bt2/XqVOn5HK5NGrUKL322mvau3evBg4cqCeeeEIjR45M/IYhQX388cdq0aKFRo4cqa1bt0q6lmiYMmWKs5hd48aNJUlTp071mPu5cOHCyp49u/MY+ksvvaRvvvlGpUuX1s8//6xmzZpp2rRpSpUqVWI2Cwlo6NCheu655zRx4kQdOHBA0rV5nidMmKAlS5ZIklq1aiUz05QpUzyOr1ixoi5cuKCDBw9Kkvr376+hQ4cqZcqUGjVqlJ544gmNGzdOAQHc8pKSkSNHatCgQVq5cqUzEjz2KYEpU6Y4iySGhoZq165dWrp0qVwul/PEQfPmzbV06VJdvHhRISEhmjBhgpo3b67p06fr7bffVosWLTRgwADfNA4JhtgGAAAAQCyXXT+3ASBp06ZNatGihQIDA1WwYEEtW7ZMlStXdv44PH/+vNKnT68ePXroo48+0pUrV9SxY0dt2rRJK1asUMqUKSVJERERuu+++7R06VJVqVLFOf+FCxeUJk0an7QNCefQoUN66qmndPLkSdWqVUsLFixQRESEZs2apWLFikmSihcvrpw5c+rLL79Unjx5NHToUH300UcaO3asHnroIedcWbJk0Xvvvafnn39eZiaXyyW3201iM4nZvXu3WrZsqcuXL6ts2bJauHChMmfOrIULFypt2rSSpJQpU6pJkyb68ssvlT59evXq1Uvjx4/X3LlzVaBAAUlXR5SnTJlSkyZNUqNGjZzzX7lyxRkhjKRjxYoVatWqlVKnTq2cOXNq3bp1euqpp/Tpp59Kurqwb7FixfTJJ5/olVde0ZEjR9ShQwdFRUVp3rx5znm2b9+uUqVKad26dc41SpLOnDmjDBkyJHq7kLCIbQAAAAD8HVkmOGI/I5kyZYqyZMmilStX6tdff9WPP/6oZcuW6a233lJ0dLTSpk2rH374QfXr15d09dH0vn37aufOnRo8eLAOHTokSfrxxx9VpkwZhYSEeLwPfzgmLbH9ZuXKldq/f79mzpypESNG6M8//1TWrFn11ltvadOmTZKk0aNH680331SePHkkXZ0POmfOnPrkk0+0cuVKSdKiRYuUNWtWJ1EVO/0KSfGkI/YJgjlz5igqKkqLFy/W2LFjNW/ePB07dsxJZkpXr0cdO3ZU+vTpJUn//e9/dfnyZX300UfOooi//vqrChcurPz583u8D0nxpMfMNH78eJUuXVpr167V77//rg8++EDff/+9M0o3X758Gj58uEqVKiVJypEjh1577TUtWLBA3333ncLDwyVJkyZNUoUKFZQzZ05npLkkkuJJzPVPLBHbAAAAAPBg8Htut9vjdcmSJa1Xr14e20aPHm1p06a1NWvW3PT4kSNHWpEiRax48eLWsmVLS5Mmjb399tsJV3H4zN/7jJlZ586d7dFHH7Xo6GiLiYkxM7N58+ZZ0aJFbdCgQXHKx5ZZtGiRNW7c2DJkyGChoaGWOnVqe+655+zSpUsJ2wgkqi1bttjw4cM9ttWvX9/atWtnZmbR0dFmZjZlyhTLlCmT/fTTT3HOEVtm0qRJVr16dcuZM6c1bdrUUqdObd26dXP2I+mIjIyMsy1Xrlw25P/au+/4Hq///+OPdxYSq2KHiBi1d2xFqRW79g4Vm2pV8SlqpKVFS9EqqmaV2hRFzNrU3nsTQiIRkrxzfn/45SJF17dJKp73282tyfU+1+Wcet3Odb1f7/N+nbFjrd+joqLMRx99ZDJmzGhu3br1wmsNHTrUeHh4mEqVKpk2bdqYNGnSmM8//zxe+i2J6/jx4+bHH3+Mc0zPNiIiIiIi8ntagvmK2rNnD82bN+fSpUtWmQpjDMYY8uXLZ9WGjl1F5+/vT5o0afjxxx/jrKyDJ7WA/f39WbJkCe3btydjxoxs2bKF4cOHJ+zAJF7t3buX+vXrx6nxHLsaz8vLi+PHj+Po6GitIq9atSqFChVi27ZtnDt3Ls617t+/D0ClSpWYM2cOs2fPpmLFimzbto2pU6daX1uXl9vWrVupWLEihQoV4ty5czx69MiKmTx58nDkyJE47evXr0/OnDlZuXIld+/ejfNabB3pt99+mwULFjBixAhef/11tm3bxhdffGFtkCcvv+3bt9OyZUu6dOnCt99+a9WeDwoKIl++fNZ8YozBycmJnj17Eh0dzY8//mgdjxX78+DBg5k/fz7ly5cnWbJkBAYG0q9fvwQemcSn2PmmQIECnD59mqioKD3biIiIiIjIiyVeTl4Sw82bN03//v1N5syZjc1mM126dDHGPFmJGRMTY0aMGGF8fHzM6dOnjTFPVuwFBASYHDlyWO0ePXpkOnXqZKZNm/bcFcSSdISGhprRo0cbb29v4+DgYKpUqfLMSs5t27YZFxcXs337dmOMMQ8fPjTGGLN48WLj6elpdu7cabUdNGiQ8ff3N9evX0+4QUiCunDhgqldu7ax2WzmvffeMxcvXnymzezZs02WLFnMwYMHjTFPYmb69OnG3d3d3Lhxw2rbuXNnM2TIEBMWFpYwA5BEcfHiRdOqVSvj7u5uunXrZrp06WK8vb1N/fr1jTGP71V+fn6mYcOG5sqVK8aYJyt7u3XrZooUKWIdCw0NNR06dDC//PKLMebJt1R0v0p6Tpw4YSpXrmxsNpt59913n5lv9GwjIiIiIiLPoxXjr5igoCAuXrzIiBEjGDVqFAsWLCA4OBhHR0eio6Ox2WyUKFECJycn5s+fD2CtwqxduzZBQUGcOHECm82Gi4sL169f57vvvuPhw4eJOSyJZ+Hh4YSEhNC3b182bNjA1q1b2bJlS5w23t7eVKpUyVpJFxs3jRo14s6dO9y4ccNq6+joyK5duwgNDU24QUiCCgoK4tq1a/j7+zN27Fg8PT05duwY4eHh1srM119/nTx58jBx4kTgSR35xo0bExISwvnz563rGWNYsGAB4eHhCT8YSTBbt27lxo0bbNiwgcmTJ/P1118zZswYDh06xL59+3B0dKR8+fJcvnyZ9evXxzm3WrVq3L17l8uXL2Oz2TDGcODAASZMmAA8ia/YfQsk6bhy5QrHjx8nICCAL774Ak9PT86ePUt0dDTw+N+8aNGiODo66tlGREREREQsSoy/YgoWLEi/fv145513qF+/PlmzZmXUqFEAccpfFC9enCVLlnDp0iXrzeORI0dInz69VQYBYNasWWzbto0UKVIk/GAkwWTOnBk/Pz+6detGlSpVqF69OuPGjYvz1fPMmTPj7+/PunXr2Lx5M05OTgAcPXqU1KlTx0kwDBkyhN9++428efMm+FgkYZQqVQpfX1+OHTvGoEGDKFeuHC1atKB8+fL4+/sDULx4cXx9fVmyZAknTpzA2dkZeFyyJ0OGDFbpFIDJkydz7NgxMmbMmCjjkYTh6enJhx9+SNGiRYmJicFms5EmTRocHR2thHbz5s3JnDkzS5cuJSgoyDp+5swZ3NzcrDhKnTo1S5YsYfny5Yk2HkkY1apVo1q1auzdu5eAgADKli1LixYtqFy5MkOGDLHalChRQs82IiIiIiJiUWL8FRD7Zi82iVmqVCkAsmfPTrNmzZg5cyaRkZE4OzsTHR1NihQpaNeuHS4uLnTo0IFdu3YRHBzMhg0b8PHxoWDBgta13d3dtfouiXo6SQCQO3duK5Hw4YcfsnbtWvbs2WO9brPZaNSoES1atKBTp06MHTuWq1ev8u233+Ll5UXdunWttk8nuSTpiI2Z2A/ZatWqRXh4OMuWLaN58+Z8+eWX+Pn5MX/+fD744APsdjsdOnSgePHitGzZkoULF3L79m1++uknChUqRKVKlaxrOzk5KWaSqKfnmkqVKlGjRo04r8eu/s6dOzcAqVKlomPHjly4cIGePXty4cIFbt++zf79+6lUqRKZM2e2zvXy8lLcJFGxcRP732bNmrFr1y5++uknmjVrxuDBgyldujSjRo1iwoQJuLq64ufnh5OTk55tREREREQEAJsxT+1QJS+1oKAgrl+/Tu7cuXF1dY3zWkREBClSpMAYYyUZbDYbe/fupVmzZvj7+zNgwACioqKs1XYnTpygZcuWPHz4kFu3buHh4cF3331nJdYlaQgJCSFZsmQkT57ciotY4eHhREdHkyZNmmfOK1u2LN7e3sybNy/O8fDwcAYMGEBgYCAhISGkTp2aSZMmUbVq1XgfiySMP4uZyMhIXnvtNQC+/fZbChUqRPny5a0248ePZ+zYsSxdupQSJUpw48YNOnfuzJkzZwgODiZ9+vR8++23VKhQIcHHJvEnODiY8PBwMmfObN1nYv3+HvW0du3aYbPZmDlzJo8ePSJZsmRER0fz66+/0qpVK9zd3bl8+TLe3t7MnDmTQoUKJeSwJJ7dvn2bkSNH0qlTJwoXLozdbrc+pH3w4AHJkiWzfh81ahRvvvkmpUuXts7/3//+x+zZszl48CCvvfaanm1EREREROSJxCltLv+mW7dumRYtWhhXV1dTtGhRU7ZsWbNx40br9f379xsHBwezZcsWY0zcjcdCQ0NNv379jKenp3XMbrdbm3GGh4ebvXv3mr179ybMYCTBXLx40fj5+ZkMGTKYyZMnG2OebE5nzOPYSJMmjRkyZMhzNyBbvHixcXFxMUePHjXGPI6r2M0TjTHm8uXL5tixY/E8CklIfydmnp5DYsXG0YMHD4zNZjObN2+O89qJEyesjTgl6Th16pRp0qSJyZIliylbtqypVauWOXXqlPX6H92jbt26ZbJnz26WLl363Gvfvn3bbNy4Mc7mvpK09OrVy9hsNtO4cWNjzJM558KFCyZFihTm+++/t9rev3//mfNPnTplHB0dzZEjR6xjDx480LONiIiIiIho882k4Pvvv+f8+fNs2rSJb775hjRp0tCjRw+2b98OQMqUKalRowaHDx8G4m48lipVKho0aEBMTAxTpkxh+/btDBgwgFu3bgHg6upKyZIlKVmyZMIPTOLNqVOnaNeuHefOnSN37txs3LiRiIgIHBwcrDIYqVKlokuXLjg5OcWpJR6rYcOG5MmTh0mTJrFq1So6duzIunXrrNezZctG/vz5E2xMEr/+bszEevrbK7Fzz/z580mXLl2c+r02m43XX3+dIkWKJNCIJL7FxMSwfPly3n77bZydnVmyZAn9+/fn3LlzBAQEcPPmTQDSpEnzwnvUunXrcHNzo169egDs3r2br7/+GnhcQsPd3Z0qVapQpkyZBB6dJITIyEh27txJ37592bRpEydPnrQ2Uc2QIQPNmjXj9u3bVvuUKVNaP8fOSwsXLiRLlixx5qUUKVLo2UZERERERFRK5WVl/v/XzaOjo/H29sbf35+PPvoIgPPnz9OnTx9u3rzJrl27iImJ4cGDB3HeMD7t8uXLtGnThq1btwLQsmVLpk+fTvLkyRNsPJKwoqKiGDBgAB06dGDLli3MmjWL9957j+bNm8f5mvrTP/9edHQ03bp1Y/r06cDjuJk0aRJp06ZNqGFIAoidayIjIxk4cOA/jpmbN2+SPn161q1bx8iRIylXrhyff/55Qg9HEpAxhv/97384Ozvz7rvvWuV1ZsyYwdixY9m4cSMZMmQAHpfgcXNzi3OuzWajQ4cOZMqUidatW9O9e3e2b99Os2bN+OGHH1QDOgkyT5XSMcZw584dOnToQI8ePRg9ejSenp7MmjWLmJgYHBwcrNI6vxccHMxrr73G6tWrCQgIoE6dOvzvf/9L6OGIiIiIiMh/nNOfN5H/ih9++IEbN25Qo0YNvL29SZEiBbdv38bDwyNOvVYvLy/69OnDW2+9xdatW6lUqVKchMPTNmzYQI8ePbh48SJDhw6lb9++pE6dOqGGJAlg3bp1VKxYMU79XmdnZz755BOSJUvGa6+9xtq1a1m2bBlNmzaNk9R8UVL8+PHjNGnShFOnTjF06FDee+89UqVKlVBDkni2aNEigoKCqFChAt7e3ri5ueHi4vKPY+bWrVv06tWLM2fOcPr0aXr37s3gwYMTckiSAJ6+R3l5eeHm5kazZs3Imzcvrq6uVjLTw8ODa9euxVnB+/t7lM1m4+LFi8yaNQt4XJe+Y8eOrFq16rl7HsjLa/bs2Zw6dYratWtTsGBB0qRJQ3R0NE5OTvz222/cvn2b2rVrc/z4cYYPHw6Ag4MDkZGRz02Knzx5klGjRnHw4EHOnj1Lnz596NevX0IPS0REREREXgIqpfIS2L9/P/nz52fgwIEsXLiQmjVr0r9/f+BxMsHNzY1r165x//594HFCoWTJklSvXp0xY8bEudaCBQu4d++e9fvdu3fp1q0bDx48YOjQoUqKJyGLFi2iQIEC1KxZk2+++QYgTkmUZMmSERMTQ7Zs2ahUqRLnzp1jzZo1wONVv09buHAhmzdvjnNs4MCBREZGMnToUCXFk4hZs2aRPXt2Bg4cyLx586hduzZDhgwBHq/e/CcxY4whY8aMVKtWjS5duhAaGkpAQIC+kZKEPO8eNXDgQACKFSuGq6srxhirtMWyZcuoXLmytYL8aU/fo4KDg6lVqxZjxowhIiKCyZMnKymehBw/fpwSJUowZMgQdu7cSZMmTejYsSOA9aHJtWvXKFy4MABt27YlZ86cVK9enUaNGrF//37rWgsXLuTEiRMAeHp6UrBgQTp16sS9e/cYPnz4cxPoIiIiIiIi2nzzPyx2A7JBgwaZ6tWrm4iICBMcHGy+//574+TkZGbMmGGMMWbgwIGmVKlScTYfi4qKMuPGjTP58uUzt2/fNsYYc/bsWePu7m7atGmT4GORhLVnzx5TsWJF061bN9OqVStTsWJFazPEp8VuYnbs2DFTs2ZN06lTp+de74033jAFCxY0oaGh8dpvSTw///yz8fHxMZMmTTKPHj0yt27dMhMmTDBZsmQxx48fN8Y8npP+bsyEhIQk2BgkYf3ZPWrWrFnPtH3w4IEpX768mT9//jPXO3funHF3dzetWrUyxpg4m/lK0hEbC2PGjDE+Pj4mLCzMREREmE2bNhknJyczcuRIa97o1q2b+frrr40xxowePdqkTp3aODg4mA8//NBERkYaY4wJCQkx+fPnN9WqVUucAYmIiIiIyEtLK8b/w2LrbM6ePRtfX1+SJ0/Oa6+9Rvv27enVqxdDhw7l9u3bdO/enTt37rBmzRoiIiKAx6utoqOjcXNzs1bpZc2alTFjxtC2bdtEG5MkjFKlStGsWTOGDx9Oo0aNuHfvHrNnzwbiruyN3cQsf/78lCtXjmPHjlm15i9dumS1mzBhAmPGjNHK8CSufv36tGnTBmdnZzJkyECZMmXImDEjly9fBh7PSX83ZvQtlKTrr9yjzp07F6ft8ePHuXDhAj4+PtZ1Hj58CEDGjBkZM2YM7du3B9Aq3yQqNhYWLlxolXpzcXGhcuXKBAQEMG3aNH777Teio6M5ffo0c+fO5bXXXuObb77B398fb29v0qRJg7OzMzExMaROnZpx48bxwQcfJPLIRERERETkZaPNN//DjDHExMRQuXJlihcvzldffWXV3bx//z4ZMmTg888/p1evXgwaNIhffvmFHj164OfnB0CPHj24cOECK1assJJZknSYpzYp+6PjV69eZcCAAVy9epXAwMBn2sfW/T1w4AD9+/cnVapUGGNYtmwZISEhL9y0VV4+L4oZeJyc/H15k5MnT1K2bFkOHjyIp6endVwx82r5o7nmz+5R48aNo3v37tY577zzDiEhISxcuJBTp04xevRoACZPnqxE+Csidv5o0KABTk5OLFq0iMjISFxcXIiKiiJv3rw0b96cUaNG0b59e44ePcq7775L06ZNsdlsDB06lLFjxxIZGZnYQxERERERkZecsqWJLCws7IWv2Ww2oqKi8PHx4fDhw4SGhuLk5ERUVBSpUqWiRYsWzJ07F3icBK9RowadOnWibdu21KxZk/nz59OtWzclxZOgO3fuvDDB+fTxmJgYPDw8qF69Ojdu3GDp0qXAs6vGo6KiuHHjBnv27GHJkiXYbDZ27dqlBGcScvfu3RfGDGAlxZ+uQ//DDz9QpEgRsmbNGue4YubVsXfvXu7cuQM8W0f+r9yj5s2bZ7W/efMme/fupXjx4rz99tsUKFCAixcv8sEHHygpnsTs2LGDyZMnc+vWrWdec3BwsD5Q2bNnD3fv3sXFxYXIyEicnZ1p1qwZixcvJiYmhokTJ7JlyxbatGlDsmTJcHFxoW7duvTo0YN79+6htR0iIiIiIvJ/oYxpIlm2bBnlypWjVatWfPDBB5w/fx7gmTd5yZMnp2jRooSHh7No0aI4rzVv3pwjR45w7949PDw8+OSTT1iwYAFZs2YlT548HDx4kLp16ybYmCT+rVq1ipIlS9KgQQM6d+7Mnj17gGfjJlZsIrRixYoUKFCA6dOnA+Do6Bin3YQJE6hTpw6NGzfm6tWrLFq0iFKlSsXjSCShLFu2jIoVK9K8eXPeeecdtm/fDrw4ZmKTVna7nfXr11O3bl2cnJye+YDtq6++UswkcWPHjqV06dLWZs/P82f3qAMHDhASEgLAgQMHOHToEIMHDyZZsmScO3eO9evXky9fvngdhySc3bt34+PjQ82aNTl58iRXrlx5bjsHBweKFi2Ku7v7M5tD+/n5cebMGa5evUqqVKlwdXUFnsxZFSpU4IsvviBt2rR/+GGfiIiIiIjIn1FiPBGMGTOGvn37UrNmTZo1a8b69etp164dJ0+exGazWW8OY98E1qhRg1y5cjF79myio6NxdnYG4MyZM2TLlo3g4GDr2k2aNGH06NFMnDiRbNmyJfzgJN5s2rSJLl264OvrS7du3di7dy9t27bl0KFD2Gy25yY6Y5MGuXLlonr16pw+fZqtW7dit9vZuHGj1a5Dhw6EhoYyffp0smTJkmBjkvhz5coVWrduzbvvvku1atVo3bo1e/fupX///pw/f/6FMQOPk1Znzpzh/PnzvP3229bxI0eOWD+3b99eMZNExcbF7t27qVu3LitWrCAoKAhHR8c43xz4q/eooKAgADw8PBg3bhz3799n3rx5ccrzyMsvPDycgIAAypcvz/nz5xk/fjzFihV7pl1s3JQsWZKqVasyZcqUOKWcjh8/TtasWZ9Zba4kuIiIiIiI/NuUGE8gsW8Eg4KCmDp1Kh999BEff/wxbdq0Ye7cuYSEhDBw4EDgyYaIsW8Cs2bNSps2bbh48SK9e/fm/PnzREZGsnPnTkqXLo23t3fiDErizfMSlpMmTaJ06dIMHz6c1q1bs3TpUry8vOjRowfw4qRB7LWqVq2Kp6cnfn5+ZMmShdatW3P37l0A0qVLpxIYL7nfx8zRo0eJiIhg7ty5DBs2jPbt2zN58mTgcZkD+ONE04wZM6hUqRLe3t589dVXZM2alRo1aliJUcVM0vBHpShu3rxJgwYNyJMnD59++ikQt9TOX71H5c6dG4BChQrx7rvvWiuA5eX1vLhZvXo1Z86cYcSIEbi7u/Pzzz+zc+dO6z4TGzuxcZM2bVo6duxIihQpaN26Ndu3bycyMpKff/6ZUqVKUbJkyYQbkIiIiIiIvJKcErsDSVl4eDiHDx+mRIkSuLi4AI+TVc7OzmTPnt1q5+HhQVhYGEuXLmXXrl2UKVPG2uws9r++vr7YbDb8/f3ZvHkzt2/f5rXXXmPmzJnAH2+qJy+X32+CGLtR2b179+J8CJIjRw5GjBhBuXLlWLly5QvL5thsNq5evcqUKVNYv349BQoUYNCgQXTs2DFOG3l5RUREkCJFCuBJvGTKlIlBgwZRqlQpa37w9vbm0KFDZM2a9Q+vFxwczKJFizDGWG2HDh1Kly5drDaKmZff8zZchcf/tnv27MHR0ZFWrVpx6dIlJk+ezLhx43Bycopzv/mr9yhJOn4fN7ExsG/fPrJmzcqdO3coWrQoqVKlIiIiAhcXF2u/gt8rVKgQM2fOpHv37rRv356wsDDc3Nyssl96thERERERkfikFePxICwsjF69epExY0Y6dOhA1apVmTZtGgCenp5ERUWxa9cuwsPDAdizZw9FixalYMGCfPHFF8CzK6sAfH19+e233xg9ejRz587lxIkTlClT5pl28nK6c+cOffv2JXPmzFYyyW634+DgQEREBN7e3ly7ds3asNUYg4+PD7Vr12bSpElA3NWcT5s+fTqbNm1i0aJFHDlyJE5SXF5ewcHB9OvXDzc3N8aOHQs82SCxWLFiz9T8vnr1KpkzZ8bDw+MPrxsSEsKDBw9ImzYtkydP5tq1a3GS4vJye9Fc8zRjDHa7HWdnZ5o3b467uzsff/wx8+bN4+DBg1a7v3qPkpffi+ImNgby5s3LpUuXGDhwIP7+/mzfvp3Zs2fj5eXFO++8Y5XUeZoxhtKlS7NlyxamT5/O/PnzOXPmDJUrVwb0bCMiIiIiIvHLZv7oe9Tyj8yZM4eRI0cyffp0XFxcmDZtGt9//z1r166lSpUqjBw5km+//ZZcuXJx+/Ztzp49y6effkp4eDjTp0/nyJEj1upPeTWcOHGC9957jzt37uDg4ECaNGlYs2YN8GQF8OjRo1m+fDlDhw61Slo4ODiwcOFC2rdvz7Vr10ibNm2c68a2eXpFsSQNFy9e5H//+x8XLlzAxcWFa9euceLEiee2jV11OWrUKAIDA/nll1+s2HiekJAQ7t69i5eXVzyOQBLDH801T/vggw9wdHRk1KhRnDlzhmbNmnHgwAGKFi3Kjz/+SJ48eZS0fIX8UdzEzi8LFy7ko48+4u7du2zatIkCBQoAcOnSJby8vAgMDKRKlSrPXFurwkVEREREJLFoxfi/5OmVupMmTaJ69epUqFABHx8fvvnmGxo0aEDfvn0JCQnhww8/ZNGiRZQuXZr27dtz9uxZ+vTpQ4oUKciWLdsLV/1K0hO7SjNHjhzkyJGD8ePH4+/vz8WLF1m+fDkA0dHRADRq1Ai73c6qVauIioqykpoZMmTA09OT48ePP3P92DZKiicdsfND5syZyZEjB5988gkfffQRISEhfP/998CTmIkVm3SaPn06jRs3BoiTFP/9nJMmTRolxZOYvzLX2O12jDEYY4iMjCQ6OppmzZqRP39+jDGkT5+eTp06kTdv3mdWmEvS9HfuURUrViRXrlyEhYWRJ08eAKKiovD09CRfvnzs3r0beLY+uZLiIiIiIiKSWJQY/z9YsWIFn376Kb/99lucJEFMTIxVUzw6Ohqbzcbnn3/OoUOHWLFiBY6Ojvj4+DB69Gj69etHlixZsNvtbNq0ieTJk+Pm5pZYQ5IE8HTcxCYkU6RIweeff07ZsmWpWrUqBQoUsMrvuLi4YIwhb9681KpVi+3bt7N48WLreqdOnSI8PNza4E6SnmXLljFgwAA2bNhAREQEAMmSJWPQoEG88cYblCpVCl9fX8aNGweAk9Oz20esXbuWR48e0bx5cwDWrVtHu3bt/nDluLzc/u5c4+joiM1mw2azcfjwYcaNG4fdbmfr1q1s2LCBli1b8vnnnwPPjzFJGv5u3Dg7O2OMIUuWLLRp0wZHR0drs1ZnZ2f27duH3W63NtNUIlxERERERP4rlA35B86cOUPFihXp3Lkzq1atolatWnTq1ImoqCiio6MpU6YM+/btIzo6GicnJ6Kjo8mRIwf16tVj9uzZODg4WCumbt26RXh4OFOmTOHChQsMHz48kUcn8eVFcfPo0SMAUqZMCYCXlxfVqlXj1KlTbN68GYDIyEgA3nnnHcqUKUPbtm0ZOnQoX3/9NePHj6dVq1akT58+cQYm8ebq1avUqFEDf39/9u/fT4sWLWjcuDEXL14EsD5ES506NU2aNOHq1ausWLECeHbV+LZt26hcuTJbtmyhcOHCNGjQgLRp0xITE/PMCk55uf1f5pqHDx8CMHXqVPbv389PP/1E2bJlSZcuHTVq1MDFxYVjx44lzsAkXv1f4iYqKgqAevXqMXjwYEaOHEmrVq348ssv6datG4UKFVK9eRERERER+c/Rkq+/IbYO5urVq3nw4AGnTp3CwcGBvXv3Urt2bfLnz8+AAQMoXrw427ZtY8WKFTRq1MhacdWpUyeaNGli1Xu+efMmU6dOZcqUKURFRTFixAi9cUyC/ixuChQoQK9evXBzc8Nut+Po6EjlypVZuXIl3377LZUrVyZZsmQAZMuWjYkTJ5I+fXoOHTrEggULaN++PQMGDEjkUcq/KTZmNm7cyOXLlzl06BAZMmTgzJkzVKtWjdGjRzNy5EjSpUtnxUzx4sWpVq0ao0aNol69enFW9D548ICpU6dy69Yt1qxZQ69evRgyZEgijlDiw78x1yRPnhyAXLlyPXPdatWqcfr06cQansSTfyNuYr8llypVKvr374+7uzu7du1i/vz5NG7cWPcoERERERH5T9KK8T/xdO1dm83Go0eP+Pnnn/Hx8SFVqlS4ublRpUoV+vbty08//cS2bduoXbs2mTNnZu7cuQDWG0YnJyeyZMli1YLOkCEDZcuWZdy4cdy4cYPOnTsn/AAlXvyduFm8eDFbtmyx2gIUKFCAatWqsW/fPg4ePAg8/nZBrI8//ph58+Zx/PhxJRySiN/XbI6Ojmbbtm3kypWLdOnS4eDgQN68efnwww/Zt2+fVU4nNmYyZcpEixYtOHLkCNu3bwfg2rVr2O127t69S7NmzZg3bx5BQUFKiich8T3XPN02NmkuL7/4jptOnToxZcoUdu7cqXuUiIiIiIj8Zykx/gJXrlyhb9++dOrUia+++op79+4Bj+v6Pnr0iIcPH1pvJgF69uyJzWZj2bJlZM6cmRYtWrBnzx6+/vpr65q7du0ia9asFC5cGHi8+V316tVp2rRpgo9P4sc/iRtjDIGBgTx8+BAHBwdiYmKw2Wy8+eabeHp6MmLECDp27EiJEiUICgqy/i4lqZKGK1eu0KNHD5o3b87HH3/MpUuXsNlsODk5ERISgjEGJycnK3HesmVLsmbNytq1awkLC7NiBqBs2bK88cYb9O/fn86dO1O8eHGOHDmCh4cHEyZMoEWLFok5VPkXJeRcI0lHQsaNaomLiIiIiMh/nRLjvxMSEsLAgQMpXLgwly9fJlmyZAwbNoy2bdtabyDr1atn1fFNnjw5drudrFmzUqFCBXbu3MmtW7do2rQp3bt3p0+fPtSpU4emTZsyfvx42rRpg7OzcyKOUOLD/yVuypcvz65du7h58yaAtRHi3bt3OX78OIsXL+bChQvMmDGDDBkyJMr45N8XFhbGsGHDKF68ODdv3iRfvnxMnz6dNm3acPToUQCaNGlCYGAgQUFBODo6EhMTg7u7OxUqVODatWscOXIEeJKAOnXqFGfPnmX79u2cPXuWuXPnUrRo0UQbo/z7NNfIP6G4EREREREReQ4jcSxZssSUL1/erF692jp2/PhxY7PZzMGDB40xxuzcudNkyJDBTJ482RhjTEREhDHGmD179hhnZ2dz6dIl69zVq1ebQYMGmc6dO5vDhw8n4EgkIf3bcTN+/HiTLFky07BhQ3Py5MkEHIkklI0bN5oaNWqYhQsXWseCgoKMm5ubWb58uTHGmGvXrpns2bObIUOGGGOMiYqKMsYYc+bMGePm5mZ27NhhnfvDDz8Yd3d34+vrq5hJwjTXyD+huBEREREREXmWVoz/f8YYAIoWLUqzZs2oVq0a8LjOb7Zs2fDw8ODYsWMA5MuXj+bNmxMQEIDdbrdKWjx8+BBXV9c4dTZr1apFQEAA3377LYUKFUrgUUl8i6+4qV+/PpcuXWLJkiXkzZs3gUcl8Sk2ZnLlysXbb79NvXr1AIiMjCR9+vRkypSJ8+fPA4/rhvfs2ZPx48dz9uxZa0NNR0dH7HY74eHh1nUrV67MyZMnWblypWImCdJcI/+E4kZEREREROTFbCb2XZM8IyYmBgcHB/bv30+9evXYvXs3Hh4eAJw/f55y5cpRu3ZtOnfuTPny5enevTuXL19mxYoVGGNUX/MVpbiRvyv23/3MmTO8+eabrFy5kiJFigAQFRVF0aJFyZ07N506dcLX15dBgwaxb98+VqxYgaurayL3XuLDX5kLNNfIP6G4EREREREReUwrxl/AGGPV0Vy3bh158uQhY8aM1gZ4OXPmZM6cOZw4cYLWrVuTM2dOli9fTteuXQFtOvWqUtwIPI6DFStWcOHCBevf/o/axv677927F3d3d7y8vACw2+04Ozsze/ZsnJyc6NGjB3nz5mX27Nl0795dSfEkxhjD9u3biYyM/NO5QHONxDLG8NNPP/Hrr79y//79P22ruBEREREREXnslVgxHhERwWeffcawYcP47rvv6NChg7Vi6o/ExMQAUK5cORo0aMCgQYOeaRMWFsa2bduIioqySiJI0qC4kb8rJiaGCRMmMHjwYDJkyIDdbqdatWoEBASQJUuWF662jD1ep04dcuXKxVdfffVMG7vdzu7du7l//z41atRIiOFIAnn06BEBAQFMmDABDw8PUqZMScOGDRk4cOAfnqe55tUWGRnJqFGjGDduHB4eHoSFhVGwYEEmTZpEzpw5X3ie4kZEREREROSxJJ8Yv3z5MiNHjuTAgQNERUURHR3NoUOH/vS82ETVzp07qVu3LmfOnCFt2rRcvXqVbdu2UaVKFTJlypQAI5DEoLiRf+LIkSO0bduWfv36UbNmTbZv306PHj2oUaMG48ePJ2XKlM8kx2N/P378OBUrVmTv3r3kzJmTq1evsmrVKipXrszrr7+eiKOS+Pb1118zbdo0K8EZGBhI165dmTRpEu+88w7Ozs7PnKO5RubMmcNnn33Gl19+SdmyZfntt9+oU6cOc+bMeWEyW3EjIiIiIiLyRJIvpeLq6kqWLFkYNmwYkydP5uTJk6xYsQJ4sinV88QmrlauXEnDhg0JDg6mdevWZM+enR9//JFkyZIlSP8lcShu5J/Yu3cvV69epWbNmqRPn5769evz0UcfcfjwYWbMmAE8Wa0ZG0exMRMYGEiVKlWIiIigbdu2ZM+enWXLlpEmTZrEGYwkiHv37jF+/HiaNm1K5cqVyZEjB/7+/tSsWZMxY8awdetW4EncxNJc82p78OABs2fPpkSJErzxxhu4urpSoUIF0qdP/9wPUmIpbkRERERERJ5IUonxzZs388knn7Bt2zarXqa7uzt9+/alVq1alC5dmsaNGzNixIi/dL2bN28yZ84cvvvuO/LkycO9e/c4dOgQixcvJm3atPE4EklIhw8f5u7du3GOubu789577ylu5Ln279/Pr7/++szxixcvUrBgwTh1xRs3bkyRIkX48ccfiYyMxNHREYhbqzc0NJS5c+eyZMkSChcuTHBwMIcOHWLVqlVkzpw5/gckCeJ596jUqVPz4MED3N3dAaz4SJEiBSEhISxduhS73f7cEk6aa14Nz4sbV1dXoqOjuXHjBkePHsUYQ9euXUmTJg2hoaHP3NOeprgRERERERF5LEkkxm/fvk2DBg1o0KAB69ato06dOrRt25ZTp04BjxMP8DgR1a1bN/bt28e2bduw2WzPrMLbtWsXgYGBAGTKlAljDL179+batWusWrWKQoUKJezgJN7s3LmTKlWqULRoUWbPnv3M64ob+b39+/fj6+tLqVKl+Oqrr7hx4wYA0dHRAFSoUIEdO3Zw8+ZN65wMGTLwxhtv8OjRI9auXWsd37dvHz/++CPwONYcHBx4//33FTNJ0IvuUWfPnsXBwYG6desyePBgdu/ejTGGsWPH8uDBA8qVK8fhw4e5ePGidS3NNa+OF8XNsWPHABg+fDgAffv2xdnZmf3791O1alX69u1L69atrTgBxY2IiIiIiMjzJIka4/PnzycgIIDly5fj5eXFjh076NSpE2XKlGHq1Kk4OztbmyaGh4fTpEkT7HY7v/zyyzP1fsuVK4eTkxMzZ87E29sbu91ureCTpOPUqVOMGDECJycnIiIiOHz4MDt27LCS4b+nuJH79+8zcuRIrl69ioeHBytWrGDMmDHUqVMnTjtPT09at27Np59+ah07ffo0jRo1onfv3vj7+wPQunVr9u/fzw8//ECxYsUUM0nY8+5RHTt2pGzZskybNo0HDx7w1ltvcffuXS5fvky6dOlYunQpDx8+pHr16ly5coUMGTIAmmteJS96tildujRTp07FxcUFgA4dOuDm5sakSZMAOHPmDP7+/vj4+DB69GhAcSMiIiIiIvI8Tondgf8rYwy//fYbqVKlImfOnACUL1+ePn368O233zJ37lw6dOhgJcbd3Nzo2bMn9erV4+jRoxQsWJDg4GAcHBxImzYt/fv3JyIiAm9vbwC9cUyi0qVLR/Xq1SlTpgyurq7kzZuXFStW0Lp16+e2V9xIsmTJqF27NmnTpqVYsWKsXr2aNWvWUK5cOV577TVrjunbty/Dhw+nVatWFC5cGIA8efJw/fr1OB+m+Pv7ExQURLFixQDFTFL1onvUu+++y5QpU5g5cyadOnVi9erVnD59GhcXF4oXLw48rlmfPn167t69ayXGBwwYQHh4uOaaJO6vPNv4+flx+vRp9uzZw6xZs6xzc+fOTWhoKPfv3ycqKgpnZ2fFjYiIiIiIyHMkiRXjbdq0ISIighkzZlgrfq9evUr//v0JCgril19+AbBW+YaGhlKvXj1SpkxJ3rx5Wbt2LV9//TWVK1dOzGFIIvLz8+PQoUNs27aNFClSPLeN4kaeNm7cOKZOncqkSZN4880347yWJ08efHx8eO+99yhVqhSBgYH07t2badOmUbZs2UTqsSSWP7pH3bp1i3Xr1j33vPbt23Pr1i1WrVoF8Nw645J0/ZW4CQ8PJ23atMydO5dmzZoBcOjQITp27Ejv3r1p165dYg5BRERERETkP+2lfpcduwlV7dq1Wb9+Pbdv37Ze8/DwoHz58oSEhDyzSd6pU6eIiIhg9erVbN68mZEjRyq5mcRcvHiRuXPn/mm72FrhH3zwAQcPHmTDhg0vbKu4SdpCQ0P/UrvYmOnevTvR0dGsW7eO+/fvAxAVFQXAN998w507d6hVqxZNmjShQYMG+Pj4WCuBJekICQkhMjLyua/9lXtUaGiodY+KjIzkwIEDHDx4kK5du7J9+3Z69OiBg4ODkuJJzJ07d7h169ZzX/s7zzZubm5WArxVq1Z0796dKlWqkDt3bnx9fRNkLCIiIiIiIi+r/+w77aNHj9KoUSPWr18PPF7t/XuxXwV+++23cXZ2ZsGCBXFeL1++PDdu3ODBgwfA400UV65cSc2aNXFxcWHPnj3s37+fxo0bx/NoJKHs27ePGjVqkDNnTg4dOkRERMQfto9NNhUoUIC6desybtw4ayPFp61YsUJxk0QdPXoUX19fypUrR5s2bZgzZ4712vPmHQcHB+x2O8mTJ6dly5asWbOGI0eOAODs7AxAtWrVmDt3LhMmTLC+XTBjxgySJUuWMIOSeHfgwAEaNmxIhQoVaNy4sVXf+Wl/9x7l4uLCypUradKkCSdOnGDOnDnUrVs3/gcjCebIkSPUrVuXEiVK0LBhQwYOHPjMh3J/JW5u3rxpxc3YsWP5/PPPcXV1JSwsjJUrVzJ//nzc3d0TZlAiIiIiIiIvqf9cYjwsLIwxY8ZQr149li1bxscff/yn5yRPnpyePXsyfvx4Dh06ZB3PkiULly9fjpOMKlKkCAcOHGDbtm2ULFkyPoYgieDSpUv4+vri4+ODt7c3J0+eZPTo0S8si/I8AwYMYNOmTezevZtHjx6xd+9erl27BkDhwoUVN0nQtm3baN68OV5eXowePZr06dPTu3dvJk2a9MwGq0+LPd67d2/u3r3L5s2bCQ4OJjAwkMOHDwOQPn16WrVqxSeffEL58uUTbEwSv+7cuUOfPn2oUaMGmTNnJiAggNy5c9OnTx/27t373HP+zj2qXbt2bN68mU2bNlGmTJl4H48knC1bttCkSRM8PT2ZN28ejRs3ZuLEiS8spfN34qZXr1588803zJo1S/ONiIiIiIjIX/SfqzF+8+ZNAgIC8Pb2xtvbm8aNG7N161bKlSv3h4kqeLzhVPHixfH396datWqMHDmSwMBAFi1apJVTSVRsTBw4cABfX1/atGnD6NGjATh79ixZs2a1kuOxmyP+kSpVqhAcHMzDhw+Jiorihx9+UE3oJComJoYePXpw5coVFi9ebK32btWqFbt37+brr7/mrbfeemHcxB7v3r07K1aswGazcfv2baZOnfrCTVzl5Xf58mUmTJhAgwYNqFixonU8VapUfPvtt7Rs2fKF5+oe9WoyxmCM4f333+fw4cOsXLmS5MmTA49LowwePJiuXbu+8HzFjYiIiIiISPxI9BXjO3fu5N69e9bvmTJlwt/fn969e1O7dm2qV6/OsGHDnntubK3f2Nz+d999R1RUFH5+fuTPn58vv/wSPz8/vXFMgo4cOcKjR4+sD0qKFStGvXr1OHr0KAEBAVSqVInmzZtTpUoV3n//feBJ2ZTY+q1PCw0NZdy4cRw6dIibN2/StGlTjh07pqR4EvL0PAOP42HHjh0UK1YMZ2dnwsPDAcibNy/nzp3ju+++s9rFzjVPe/DgAV988QXLly/n0aNHdOzYkeDgYCXFk5jfx0327Nnp2bMnFSpUsI4tX76cSpUqUalSpThtdY96dT39bGOz2XBwcGD//v1kypTJKvEVGBhI/vz5eeONN+KcG3uPUtyIiIiIiIjEM5NIJk6caNzd3U2OHDlM3rx5zejRo01oaGicNjExMWb58uXGZrOZo0ePWseeFhkZac6dO2f9HhERYTZv3mx++umn+B+EJCi73W5GjhxpcuTIYQoWLGiKFy9upk2bZr2+adMm67WAgACzevVq8+GHH5pUqVKZIUOGmMjISKttZGSkCQoKsn5funSpyZUrl/nkk08SdEwSv+x2u/niiy9M+vTpzfDhw83Dhw+t48YY079/f5MzZ05z9uxZY4wx169fN/Xq1TP16tUzFSpUMDt27LCuFRkZaQ4fPmz9HhQUZAoVKmRGjBiRgCOShPCiuPn9/efKlSumYsWKxtHR0eTLl894enqagIAAc/36dauN7lGvluc92wQHBxtjjJk/f77x8PAwDRo0MKVLlzbJkiUzJUuWNBkyZDA9evQwx44ds66juBEREREREYl/iVJKZc+ePXTu3Jk+ffpQsWJFFi9ezBdffEHHjh355JNPgCdlCu7du0etWrXw9vZm3rx5z5RTadasGdHR0UycOJGsWbMm9FAkgZw9e5b+/ftz5coV+vfvT+bMmVmwYAHTp09n165dFCxYEIBx48ZRsmRJKleubJ07adIkBg8ezIEDB/D09ASgQoUKFCtWjE8//ZTUqVMTFhZGypQpE2VsEj/u3r3LZ599xqZNm4iMjOThw4esWLECb29vq83t27cpXbo0Li4upEyZkv3799OzZ09q1qxJly5dmDVrFm+++SYA7733Hjt37uS7774jX758iTUsiWd/JW5inThxgp9//hlfX19Sp07NmjVrGDZsGO+//z69evUCdI96lbzo2cbPz49PP/0UgOvXrzNq1Ch+++03ZsyYQdasWVm7di2fffYZFStW5LPPPgMUNyIiIiIiIgkhUUqpxG5U16pVK/LkycOHH35I165d+eWXX1ixYgXw5CvoadOmpWfPnixYsIBr165hs9kwxvDo0SMASpQogaura5xNqCTpuXPnDtevX2f69Om8/fbbVKhQgfHjx+Pm5sauXbusdl26dImTFAdo0aIF4eHhnDt3zjpWtmxZbt26ZZVXUVI86bHZbHh6etK/f3/WrFnDqVOnWLt2rVWmwG63kz59egIDAxk2bBj16tXjxIkTTJgwAV9f32dKaBQtWpT8+fOTKlWqRBiNJJQ/i5un5cuXj/fee4/XX3+dLFmy4OfnR8qUKbl165bVplSpUrpHvSJe9Gyzbt06li9fDoCLiwsHDx6kY8eO5MqVixQpUtCwYUPc3d25c+cODx48ABQ3IiIiIiIiCcEpMf7Sixcv4uPjQ1RUlPWmr2XLlhw4cIDp06dTr149nJyedK1mzZrkz5+fUaNG0bZtW6ZPn06rVq144403GDBgQGIMQRJY6dKl+f7778mbN691LCQkhEyZMhEdHW0dc3Nzs36O/XbBTz/9RJo0aXBzc7OOjR07NkH7Lwkvbdq0tG3b1vrQo23btkyZMoX69evj4eFhfSji5eWFl5dXnHO/+eYb0qVLh4eHhxUz7du3p3379gk9DElgfxY3f+TYsWOEh4eTKVMm61j//v3jtb/y3/Fnzzb169fH2dmZXbt2MXz4cOu8sLAwgoKCyJcvH66uroDiRkREREREJCEkyorxAgUK8OuvvxIcHGwde/3113njjTe4cuUKe/bsAZ6sGnd1daVMmTJMnDiRMmXKcPXqVat0hrw6YpPisXFx+fJlLl++zFtvvfVM2+DgYGw2Gxs3bmT+/Pl06NABHx+fOGV4JOlLmTKltdJ3xIgRHDp0iI0bNxITE/NMLAQHB3Pv3j02btzInDlzaNeuHa+//rpi5hX0R3Hzezdv3iQ6OpotW7bw/vvvU6RIEdq0aZPQXZb/gD97ttm9ezepU6fG19cXPz8/vvrqK9avX8/bb7/Nw4cPadeuXSL2XkRERERE5NWTKInxNm3aEBoaytq1a+Mc9/Hx4eHDh5w/f/5x5xwcOHz4MFWrVuW7777jgw8+4NatW6xYsQJ3d/fE6Lr8B8SWxV+0aBFly5YlZ86ccVaNX7p0iUGDBuHj40O9evUoXrw4Q4YMSazuSiJzdHTEbrfj4eFB/fr1+eabb7h9+3acNsYYli9fTqNGjahTpw4lSpTQt1FecX8lbsLCwvjoo4+oVKkSvr6+5M6dm5kzZ5I2bdrE6bQkqj97trl48SLw+BspBQsWZM6cOXTt2pWcOXOyfv16ChcunBjdFhEREREReWUlyuabAF27dmXz5s2sW7eObNmyWceTJ0/OkiVLqF27NgB79+5l7969dOjQgeTJkydGV+U/yG63U6lSJVq2bGltcgdPNm2dNGkSkZGRdO/eXTVaBbvdjqOjI0ePHqVw4cIsXbqU+vXrExoait1u57XXXuPw4cOcOnWKunXrKmYE+OO4iYmJIW3atCxYsIDg4GD8/PwUN/KHzzaLFy+mTp061rGrV6+SMWNGnJ2dE6OrIiIiIiIir7xES4wHBweTM2dOunTpQp8+ffDw8GD16tX07duXH374geLFiydGt+QlsWnTJlq0aMHRo0dJkyYNY8eOZdOmTXzyySeKHXmu2Frh1apVw2azUbBgQdatW8f7779Pp06dErt78h+luJG/Q882IiIiIiIiL49EKaUCkC5dOsaOHcuGDRuoVq0aXbt2pU2bNrzxxhv6OrG8UOznOKtXr6ZAgQJMmzaNDBkyMGnSJJo2baqkg7xQTEwM169fx83NjcDAQNasWUP//v2V3JQ/pLiRv0PPNiIiIiIiIi+PRFsxDo+TnKdPn2bp0qUcP36cJk2a4Ovrm1jdkZfEw4cPyZYtG8HBwRQvXpyhQ4dSv379xO6W/McdO3aM8uXLkzVrViZNmkTVqlUTu0vyElDcyN+lZxsREREREZGXQ6Inxm02W2L99fISmzhxImXLlqVUqVKJ3RV5SYSFhXHz5k1y5cqV2F2Rl4jiRv4uPduIiIiIiIi8HBI1MS4iIiIiIiIiIiIiktASrca4iIiIiIiIiIiIiEhiUGJcRERERERERERERF4pSoyLiIiIiIiIiIiIyCtFiXEREREREREREREReaUoMS4iIiIiIiIiIiIirxQlxkVERERERERERETklaLEuIiIiIiIiIiIiIi8UpQYFxGRf42XlxdffvllYndDREREREREROQPKTEuIvIf1KFDB2w2GzabDWdnZzJlysRbb73Fd999R0xMzN+61vfff0/atGn/T/3ZtGmT1Z8X/dm0aRN79uzB39////R3iYiIiIiIiIjEN6fE7oCIiDxfrVq1mDFjBna7nZs3b7JmzRr69OnDTz/9xPLly3FySrgpvHz58ly/ft36vU+fPoSGhjJjxgzrWLp06XBxcUmwPomIiIiIiIiI/FNaMS4i8h+VLFkyMmfOjIeHByVKlGDQoEEsW7aM1atX8/3331vtxo0bR+HChXFzcyN79ux0796dsLAw4PFKbz8/P0JCQqyV3R9//DEAjx49ol+/fnh4eODm5kaZMmXYtGnTc/vi4uJC5syZrT8pUqSw+hf7x8XF5ZlSKjabjSlTplC3bl1cXV3Jnz8/O3bs4MyZM1SpUgU3NzfKly/P2bNn4/x9y5Yto0SJEiRPnhxvb2+GDRtGdHT0v/m/V0REREREREReYUqMi4i8RN58802KFi3K4sWLrWMODg5MmDCBo0ePMnPmTAIDA+nfvz/weKX3l19+SerUqbl+/TrXr1+nX79+APTs2ZMdO3Ywf/58Dh06RNOmTalVqxanT5/+V/s8YsQI2rVrx4EDB8iXLx+tWrWiS5cuDBw4kL1792KMoWfPnlb7rVu30q5dO/r06cOxY8eYMmUK33//PQEBAf9qv0RERERERETk1aXEuIjISyZfvnxcuHDB+v3dd9+latWqeHl58eabbzJy5EgWLFgAPF7pnSZNGmw2m7WyO2XKlFy6dIkZM2awcOFCKlWqRK5cuejXrx8VK1aMUx7l3+Dn50ezZs3ImzcvH374IRcuXKB169bUrFmT/Pnz06dPnzgr1YcNG8aAAQNo37493t7evPXWW4wYMYIpU6b8q/0SERERERERkVeXaoyLiLxkjDHYbDbr9/Xr1/Ppp59y4sQJQkNDiY6O5uHDhzx48ABXV9fnXuPw4cPY7Xby5s0b5/ijR49wd3f/V/tbpEgR6+dMmTIBULhw4TjHHj58SGhoKKlTp+bgwYP8+uuvcVaI2+32Px2TiIiIiIiIiMhfpcS4iMhL5vjx4+TMmROACxcuULduXbp160ZAQADp0qVj27ZtdOrUicjIyBcmkcPCwnB0dGTfvn04OjrGeS1lypT/an+dnZ2tn2MT+s87FhMTY/Vt2LBhNG7c+JlrJU+e/F/tm4iIiIiIiIi8mpQYFxF5iQQGBnL48GH69u0LwL59+4iJiWHs2LE4ODyujhVbRiWWi4sLdrs9zrHixYtjt9u5desWlSpVSpjO/0UlSpTg5MmT5M6dO7G7IiIiIiIiIiJJlBLjIiL/UY8ePeLGjRvY7XZu3rzJmjVr+PTTT6lbty7t2rUDIHfu3ERFRfHVV19Rr149fv31V7755ps41/Hy8iIsLIwNGzZQtGhRXF1dyZs3L61bt6Zdu3aMHTuW4sWLExQUxIYNGyhSpAi+vr6JMWQAhgwZQt26dfH09KRJkyY4ODhw8OBBjhw5wsiRIxOtXyIiIiIiIiKSdGjzTRGR/6g1a9aQJUsWvLy8qFWrFhs3bmTChAksW7bMKn9StGhRxo0bx+jRoylUqBBz587l008/jXOd8uXL07VrV5o3b06GDBn47LPPAJgxYwbt2rXj/fff5/XXX6dhw4bs2bMHT0/PBB/r02rWrMnKlSv55Zdf8PHxoWzZsnzxxRfkyJEjUfslIiIiIiIiIkmHzRhjErsTIiIiIiIiIiIiIiIJRSvGRUREREREREREROSVosS4iIiIiIiIiIiIiLxSlBgXERERERERERERkVeKEuMiIiIiIiIiIiIi8kpRYlxEREREREREREREXilKjIuIiIiIiIiIiIjIK0WJcRERERERERERERF5pSgxLiIiIiIiIiIiIiKvFCXGRUREREREREREROSVosS4iIiIiIiIiIiIiLxSlBgXERERERERERERkVeKEuMiIiIiIiIiIiIi8kr5f5tX0qqXoZwiAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib\n",
+ "\n",
+ "np.random.seed(242)\n",
+ "cmap = matplotlib.cm.brg\n",
+ "colors = cmap(np.random.choice(np.arange(256), len(selected_feature_columns)))\n",
+ "\n",
+ "fig = plt.figure(figsize=(15,14))\n",
+ "\n",
+ "for i, feature_col in enumerate(selected_feature_columns):\n",
+ " feature_data = df[feature_col]\n",
+ " feature_data.index = timestamps\n",
+ " ax = fig.add_subplot(int((len(selected_feature_columns) + 1) / 2), 2, i+1)\n",
+ " ax = feature_data.plot(\n",
+ " ax=ax,\n",
+ " color=colors[i],\n",
+ " title=\"{} - {}\".format(selected_feature_names[i], feature_col),\n",
+ " rot=25,\n",
+ " )\n",
+ "plt.tight_layout(rect=[0, 0.03, 1, 0.95])\n",
+ "\n",
+ "fig.suptitle(\"Jena Climate Dataset 2009 to 2016\", fontsize=\"x-large\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1e50af8b-2ca8-45e4-8a6f-48492ce7a084",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Download Pre-Trained Model\n",
+ "For simplicity, use a pre-trained model from Keras/HuggingFace.\n",
+ "\n",
+ "The pre-trained model is from: https://keras.io/examples/timeseries/timeseries_weather_forecasting/\n",
+ "The Hugging face model url is: https://huggingface.co/keras-io/timeseries_forecasting_for_weather\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "4660c52f-b3e8-4848-b2c0-372673dc9495",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7b017ebe6478433b90d50247d5fc4be7",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Fetching 9 files: 0%| | 0/9 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "model = from_pretrained_keras(\"keras-io/timeseries_forecasting_for_weather\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f39c0f14-ede8-444b-afb0-61cc78780ad7",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Model: \"model\"\n",
+ "_________________________________________________________________\n",
+ " Layer (type) Output Shape Param # \n",
+ "=================================================================\n",
+ " input_1 (InputLayer) [(None, 120, 7)] 0 \n",
+ " \n",
+ " lstm (LSTM) (None, 32) 5120 \n",
+ " \n",
+ " dense (Dense) (None, 1) 33 \n",
+ " \n",
+ "=================================================================\n",
+ "Total params: 5,153\n",
+ "Trainable params: 5,153\n",
+ "Non-trainable params: 0\n",
+ "_________________________________________________________________\n"
+ ]
+ }
+ ],
+ "source": [
+ "model.summary()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f13daba6-29c7-4143-be7f-333b6d792201",
+ "metadata": {},
+ "source": [
+ "As the model inputs are tensor based, we are selecting Tensor_Based_Forecaster from aix360 to wrap the model. The wrapper manages the input and output shapes between the original model and the explainer."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "cd241404-5615-4342-a8e0-f5fd9f282833",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "f_model = Tensor_Based_Forecaster(model=model, forecast_function=\"predict\", input_length=sequence_length, n_features = len(selected_feature_columns))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b7304d90-1085-4aa5-9c85-cb86776e3d03",
+ "metadata": {},
+ "source": [
+ "Model accuracy for selected test samples."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "62c4f0e5-b185-4b53-b77b-a7836c376025",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MAPE for 10 samples: 0.19223103294346963.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import mean_absolute_percentage_error\n",
+ "\n",
+ "test_sample_size = 10\n",
+ "y_pred = f_model.predict(x_test[0:test_sample_size], verbose = 0)\n",
+ "print(\"MAPE for {} samples: {}.\".format(test_sample_size, mean_absolute_percentage_error(y_test[0:test_sample_size], y_pred)))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "64b6fb0f-c9dd-4243-bd5b-c6c44d8160cd",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Initialize TSLimeExplainer\n",
+ "\n",
+ "`TSLimeExplainer` requires a model function which is to be explained and input (history) length used for the input model. The explanation is for selected latest window of length `relevant_history` over all input features. If `input_length=20` and `relevant_history=10`, explanation is computed for last 10 time points. The default linear model used for explanation is sklearn's LinearRegression. If a different linear interpretable model is to be used, the model can be wrapped with `aix360.algorithms.tslime.surrogate.LinearSurrogateModel` and provided as param `local_interpretable_model`. \n",
+ "\n",
+ "The explainer uses TSPerturber for generating perturbed/simulated time series data to train the linear interpretable model. Available perturbers are \"block-bootstrap\", \"frequency\", \"moving_average\", \"shift\". "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "791e5cfd-1f56-488e-854a-77b3f993c4f5",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import functools\n",
+ "from aix360.algorithms.tslime.tslime import TSLimeExplainer\n",
+ "from aix360.algorithms.tsutils.tsperturbers import BlockBootstrapPerturber\n",
+ "\n",
+ "relevant_history = 40\n",
+ "explainer = TSLimeExplainer(\n",
+ " model= functools.partial(f_model.predict, verbose = 0),\n",
+ " input_length=sequence_length,\n",
+ " relevant_history=relevant_history,\n",
+ " perturbers=[\n",
+ " BlockBootstrapPerturber(window_length=min(10, sequence_length-1), block_length=2, block_swap=2),\n",
+ " ],\n",
+ " n_perturbations=10000,\n",
+ " random_seed=22,\n",
+ " )\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d6144697-4b3d-4945-85dc-56e087ccd65c",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Compute Explanation\n",
+ "\n",
+ "Compute lime weights for a given input timeseries."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "9f7c2fc3-64a3-4f79-841e-5160613f1112",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "