Skip to content

Latest commit

 

History

History
40 lines (28 loc) · 1.06 KB

README.md

File metadata and controls

40 lines (28 loc) · 1.06 KB

neural-network

Multi Layer Perceptron neural network with no ML libraries. Uses Genetic Algorithms for optimisation. Written in Python.

  • Model has 1 hidden layer with arbitrary neurons.
  • Model output layer has 1 neuron.
  • Trains with back propagation using gradient descent of the error function.
  • Model optimisation is done via a Genetic Evolutionary Algorithm

Installation

pip install numpy pandas copy matplotlib warnings deap scipy bitstring

Results

The best results for the river basin's pan evaporation prediction (Fresno, CA):

Hyperparameter Value
Hidden neurons 8
Learning rate 0.1
Data split 60/20/20
Momentum True (alpha = 1.1)
Bold Driver False
Random seed 10

Validation RMSE: 0.010292

Test RMSE: 0.009849

Denormalised RMSE: 0.158563

Pan evaporation plotted prediction

Comparison with multiple linear regression model:

Linear regression plotted prediction