Skip to content

Latest commit

 

History

History
52 lines (38 loc) · 3.43 KB

README.md

File metadata and controls

52 lines (38 loc) · 3.43 KB

RWKV-LM-RLHF-DPO

This project aims to implement Direct Preference Optimization for RWKV.

20231201: Original idea

20240128: First version

20240301: RWKV-6 merge & add logging (should hopefully work)

WARNING: Debugging, pre-release.

Usages

  1. Prepere DPO dataset:
  2. Prepare general corpus dataset / SFT dataset:
    • This repo allows you to perform SFT and DPO at the same time. You might want a general pretraining corpus or SFT corpus to maintain general performance.
    • It's required as a parameter, but if you don't want that, you can point it to the default_text_document and set --dpo_general_corpus_ratio 0, It will only do DPO.
    • The size of the dataset might vary, but the larger the better.
    • Use binidx at https://github.com/Abel2076/json2binidx_tool, but if you don't have one, use default_text_document in this repo.
  3. Run train.py:
    • Currently RWKV-5 is supported; I rebased this repository to support RWKV-6. It should (theoretically) work, but I can't verify it by now.
    • Takes up too much memory (24GB) for a relatively small model (0.4B). TODO: use LoRA to save memory.

My training command is provided as follows:

./RWKV-LM-RLHF-DPO/RWKV-v5/train.py --load_model ./RWKV-5-World-0.4B-v2-20231113-ctx4096.pth --wandb <WANDB> --proj_dir ./models_2 --ctx_len 4096 --epoch_count 4 --epoch_begin 0 --epoch_steps 2000 --data_file ./RWKV-LM/RWKV-v5/data/minipile --data_type binidx --vocab_size 65536 --epoch_save 1 --micro_bsz 1 --n_layer 24 --n_embd 1024 --pre_ffn 0 --head_qk 0 --lr_init 5e-6 --lr_final 1e-6 --warmup_steps 50 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 --accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0 --accumulate_grad_batches 20 --enable_progress_bar True --ds_bucket_mb 200 --my_testing r3r4 --dpo 1 --dpo_train_file ./RWKV-LM-RLHF-DPO/trainset.save --dpo_general_corpus_ratio 0.8 --dpo_beta 0.02

I use a mixed loss of this form:

$$Loss = (dpo\_general\_corpus\_ratio) * Loss\_general + (1 - dpo\_general\_corpus\_ratio) * Loss\_DPO$$

If you set dpo_general_corpus_ratio to 0, it will do only DPO.

Toy model

I uploaded a toy model: https://huggingface.co/ZhangRC/RWKV-5-World-DPO-Alpha This model is trained on approximately 10,000 DPO pairs for one epoch on solely English data (see https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized, run washingdpodata.ipynb, but the dataset formats may have changed a little since that), on a single RTX4090 GPU (parameters as above). VRAM usage was around 99%.

AlignBench results (in Chinese)

模型名称 专业能力 中文理解 基本任务 数学计算 文本写作 综合问答 角色扮演 逻辑推理 中文推理 中文语言 总分
原版 2.887 2.052 2.353 1.241 3.120 3.658 2.595 1.750 1.496 2.778 2.136
DPO 3.048 2.500 2.632 1.348 3.467 4.763 3.517 1.924 1.636 3.321 2.479

These results show the model's cross-lingual transferablilty.